| Index: content/browser/indexed_db/leveldb/avltree.h
|
| diff --git a/content/browser/indexed_db/leveldb/avltree.h b/content/browser/indexed_db/leveldb/avltree.h
|
| deleted file mode 100644
|
| index 91df04868c74796ef4eefc6952853b83a47e4988..0000000000000000000000000000000000000000
|
| --- a/content/browser/indexed_db/leveldb/avltree.h
|
| +++ /dev/null
|
| @@ -1,977 +0,0 @@
|
| -// Copyright (c) 2013 The Chromium Authors. All rights reserved.
|
| -// Use of this source code is governed by a BSD-style license that can be
|
| -// found in the LICENSE file.
|
| -
|
| -/*
|
| - * Copyright (C) 2008 Apple Inc. All rights reserved.
|
| - *
|
| - * Based on Abstract AVL Tree Template v1.5 by Walt Karas
|
| - * <http://geocities.com/wkaras/gen_cpp/avl_tree.html>.
|
| - *
|
| - * Redistribution and use in source and binary forms, with or without
|
| - * modification, are permitted provided that the following conditions
|
| - * are met:
|
| - *
|
| - * 1. Redistributions of source code must retain the above copyright
|
| - * notice, this list of conditions and the following disclaimer.
|
| - * 2. Redistributions in binary form must reproduce the above copyright
|
| - * notice, this list of conditions and the following disclaimer in the
|
| - * documentation and/or other materials provided with the distribution.
|
| - * 3. Neither the name of Apple Computer, Inc. ("Apple") nor the names of
|
| - * its contributors may be used to endorse or promote products derived
|
| - * from this software without specific prior written permission.
|
| - *
|
| - * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
|
| - * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
| - * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
| - * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
|
| - * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
| - * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
| - * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
|
| - * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
| - * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
| - * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
| - */
|
| -
|
| -#ifndef CONTENT_BROWSER_INDEXED_DB_LEVELDB_AVLTREE_H_
|
| -#define CONTENT_BROWSER_INDEXED_DB_LEVELDB_AVLTREE_H_
|
| -
|
| -#include "base/logging.h"
|
| -#include "content/browser/indexed_db/leveldb/fixed_array.h"
|
| -
|
| -namespace content {
|
| -
|
| -// Here is the reference class for BSet.
|
| -//
|
| -// class BSet
|
| -// {
|
| -// public:
|
| -//
|
| -// class ANY_bitref
|
| -// {
|
| -// public:
|
| -// operator bool ();
|
| -// void operator = (bool b);
|
| -// };
|
| -//
|
| -// // Does not have to initialize bits.
|
| -// BSet();
|
| -//
|
| -// // Must return a valid value for index when 0 <= index < maxDepth
|
| -// ANY_bitref operator [] (unsigned index);
|
| -//
|
| -// // Set all bits to 1.
|
| -// void Set();
|
| -//
|
| -// // Set all bits to 0.
|
| -// void Reset();
|
| -// };
|
| -
|
| -template <unsigned maxDepth>
|
| -class AVLTreeDefaultBSet {
|
| - public:
|
| - bool& operator[](unsigned i) {
|
| -#if defined(ADDRESS_SANITIZER)
|
| - CHECK(i < maxDepth);
|
| -#endif
|
| - return data_[i];
|
| - }
|
| - void Set() {
|
| - for (unsigned i = 0; i < maxDepth; ++i)
|
| - data_[i] = true;
|
| - }
|
| - void Reset() {
|
| - for (unsigned i = 0; i < maxDepth; ++i)
|
| - data_[i] = false;
|
| - }
|
| -
|
| - private:
|
| - FixedArray<bool, maxDepth> data_;
|
| -};
|
| -
|
| -// How to determine maxDepth:
|
| -// d Minimum number of nodes
|
| -// 2 2
|
| -// 3 4
|
| -// 4 7
|
| -// 5 12
|
| -// 6 20
|
| -// 7 33
|
| -// 8 54
|
| -// 9 88
|
| -// 10 143
|
| -// 11 232
|
| -// 12 376
|
| -// 13 609
|
| -// 14 986
|
| -// 15 1,596
|
| -// 16 2,583
|
| -// 17 4,180
|
| -// 18 6,764
|
| -// 19 10,945
|
| -// 20 17,710
|
| -// 21 28,656
|
| -// 22 46,367
|
| -// 23 75,024
|
| -// 24 121,392
|
| -// 25 196,417
|
| -// 26 317,810
|
| -// 27 514,228
|
| -// 28 832,039
|
| -// 29 1,346,268
|
| -// 30 2,178,308
|
| -// 31 3,524,577
|
| -// 32 5,702,886
|
| -// 33 9,227,464
|
| -// 34 14,930,351
|
| -// 35 24,157,816
|
| -// 36 39,088,168
|
| -// 37 63,245,985
|
| -// 38 102,334,154
|
| -// 39 165,580,140
|
| -// 40 267,914,295
|
| -// 41 433,494,436
|
| -// 42 701,408,732
|
| -// 43 1,134,903,169
|
| -// 44 1,836,311,902
|
| -// 45 2,971,215,072
|
| -//
|
| -// E.g., if, in a particular instantiation, the maximum number of nodes in a
|
| -// tree instance is 1,000,000, the maximum depth should be 28.
|
| -// You pick 28 because MN(28) is 832,039, which is less than or equal to
|
| -// 1,000,000, and MN(29) is 1,346,268, which is strictly greater than 1,000,000.
|
| -
|
| -template <class Abstractor,
|
| - unsigned maxDepth = 32,
|
| - class BSet = AVLTreeDefaultBSet<maxDepth> >
|
| -class AVLTree {
|
| - public:
|
| - typedef typename Abstractor::key key;
|
| - typedef typename Abstractor::handle handle;
|
| - typedef typename Abstractor::size size;
|
| -
|
| - enum SearchType {
|
| - EQUAL = 1,
|
| - LESS = 2,
|
| - GREATER = 4,
|
| - LESS_EQUAL = EQUAL | LESS,
|
| - GREATER_EQUAL = EQUAL | GREATER
|
| - };
|
| -
|
| - Abstractor& abstractor() { return abs_; }
|
| -
|
| - inline handle Insert(handle h);
|
| -
|
| - inline handle Search(key k, SearchType st = EQUAL);
|
| - inline handle SearchLeast();
|
| - inline handle SearchGreatest();
|
| -
|
| - inline handle Remove(key k);
|
| -
|
| - inline handle Subst(handle new_node);
|
| -
|
| - void Purge() { abs_.root = Null(); }
|
| -
|
| - bool IsEmpty() { return abs_.root == Null(); }
|
| -
|
| - AVLTree() { abs_.root = Null(); }
|
| -
|
| - class Iterator {
|
| - public:
|
| - // Initialize depth to invalid value, to indicate iterator is
|
| - // invalid. (Depth is zero-base.)
|
| - Iterator() { depth_ = ~0U; }
|
| -
|
| - void StartIter(AVLTree* tree, key k, SearchType st = EQUAL) {
|
| - // Mask of high bit in an int.
|
| - const int kMaskHighBit = static_cast<int>(~((~(unsigned)0) >> 1));
|
| -
|
| - // Save the tree that we're going to iterate through in a
|
| - // member variable.
|
| - tree_ = tree;
|
| -
|
| - int cmp, target_cmp;
|
| - handle h = tree_->abs_.root;
|
| - unsigned d = 0;
|
| -
|
| - depth_ = ~0U;
|
| -
|
| - if (h == Null()) {
|
| - // Tree is empty.
|
| - return;
|
| - }
|
| -
|
| - if (st & LESS) {
|
| - // Key can be greater than key of starting node.
|
| - target_cmp = 1;
|
| - } else if (st & GREATER) {
|
| - // Key can be less than key of starting node.
|
| - target_cmp = -1;
|
| - } else {
|
| - // Key must be same as key of starting node.
|
| - target_cmp = 0;
|
| - }
|
| -
|
| - for (;;) {
|
| - cmp = CmpKN(k, h);
|
| - if (cmp == 0) {
|
| - if (st & EQUAL) {
|
| - // Equal node was sought and found as starting node.
|
| - depth_ = d;
|
| - break;
|
| - }
|
| - cmp = -target_cmp;
|
| - } else if (target_cmp != 0) {
|
| - if (!((cmp ^ target_cmp) & kMaskHighBit)) {
|
| - // cmp and target_cmp are both negative or both positive.
|
| - depth_ = d;
|
| - }
|
| - }
|
| - h = cmp < 0 ? GetLT(h) : GetGT(h);
|
| - if (h == Null())
|
| - break;
|
| - branch_[d] = cmp > 0;
|
| - path_h_[d++] = h;
|
| - }
|
| - }
|
| -
|
| - void StartIterLeast(AVLTree* tree) {
|
| - tree_ = tree;
|
| -
|
| - handle h = tree_->abs_.root;
|
| -
|
| - depth_ = ~0U;
|
| -
|
| - branch_.Reset();
|
| -
|
| - while (h != Null()) {
|
| - if (depth_ != ~0U)
|
| - path_h_[depth_] = h;
|
| - depth_++;
|
| - h = GetLT(h);
|
| - }
|
| - }
|
| -
|
| - void StartIterGreatest(AVLTree* tree) {
|
| - tree_ = tree;
|
| -
|
| - handle h = tree_->abs_.root;
|
| -
|
| - depth_ = ~0U;
|
| -
|
| - branch_.Set();
|
| -
|
| - while (h != Null()) {
|
| - if (depth_ != ~0U)
|
| - path_h_[depth_] = h;
|
| - depth_++;
|
| - h = GetGT(h);
|
| - }
|
| - }
|
| -
|
| - handle operator*() {
|
| - if (depth_ == ~0U)
|
| - return Null();
|
| -
|
| - return depth_ == 0 ? tree_->abs_.root : path_h_[depth_ - 1];
|
| - }
|
| -
|
| - void operator++() {
|
| - if (depth_ != ~0U) {
|
| - handle h = GetGT(**this);
|
| - if (h == Null()) {
|
| - do {
|
| - if (depth_ == 0) {
|
| - depth_ = ~0U;
|
| - break;
|
| - }
|
| - depth_--;
|
| - } while (branch_[depth_]);
|
| - } else {
|
| - branch_[depth_] = true;
|
| - path_h_[depth_++] = h;
|
| - for (;;) {
|
| - h = GetLT(h);
|
| - if (h == Null())
|
| - break;
|
| - branch_[depth_] = false;
|
| - path_h_[depth_++] = h;
|
| - }
|
| - }
|
| - }
|
| - }
|
| -
|
| - void operator--() {
|
| - if (depth_ != ~0U) {
|
| - handle h = GetLT(**this);
|
| - if (h == Null()) {
|
| - do {
|
| - if (depth_ == 0) {
|
| - depth_ = ~0U;
|
| - break;
|
| - }
|
| - depth_--;
|
| - } while (!branch_[depth_]);
|
| - } else {
|
| - branch_[depth_] = false;
|
| - path_h_[depth_++] = h;
|
| - for (;;) {
|
| - h = GetGT(h);
|
| - if (h == Null())
|
| - break;
|
| - branch_[depth_] = true;
|
| - path_h_[depth_++] = h;
|
| - }
|
| - }
|
| - }
|
| - }
|
| -
|
| - void operator++(int /*ignored*/) { ++(*this); }
|
| - void operator--(int /*ignored*/) { --(*this); }
|
| -
|
| - protected:
|
| - // Tree being iterated over.
|
| - AVLTree* tree_;
|
| -
|
| - // Records a path into the tree. If branch_[n] is true, indicates
|
| - // take greater branch from the nth node in the path, otherwise
|
| - // take the less branch. branch_[0] gives branch from root, and
|
| - // so on.
|
| - BSet branch_;
|
| -
|
| - // Zero-based depth of path into tree.
|
| - unsigned depth_;
|
| -
|
| - // Handles of nodes in path from root to current node (returned by *).
|
| - static const size_t kPathSize = maxDepth - 1;
|
| - handle path_h_[kPathSize];
|
| -
|
| - int CmpKN(key k, handle h) { return tree_->abs_.CompareKeyNode(k, h); }
|
| - int CmpNN(handle h1, handle h2) {
|
| - return tree_->abs_.CompareNodeNode(h1, h2);
|
| - }
|
| - handle GetLT(handle h) { return tree_->abs_.GetLess(h); }
|
| - handle GetGT(handle h) { return tree_->abs_.GetGreater(h); }
|
| - handle Null() { return tree_->abs_.Null(); }
|
| - };
|
| -
|
| - template <typename fwd_iter>
|
| - bool Build(fwd_iter p, size num_nodes) {
|
| - if (num_nodes == 0) {
|
| - abs_.root = Null();
|
| - return true;
|
| - }
|
| -
|
| - // Gives path to subtree being built. If branch[N] is false, branch
|
| - // less from the node at depth N, if true branch greater.
|
| - BSet branch;
|
| -
|
| - // If rem[N] is true, then for the current subtree at depth N, it's
|
| - // greater subtree has one more node than it's less subtree.
|
| - BSet rem;
|
| -
|
| - // Depth of root node of current subtree.
|
| - unsigned depth = 0;
|
| -
|
| - // Number of nodes in current subtree.
|
| - size num_sub = num_nodes;
|
| -
|
| - // The algorithm relies on a stack of nodes whose less subtree has
|
| - // been built, but whose right subtree has not yet been built. The
|
| - // stack is implemented as linked list. The nodes are linked
|
| - // together by having the "greater" handle of a node set to the
|
| - // next node in the list. "less_parent" is the handle of the first
|
| - // node in the list.
|
| - handle less_parent = Null();
|
| -
|
| - // h is root of current subtree, child is one of its children.
|
| - handle h, child;
|
| -
|
| - for (;;) {
|
| - while (num_sub > 2) {
|
| - // Subtract one for root of subtree.
|
| - num_sub--;
|
| - rem[depth] = !!(num_sub & 1);
|
| - branch[depth++] = false;
|
| - num_sub >>= 1;
|
| - }
|
| -
|
| - if (num_sub == 2) {
|
| - // Build a subtree with two nodes, slanting to greater.
|
| - // I arbitrarily chose to always have the extra node in the
|
| - // greater subtree when there is an odd number of nodes to
|
| - // split between the two subtrees.
|
| -
|
| - h = *p;
|
| - p++;
|
| - child = *p;
|
| - p++;
|
| - SetLT(child, Null());
|
| - SetGT(child, Null());
|
| - SetBF(child, 0);
|
| - SetGT(h, child);
|
| - SetLT(h, Null());
|
| - SetBF(h, 1);
|
| - } else { // num_sub == 1
|
| - // Build a subtree with one node.
|
| -
|
| - h = *p;
|
| - p++;
|
| - SetLT(h, Null());
|
| - SetGT(h, Null());
|
| - SetBF(h, 0);
|
| - }
|
| -
|
| - while (depth) {
|
| - depth--;
|
| - if (!branch[depth]) {
|
| - // We've completed a less subtree.
|
| - break;
|
| - }
|
| -
|
| - // We've completed a greater subtree, so attach it to
|
| - // its parent (that is less than it). We pop the parent
|
| - // off the stack of less parents.
|
| - child = h;
|
| - h = less_parent;
|
| - less_parent = GetGT(h);
|
| - SetGT(h, child);
|
| - // num_sub = 2 * (num_sub - rem[depth]) + rem[depth] + 1
|
| - num_sub <<= 1;
|
| - num_sub += 1 - rem[depth];
|
| - if (num_sub & (num_sub - 1)) {
|
| - // num_sub is not a power of 2
|
| - SetBF(h, 0);
|
| - } else {
|
| - // num_sub is a power of 2
|
| - SetBF(h, 1);
|
| - }
|
| - }
|
| -
|
| - if (num_sub == num_nodes) {
|
| - // We've completed the full tree.
|
| - break;
|
| - }
|
| -
|
| - // The subtree we've completed is the less subtree of the
|
| - // next node in the sequence.
|
| -
|
| - child = h;
|
| - h = *p;
|
| - p++;
|
| - SetLT(h, child);
|
| -
|
| - // Put h into stack of less parents.
|
| - SetGT(h, less_parent);
|
| - less_parent = h;
|
| -
|
| - // Proceed to creating greater than subtree of h.
|
| - branch[depth] = true;
|
| - num_sub += rem[depth++];
|
| - } // end for (;;)
|
| -
|
| - abs_.root = h;
|
| -
|
| - return true;
|
| - }
|
| -
|
| - protected:
|
| - friend class Iterator;
|
| -
|
| - // Create a class whose sole purpose is to take advantage of
|
| - // the "empty member" optimization.
|
| - struct abs_plus_root : public Abstractor {
|
| - // The handle of the root element in the AVL tree.
|
| - handle root;
|
| - };
|
| -
|
| - abs_plus_root abs_;
|
| -
|
| - handle GetLT(handle h) { return abs_.GetLess(h); }
|
| - void SetLT(handle h, handle lh) { abs_.SetLess(h, lh); }
|
| -
|
| - handle GetGT(handle h) { return abs_.GetGreater(h); }
|
| - void SetGT(handle h, handle gh) { abs_.SetGreater(h, gh); }
|
| -
|
| - int GetBF(handle h) { return abs_.GetBalanceFactor(h); }
|
| - void SetBF(handle h, int bf) { abs_.SetBalanceFactor(h, bf); }
|
| -
|
| - int CmpKN(key k, handle h) { return abs_.CompareKeyNode(k, h); }
|
| - int CmpNN(handle h1, handle h2) { return abs_.CompareNodeNode(h1, h2); }
|
| -
|
| - handle Null() { return abs_.Null(); }
|
| -
|
| - private:
|
| - // Balances subtree, returns handle of root node of subtree
|
| - // after balancing.
|
| - handle Balance(handle bal_h) {
|
| - handle deep_h;
|
| -
|
| - // Either the "greater than" or the "less than" subtree of
|
| - // this node has to be 2 levels deeper (or else it wouldn't
|
| - // need balancing).
|
| -
|
| - if (GetBF(bal_h) > 0) {
|
| - // "Greater than" subtree is deeper.
|
| -
|
| - deep_h = GetGT(bal_h);
|
| -
|
| - if (GetBF(deep_h) < 0) {
|
| - handle old_h = bal_h;
|
| - bal_h = GetLT(deep_h);
|
| -
|
| - SetGT(old_h, GetLT(bal_h));
|
| - SetLT(deep_h, GetGT(bal_h));
|
| - SetLT(bal_h, old_h);
|
| - SetGT(bal_h, deep_h);
|
| -
|
| - int bf = GetBF(bal_h);
|
| - if (bf != 0) {
|
| - if (bf > 0) {
|
| - SetBF(old_h, -1);
|
| - SetBF(deep_h, 0);
|
| - } else {
|
| - SetBF(deep_h, 1);
|
| - SetBF(old_h, 0);
|
| - }
|
| - SetBF(bal_h, 0);
|
| - } else {
|
| - SetBF(old_h, 0);
|
| - SetBF(deep_h, 0);
|
| - }
|
| - } else {
|
| - SetGT(bal_h, GetLT(deep_h));
|
| - SetLT(deep_h, bal_h);
|
| - if (GetBF(deep_h) == 0) {
|
| - SetBF(deep_h, -1);
|
| - SetBF(bal_h, 1);
|
| - } else {
|
| - SetBF(deep_h, 0);
|
| - SetBF(bal_h, 0);
|
| - }
|
| - bal_h = deep_h;
|
| - }
|
| - } else {
|
| - // "Less than" subtree is deeper.
|
| -
|
| - deep_h = GetLT(bal_h);
|
| -
|
| - if (GetBF(deep_h) > 0) {
|
| - handle old_h = bal_h;
|
| - bal_h = GetGT(deep_h);
|
| - SetLT(old_h, GetGT(bal_h));
|
| - SetGT(deep_h, GetLT(bal_h));
|
| - SetGT(bal_h, old_h);
|
| - SetLT(bal_h, deep_h);
|
| -
|
| - int bf = GetBF(bal_h);
|
| - if (bf != 0) {
|
| - if (bf < 0) {
|
| - SetBF(old_h, 1);
|
| - SetBF(deep_h, 0);
|
| - } else {
|
| - SetBF(deep_h, -1);
|
| - SetBF(old_h, 0);
|
| - }
|
| - SetBF(bal_h, 0);
|
| - } else {
|
| - SetBF(old_h, 0);
|
| - SetBF(deep_h, 0);
|
| - }
|
| - } else {
|
| - SetLT(bal_h, GetGT(deep_h));
|
| - SetGT(deep_h, bal_h);
|
| - if (GetBF(deep_h) == 0) {
|
| - SetBF(deep_h, 1);
|
| - SetBF(bal_h, -1);
|
| - } else {
|
| - SetBF(deep_h, 0);
|
| - SetBF(bal_h, 0);
|
| - }
|
| - bal_h = deep_h;
|
| - }
|
| - }
|
| -
|
| - return bal_h;
|
| - }
|
| -};
|
| -
|
| -template <class Abstractor, unsigned maxDepth, class BSet>
|
| -inline typename AVLTree<Abstractor, maxDepth, BSet>::handle
|
| -AVLTree<Abstractor, maxDepth, BSet>::Insert(handle h) {
|
| - SetLT(h, Null());
|
| - SetGT(h, Null());
|
| - SetBF(h, 0);
|
| -
|
| - if (abs_.root == Null()) {
|
| - abs_.root = h;
|
| - } else {
|
| - // Last unbalanced node encountered in search for insertion point.
|
| - handle unbal = Null();
|
| - // Parent of last unbalanced node.
|
| - handle parent_unbal = Null();
|
| - // Balance factor of last unbalanced node.
|
| - int unbal_bf;
|
| -
|
| - // Zero-based depth in tree.
|
| - unsigned depth = 0, unbal_depth = 0;
|
| -
|
| - // Records a path into the tree. If branch[n] is true, indicates
|
| - // take greater branch from the nth node in the path, otherwise
|
| - // take the less branch. branch[0] gives branch from root, and
|
| - // so on.
|
| - BSet branch;
|
| -
|
| - handle hh = abs_.root;
|
| - handle parent = Null();
|
| - int cmp;
|
| -
|
| - do {
|
| - if (GetBF(hh) != 0) {
|
| - unbal = hh;
|
| - parent_unbal = parent;
|
| - unbal_depth = depth;
|
| - }
|
| - cmp = CmpNN(h, hh);
|
| - if (cmp == 0) {
|
| - // Duplicate key.
|
| - return hh;
|
| - }
|
| - parent = hh;
|
| - hh = cmp < 0 ? GetLT(hh) : GetGT(hh);
|
| - branch[depth++] = cmp > 0;
|
| - } while (hh != Null());
|
| -
|
| - // Add node to insert as leaf of tree.
|
| - if (cmp < 0)
|
| - SetLT(parent, h);
|
| - else
|
| - SetGT(parent, h);
|
| -
|
| - depth = unbal_depth;
|
| -
|
| - if (unbal == Null()) {
|
| - hh = abs_.root;
|
| - } else {
|
| - cmp = branch[depth++] ? 1 : -1;
|
| - unbal_bf = GetBF(unbal);
|
| - if (cmp < 0)
|
| - unbal_bf--;
|
| - else // cmp > 0
|
| - unbal_bf++;
|
| - hh = cmp < 0 ? GetLT(unbal) : GetGT(unbal);
|
| - if ((unbal_bf != -2) && (unbal_bf != 2)) {
|
| - // No rebalancing of tree is necessary.
|
| - SetBF(unbal, unbal_bf);
|
| - unbal = Null();
|
| - }
|
| - }
|
| -
|
| - if (hh != Null()) {
|
| - while (h != hh) {
|
| - cmp = branch[depth++] ? 1 : -1;
|
| - if (cmp < 0) {
|
| - SetBF(hh, -1);
|
| - hh = GetLT(hh);
|
| - } else { // cmp > 0
|
| - SetBF(hh, 1);
|
| - hh = GetGT(hh);
|
| - }
|
| - }
|
| - }
|
| -
|
| - if (unbal != Null()) {
|
| - unbal = Balance(unbal);
|
| - if (parent_unbal == Null()) {
|
| - abs_.root = unbal;
|
| - } else {
|
| - depth = unbal_depth - 1;
|
| - cmp = branch[depth] ? 1 : -1;
|
| - if (cmp < 0)
|
| - SetLT(parent_unbal, unbal);
|
| - else // cmp > 0
|
| - SetGT(parent_unbal, unbal);
|
| - }
|
| - }
|
| - }
|
| -
|
| - return h;
|
| -}
|
| -
|
| -template <class Abstractor, unsigned maxDepth, class BSet>
|
| -inline typename AVLTree<Abstractor, maxDepth, BSet>::handle
|
| -AVLTree<Abstractor, maxDepth, BSet>::Search(
|
| - key k,
|
| - typename AVLTree<Abstractor, maxDepth, BSet>::SearchType st) {
|
| - const int kMaskHighBit = static_cast<int>(~((~(unsigned)0) >> 1));
|
| -
|
| - int cmp, target_cmp;
|
| - handle match_h = Null();
|
| - handle h = abs_.root;
|
| -
|
| - if (st & LESS)
|
| - target_cmp = 1;
|
| - else if (st & GREATER)
|
| - target_cmp = -1;
|
| - else
|
| - target_cmp = 0;
|
| -
|
| - while (h != Null()) {
|
| - cmp = CmpKN(k, h);
|
| - if (cmp == 0) {
|
| - if (st & EQUAL) {
|
| - match_h = h;
|
| - break;
|
| - }
|
| - cmp = -target_cmp;
|
| - } else if (target_cmp != 0) {
|
| - if (!((cmp ^ target_cmp) & kMaskHighBit)) {
|
| - // cmp and target_cmp are both positive or both negative.
|
| - match_h = h;
|
| - }
|
| - }
|
| - h = cmp < 0 ? GetLT(h) : GetGT(h);
|
| - }
|
| -
|
| - return match_h;
|
| -}
|
| -
|
| -template <class Abstractor, unsigned maxDepth, class BSet>
|
| -inline typename AVLTree<Abstractor, maxDepth, BSet>::handle
|
| -AVLTree<Abstractor, maxDepth, BSet>::SearchLeast() {
|
| - handle h = abs_.root, parent = Null();
|
| -
|
| - while (h != Null()) {
|
| - parent = h;
|
| - h = GetLT(h);
|
| - }
|
| -
|
| - return parent;
|
| -}
|
| -
|
| -template <class Abstractor, unsigned maxDepth, class BSet>
|
| -inline typename AVLTree<Abstractor, maxDepth, BSet>::handle
|
| -AVLTree<Abstractor, maxDepth, BSet>::SearchGreatest() {
|
| - handle h = abs_.root, parent = Null();
|
| -
|
| - while (h != Null()) {
|
| - parent = h;
|
| - h = GetGT(h);
|
| - }
|
| -
|
| - return parent;
|
| -}
|
| -
|
| -template <class Abstractor, unsigned maxDepth, class BSet>
|
| -inline typename AVLTree<Abstractor, maxDepth, BSet>::handle
|
| -AVLTree<Abstractor, maxDepth, BSet>::Remove(key k) {
|
| - // Zero-based depth in tree.
|
| - unsigned depth = 0, rm_depth;
|
| -
|
| - // Records a path into the tree. If branch[n] is true, indicates
|
| - // take greater branch from the nth node in the path, otherwise
|
| - // take the less branch. branch[0] gives branch from root, and
|
| - // so on.
|
| - BSet branch;
|
| -
|
| - handle h = abs_.root;
|
| - handle parent = Null(), child;
|
| - int cmp, cmp_shortened_sub_with_path = 0;
|
| -
|
| - for (;;) {
|
| - if (h == Null()) {
|
| - // No node in tree with given key.
|
| - return Null();
|
| - }
|
| - cmp = CmpKN(k, h);
|
| - if (cmp == 0) {
|
| - // Found node to remove.
|
| - break;
|
| - }
|
| - parent = h;
|
| - h = cmp < 0 ? GetLT(h) : GetGT(h);
|
| - branch[depth++] = cmp > 0;
|
| - cmp_shortened_sub_with_path = cmp;
|
| - }
|
| - handle rm = h;
|
| - handle parent_rm = parent;
|
| - rm_depth = depth;
|
| -
|
| - // If the node to remove is not a leaf node, we need to get a
|
| - // leaf node, or a node with a single leaf as its child, to put
|
| - // in the place of the node to remove. We will get the greatest
|
| - // node in the less subtree (of the node to remove), or the least
|
| - // node in the greater subtree. We take the leaf node from the
|
| - // deeper subtree, if there is one.
|
| -
|
| - if (GetBF(h) < 0) {
|
| - child = GetLT(h);
|
| - branch[depth] = false;
|
| - cmp = -1;
|
| - } else {
|
| - child = GetGT(h);
|
| - branch[depth] = true;
|
| - cmp = 1;
|
| - }
|
| - depth++;
|
| -
|
| - if (child != Null()) {
|
| - cmp = -cmp;
|
| - do {
|
| - parent = h;
|
| - h = child;
|
| - if (cmp < 0) {
|
| - child = GetLT(h);
|
| - branch[depth] = false;
|
| - } else {
|
| - child = GetGT(h);
|
| - branch[depth] = true;
|
| - }
|
| - depth++;
|
| - } while (child != Null());
|
| -
|
| - if (parent == rm) {
|
| - // Only went through do loop once. Deleted node will be replaced
|
| - // in the tree structure by one of its immediate children.
|
| - cmp_shortened_sub_with_path = -cmp;
|
| - } else {
|
| - cmp_shortened_sub_with_path = cmp;
|
| - }
|
| -
|
| - // Get the handle of the opposite child, which may not be null.
|
| - child = cmp > 0 ? GetLT(h) : GetGT(h);
|
| - }
|
| -
|
| - if (parent == Null()) {
|
| - // There were only 1 or 2 nodes in this tree.
|
| - abs_.root = child;
|
| - } else if (cmp_shortened_sub_with_path < 0) {
|
| - SetLT(parent, child);
|
| - } else {
|
| - SetGT(parent, child);
|
| - }
|
| -
|
| - // "path" is the parent of the subtree being eliminated or reduced
|
| - // from a depth of 2 to 1. If "path" is the node to be removed, we
|
| - // set path to the node we're about to poke into the position of the
|
| - // node to be removed.
|
| - handle path = parent == rm ? h : parent;
|
| -
|
| - if (h != rm) {
|
| - // Poke in the replacement for the node to be removed.
|
| - SetLT(h, GetLT(rm));
|
| - SetGT(h, GetGT(rm));
|
| - SetBF(h, GetBF(rm));
|
| - if (parent_rm == Null()) {
|
| - abs_.root = h;
|
| - } else {
|
| - depth = rm_depth - 1;
|
| - if (branch[depth])
|
| - SetGT(parent_rm, h);
|
| - else
|
| - SetLT(parent_rm, h);
|
| - }
|
| - }
|
| -
|
| - if (path != Null()) {
|
| - // Create a temporary linked list from the parent of the path node
|
| - // to the root node.
|
| - h = abs_.root;
|
| - parent = Null();
|
| - depth = 0;
|
| - while (h != path) {
|
| - if (branch[depth++]) {
|
| - child = GetGT(h);
|
| - SetGT(h, parent);
|
| - } else {
|
| - child = GetLT(h);
|
| - SetLT(h, parent);
|
| - }
|
| - parent = h;
|
| - h = child;
|
| - }
|
| -
|
| - // Climb from the path node to the root node using the linked
|
| - // list, restoring the tree structure and rebalancing as necessary.
|
| - bool reduced_depth = true;
|
| - int bf;
|
| - cmp = cmp_shortened_sub_with_path;
|
| - for (;;) {
|
| - if (reduced_depth) {
|
| - bf = GetBF(h);
|
| - if (cmp < 0)
|
| - bf++;
|
| - else // cmp > 0
|
| - bf--;
|
| - if ((bf == -2) || (bf == 2)) {
|
| - h = Balance(h);
|
| - bf = GetBF(h);
|
| - } else {
|
| - SetBF(h, bf);
|
| - }
|
| - reduced_depth = (bf == 0);
|
| - }
|
| - if (parent == Null())
|
| - break;
|
| - child = h;
|
| - h = parent;
|
| - cmp = branch[--depth] ? 1 : -1;
|
| - if (cmp < 0) {
|
| - parent = GetLT(h);
|
| - SetLT(h, child);
|
| - } else {
|
| - parent = GetGT(h);
|
| - SetGT(h, child);
|
| - }
|
| - }
|
| - abs_.root = h;
|
| - }
|
| -
|
| - return rm;
|
| -}
|
| -
|
| -template <class Abstractor, unsigned maxDepth, class BSet>
|
| -inline typename AVLTree<Abstractor, maxDepth, BSet>::handle
|
| -AVLTree<Abstractor, maxDepth, BSet>::Subst(handle new_node) {
|
| - handle h = abs_.root;
|
| - handle parent = Null();
|
| - int cmp, last_cmp;
|
| -
|
| - // Search for node already in tree with same key.
|
| - for (;;) {
|
| - if (h == Null()) {
|
| - // No node in tree with same key as new node.
|
| - return Null();
|
| - }
|
| - cmp = CmpNN(new_node, h);
|
| - if (cmp == 0) {
|
| - // Found the node to substitute new one for.
|
| - break;
|
| - }
|
| - last_cmp = cmp;
|
| - parent = h;
|
| - h = cmp < 0 ? GetLT(h) : GetGT(h);
|
| - }
|
| -
|
| - // Copy tree housekeeping fields from node in tree to new node.
|
| - SetLT(new_node, GetLT(h));
|
| - SetGT(new_node, GetGT(h));
|
| - SetBF(new_node, GetBF(h));
|
| -
|
| - if (parent == Null()) {
|
| - // New node is also new root.
|
| - abs_.root = new_node;
|
| - } else {
|
| - // Make parent point to new node.
|
| - if (last_cmp < 0)
|
| - SetLT(parent, new_node);
|
| - else
|
| - SetGT(parent, new_node);
|
| - }
|
| -
|
| - return h;
|
| -}
|
| -
|
| -} // namespace content
|
| -
|
| -#endif // CONTENT_BROWSER_INDEXED_DB_LEVELDB_AVLTREE_H_
|
|
|