Index: src/IceBitVector.h |
diff --git a/src/IceBitVector.h b/src/IceBitVector.h |
index 9c99e8aebd9d801d65961329faef612a0af5aae0..cc0fda8be0185e8b077291fd19608e5f713bf64b 100644 |
--- a/src/IceBitVector.h |
+++ b/src/IceBitVector.h |
@@ -8,24 +8,30 @@ |
//===----------------------------------------------------------------------===// |
/// |
/// \file |
-/// \brief Defines and implements a bit vector with inline storage. It is a drop |
-/// in replacement for llvm::SmallBitVector in subzero -- i.e., not all of |
-/// llvm::SmallBitVector interface is implemented. |
+/// \brief Defines and implements a bit vector classes. |
Jim Stichnoth
2016/02/26 15:18:23
s/a //
|
+/// |
+/// SmallBitVector is a drop in replacement for llvm::SmallBitVector. It uses |
+/// inline storage, at the expense of limited, static size. |
+/// |
+/// BitVector is a allocator aware version of llvm::BitVector. Its |
Jim Stichnoth
2016/02/26 15:18:23
an allocator-aware
|
+/// implementation was copied ipsis literis from llvm. |
/// |
//===----------------------------------------------------------------------===// |
#ifndef SUBZERO_SRC_ICEBITVECTOR_H |
#define SUBZERO_SRC_ICEBITVECTOR_H |
-#include "IceDefs.h" |
+#include "IceMemory.h" |
#include "IceOperand.h" |
#include "llvm/Support/MathExtras.h" |
#include <algorithm> |
+#include <cassert> |
#include <climits> |
#include <memory> |
#include <type_traits> |
+#include <utility> |
namespace Ice { |
class SmallBitVector { |
@@ -240,6 +246,566 @@ private: |
} |
}; |
+class BitVector { |
+ typedef unsigned long BitWord; |
+ using Allocator = CfgLocalAllocator<BitWord>; |
+ |
+ enum { BITWORD_SIZE = (unsigned)sizeof(BitWord) * CHAR_BIT }; |
+ |
+ static_assert(BITWORD_SIZE == 64 || BITWORD_SIZE == 32, |
+ "Unsupported word size"); |
+ |
+ BitWord *Bits; // Actual bits. |
+ unsigned Size; // Size of bitvector in bits. |
+ unsigned Capacity; // Size of allocated memory in BitWord. |
+ Allocator Alloc; |
+ |
+public: |
+ typedef unsigned size_type; |
+ // Encapsulation of a single bit. |
+ class reference { |
+ friend class BitVector; |
+ |
+ BitWord *WordRef; |
+ unsigned BitPos; |
+ |
+ reference(); // Undefined |
+ |
+ public: |
+ reference(BitVector &b, unsigned Idx) { |
+ WordRef = &b.Bits[Idx / BITWORD_SIZE]; |
+ BitPos = Idx % BITWORD_SIZE; |
+ } |
+ |
+ reference(const reference &) = default; |
+ |
+ reference &operator=(reference t) { |
+ *this = bool(t); |
+ return *this; |
+ } |
+ |
+ reference &operator=(bool t) { |
+ if (t) |
+ *WordRef |= BitWord(1) << BitPos; |
+ else |
+ *WordRef &= ~(BitWord(1) << BitPos); |
+ return *this; |
+ } |
+ |
+ operator bool() const { |
+ return ((*WordRef) & (BitWord(1) << BitPos)) ? true : false; |
+ } |
+ }; |
+ |
+ /// BitVector default ctor - Creates an empty bitvector. |
+ BitVector(Allocator A = Allocator()) |
+ : Size(0), Capacity(0), Alloc(std::move(A)) { |
+ Bits = nullptr; |
+ } |
+ |
+ /// BitVector ctor - Creates a bitvector of specified number of bits. All |
+ /// bits are initialized to the specified value. |
+ explicit BitVector(unsigned s, bool t = false, Allocator A = Allocator()) |
+ : Size(s), Alloc(std::move(A)) { |
+ Capacity = NumBitWords(s); |
+ Bits = Alloc.allocate(Capacity * sizeof(BitWord)); |
+ init_words(Bits, Capacity, t); |
+ if (t) |
+ clear_unused_bits(); |
+ } |
+ |
+ /// BitVector copy ctor. |
+ BitVector(const BitVector &RHS) : Size(RHS.size()), Alloc(RHS.Alloc) { |
+ if (Size == 0) { |
+ Bits = nullptr; |
+ Capacity = 0; |
+ return; |
+ } |
+ |
+ Capacity = NumBitWords(RHS.size()); |
+ Bits = Alloc.allocate(Capacity * sizeof(BitWord)); |
+ std::memcpy(Bits, RHS.Bits, Capacity * sizeof(BitWord)); |
+ } |
+ |
+ BitVector(BitVector &&RHS) |
+ : Bits(RHS.Bits), Size(RHS.Size), Capacity(RHS.Capacity), |
+ Alloc(std::move(RHS.Alloc)) { |
+ RHS.Bits = nullptr; |
+ } |
+ |
+ ~BitVector() { |
+ if (Bits != nullptr) { |
+ Alloc.deallocate(Bits, Capacity * sizeof(BitWord)); |
+ } |
+ } |
+ |
+ /// empty - Tests whether there are no bits in this bitvector. |
+ bool empty() const { return Size == 0; } |
+ |
+ /// size - Returns the number of bits in this bitvector. |
+ size_type size() const { return Size; } |
+ |
+ /// count - Returns the number of bits which are set. |
+ size_type count() const { |
+ unsigned NumBits = 0; |
+ for (unsigned i = 0; i < NumBitWords(size()); ++i) |
+ NumBits += llvm::countPopulation(Bits[i]); |
+ return NumBits; |
+ } |
+ |
+ /// any - Returns true if any bit is set. |
+ bool any() const { |
+ for (unsigned i = 0; i < NumBitWords(size()); ++i) |
+ if (Bits[i] != 0) |
+ return true; |
+ return false; |
+ } |
+ |
+ /// all - Returns true if all bits are set. |
+ bool all() const { |
+ for (unsigned i = 0; i < Size / BITWORD_SIZE; ++i) |
+ if (Bits[i] != ~0UL) |
+ return false; |
+ |
+ // If bits remain check that they are ones. The unused bits are always zero. |
+ if (unsigned Remainder = Size % BITWORD_SIZE) |
+ return Bits[Size / BITWORD_SIZE] == (1UL << Remainder) - 1; |
+ |
+ return true; |
+ } |
+ |
+ /// none - Returns true if none of the bits are set. |
+ bool none() const { return !any(); } |
+ |
+ /// find_first - Returns the index of the first set bit, -1 if none |
+ /// of the bits are set. |
+ int find_first() const { |
+ for (unsigned i = 0; i < NumBitWords(size()); ++i) |
+ if (Bits[i] != 0) |
+ return i * BITWORD_SIZE + llvm::countTrailingZeros(Bits[i]); |
+ return -1; |
+ } |
+ |
+ /// find_next - Returns the index of the next set bit following the |
+ /// "Prev" bit. Returns -1 if the next set bit is not found. |
+ int find_next(unsigned Prev) const { |
+ ++Prev; |
+ if (Prev >= Size) |
+ return -1; |
+ |
+ unsigned WordPos = Prev / BITWORD_SIZE; |
+ unsigned BitPos = Prev % BITWORD_SIZE; |
+ BitWord Copy = Bits[WordPos]; |
+ // Mask off previous bits. |
+ Copy &= ~0UL << BitPos; |
+ |
+ if (Copy != 0) |
+ return WordPos * BITWORD_SIZE + llvm::countTrailingZeros(Copy); |
+ |
+ // Check subsequent words. |
+ for (unsigned i = WordPos + 1; i < NumBitWords(size()); ++i) |
+ if (Bits[i] != 0) |
+ return i * BITWORD_SIZE + llvm::countTrailingZeros(Bits[i]); |
+ return -1; |
+ } |
+ |
+ /// clear - Clear all bits. |
+ void clear() { Size = 0; } |
+ |
+ /// resize - Grow or shrink the bitvector. |
+ void resize(unsigned N, bool t = false) { |
+ if (N > Capacity * BITWORD_SIZE) { |
+ unsigned OldCapacity = Capacity; |
+ grow(N); |
+ init_words(&Bits[OldCapacity], (Capacity - OldCapacity), t); |
+ } |
+ |
+ // Set any old unused bits that are now included in the BitVector. This |
+ // may set bits that are not included in the new vector, but we will clear |
+ // them back out below. |
+ if (N > Size) |
+ set_unused_bits(t); |
+ |
+ // Update the size, and clear out any bits that are now unused |
+ unsigned OldSize = Size; |
+ Size = N; |
+ if (t || N < OldSize) |
+ clear_unused_bits(); |
+ } |
+ |
+ void reserve(unsigned N) { |
+ if (N > Capacity * BITWORD_SIZE) |
+ grow(N); |
+ } |
+ |
+ // Set, reset, flip |
+ BitVector &set() { |
+ init_words(Bits, Capacity, true); |
+ clear_unused_bits(); |
+ return *this; |
+ } |
+ |
+ BitVector &set(unsigned Idx) { |
+ assert(Bits && "Bits never allocated"); |
+ Bits[Idx / BITWORD_SIZE] |= BitWord(1) << (Idx % BITWORD_SIZE); |
+ return *this; |
+ } |
+ |
+ /// set - Efficiently set a range of bits in [I, E) |
+ BitVector &set(unsigned I, unsigned E) { |
+ assert(I <= E && "Attempted to set backwards range!"); |
+ assert(E <= size() && "Attempted to set out-of-bounds range!"); |
+ |
+ if (I == E) |
+ return *this; |
+ |
+ if (I / BITWORD_SIZE == E / BITWORD_SIZE) { |
+ BitWord EMask = 1UL << (E % BITWORD_SIZE); |
+ BitWord IMask = 1UL << (I % BITWORD_SIZE); |
+ BitWord Mask = EMask - IMask; |
+ Bits[I / BITWORD_SIZE] |= Mask; |
+ return *this; |
+ } |
+ |
+ BitWord PrefixMask = ~0UL << (I % BITWORD_SIZE); |
+ Bits[I / BITWORD_SIZE] |= PrefixMask; |
+ I = llvm::RoundUpToAlignment(I, BITWORD_SIZE); |
+ |
+ for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE) |
+ Bits[I / BITWORD_SIZE] = ~0UL; |
+ |
+ BitWord PostfixMask = (1UL << (E % BITWORD_SIZE)) - 1; |
+ if (I < E) |
+ Bits[I / BITWORD_SIZE] |= PostfixMask; |
+ |
+ return *this; |
+ } |
+ |
+ BitVector &reset() { |
+ init_words(Bits, Capacity, false); |
+ return *this; |
+ } |
+ |
+ BitVector &reset(unsigned Idx) { |
+ Bits[Idx / BITWORD_SIZE] &= ~(BitWord(1) << (Idx % BITWORD_SIZE)); |
+ return *this; |
+ } |
+ |
+ /// reset - Efficiently reset a range of bits in [I, E) |
+ BitVector &reset(unsigned I, unsigned E) { |
+ assert(I <= E && "Attempted to reset backwards range!"); |
+ assert(E <= size() && "Attempted to reset out-of-bounds range!"); |
+ |
+ if (I == E) |
+ return *this; |
+ |
+ if (I / BITWORD_SIZE == E / BITWORD_SIZE) { |
+ BitWord EMask = 1UL << (E % BITWORD_SIZE); |
+ BitWord IMask = 1UL << (I % BITWORD_SIZE); |
+ BitWord Mask = EMask - IMask; |
+ Bits[I / BITWORD_SIZE] &= ~Mask; |
+ return *this; |
+ } |
+ |
+ BitWord PrefixMask = ~0UL << (I % BITWORD_SIZE); |
+ Bits[I / BITWORD_SIZE] &= ~PrefixMask; |
+ I = llvm::RoundUpToAlignment(I, BITWORD_SIZE); |
+ |
+ for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE) |
+ Bits[I / BITWORD_SIZE] = 0UL; |
+ |
+ BitWord PostfixMask = (1UL << (E % BITWORD_SIZE)) - 1; |
+ if (I < E) |
+ Bits[I / BITWORD_SIZE] &= ~PostfixMask; |
+ |
+ return *this; |
+ } |
+ |
+ BitVector &flip() { |
+ for (unsigned i = 0; i < NumBitWords(size()); ++i) |
+ Bits[i] = ~Bits[i]; |
+ clear_unused_bits(); |
+ return *this; |
+ } |
+ |
+ BitVector &flip(unsigned Idx) { |
+ Bits[Idx / BITWORD_SIZE] ^= BitWord(1) << (Idx % BITWORD_SIZE); |
+ return *this; |
+ } |
+ |
+ // Indexing. |
+ reference operator[](unsigned Idx) { |
+ assert(Idx < Size && "Out-of-bounds Bit access."); |
+ return reference(*this, Idx); |
+ } |
+ |
+ bool operator[](unsigned Idx) const { |
+ assert(Idx < Size && "Out-of-bounds Bit access."); |
+ BitWord Mask = BitWord(1) << (Idx % BITWORD_SIZE); |
+ return (Bits[Idx / BITWORD_SIZE] & Mask) != 0; |
+ } |
+ |
+ bool test(unsigned Idx) const { return (*this)[Idx]; } |
+ |
+ /// Test if any common bits are set. |
+ bool anyCommon(const BitVector &RHS) const { |
+ unsigned ThisWords = NumBitWords(size()); |
+ unsigned RHSWords = NumBitWords(RHS.size()); |
+ for (unsigned i = 0, e = std::min(ThisWords, RHSWords); i != e; ++i) |
+ if (Bits[i] & RHS.Bits[i]) |
+ return true; |
+ return false; |
+ } |
+ |
+ // Comparison operators. |
+ bool operator==(const BitVector &RHS) const { |
+ unsigned ThisWords = NumBitWords(size()); |
+ unsigned RHSWords = NumBitWords(RHS.size()); |
+ unsigned i; |
+ for (i = 0; i != std::min(ThisWords, RHSWords); ++i) |
+ if (Bits[i] != RHS.Bits[i]) |
+ return false; |
+ |
+ // Verify that any extra words are all zeros. |
+ if (i != ThisWords) { |
+ for (; i != ThisWords; ++i) |
+ if (Bits[i]) |
+ return false; |
+ } else if (i != RHSWords) { |
+ for (; i != RHSWords; ++i) |
+ if (RHS.Bits[i]) |
+ return false; |
+ } |
+ return true; |
+ } |
+ |
+ bool operator!=(const BitVector &RHS) const { return !(*this == RHS); } |
+ |
+ /// Intersection, union, disjoint union. |
+ BitVector &operator&=(const BitVector &RHS) { |
+ unsigned ThisWords = NumBitWords(size()); |
+ unsigned RHSWords = NumBitWords(RHS.size()); |
+ unsigned i; |
+ for (i = 0; i != std::min(ThisWords, RHSWords); ++i) |
+ Bits[i] &= RHS.Bits[i]; |
+ |
+ // Any bits that are just in this bitvector become zero, because they aren't |
+ // in the RHS bit vector. Any words only in RHS are ignored because they |
+ // are already zero in the LHS. |
+ for (; i != ThisWords; ++i) |
+ Bits[i] = 0; |
+ |
+ return *this; |
+ } |
+ |
+ /// reset - Reset bits that are set in RHS. Same as *this &= ~RHS. |
+ BitVector &reset(const BitVector &RHS) { |
+ unsigned ThisWords = NumBitWords(size()); |
+ unsigned RHSWords = NumBitWords(RHS.size()); |
+ unsigned i; |
+ for (i = 0; i != std::min(ThisWords, RHSWords); ++i) |
+ Bits[i] &= ~RHS.Bits[i]; |
+ return *this; |
+ } |
+ |
+ /// test - Check if (This - RHS) is zero. |
+ /// This is the same as reset(RHS) and any(). |
+ bool test(const BitVector &RHS) const { |
+ unsigned ThisWords = NumBitWords(size()); |
+ unsigned RHSWords = NumBitWords(RHS.size()); |
+ unsigned i; |
+ for (i = 0; i != std::min(ThisWords, RHSWords); ++i) |
+ if ((Bits[i] & ~RHS.Bits[i]) != 0) |
+ return true; |
+ |
+ for (; i != ThisWords; ++i) |
+ if (Bits[i] != 0) |
+ return true; |
+ |
+ return false; |
+ } |
+ |
+ BitVector &operator|=(const BitVector &RHS) { |
+ if (size() < RHS.size()) |
+ resize(RHS.size()); |
+ for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i) |
+ Bits[i] |= RHS.Bits[i]; |
+ return *this; |
+ } |
+ |
+ BitVector &operator^=(const BitVector &RHS) { |
+ if (size() < RHS.size()) |
+ resize(RHS.size()); |
+ for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i) |
+ Bits[i] ^= RHS.Bits[i]; |
+ return *this; |
+ } |
+ |
+ // Assignment operator. |
+ const BitVector &operator=(const BitVector &RHS) { |
+ if (this == &RHS) |
+ return *this; |
+ |
+ Size = RHS.size(); |
+ unsigned RHSWords = NumBitWords(Size); |
+ if (Size <= Capacity * BITWORD_SIZE) { |
+ if (Size) |
+ std::memcpy(Bits, RHS.Bits, RHSWords * sizeof(BitWord)); |
+ clear_unused_bits(); |
+ return *this; |
+ } |
+ |
+ // Grow the bitvector to have enough elements. |
+ const auto OldCapacity = Capacity; |
+ Capacity = RHSWords; |
+ assert(Capacity > 0 && "negative capacity?"); |
+ BitWord *NewBits = Alloc.allocate(Capacity * sizeof(BitWord)); |
+ std::memcpy(NewBits, RHS.Bits, Capacity * sizeof(BitWord)); |
+ |
+ // Destroy the old bits. |
+ Alloc.deallocate(Bits, OldCapacity * sizeof(BitWord)); |
+ Bits = NewBits; |
+ |
+ return *this; |
+ } |
+ |
+ const BitVector &operator=(BitVector &&RHS) { |
+ if (this == &RHS) |
+ return *this; |
+ |
+ Alloc.deallocate(Bits, Capacity * sizeof(BitWord)); |
+ Bits = RHS.Bits; |
+ Size = RHS.Size; |
+ Capacity = RHS.Capacity; |
+ |
+ RHS.Bits = nullptr; |
+ |
+ return *this; |
+ } |
+ |
+ void swap(BitVector &RHS) { |
+ std::swap(Bits, RHS.Bits); |
+ std::swap(Size, RHS.Size); |
+ std::swap(Capacity, RHS.Capacity); |
+ } |
+ |
+ //===--------------------------------------------------------------------===// |
+ // Portable bit mask operations. |
+ //===--------------------------------------------------------------------===// |
+ // |
+ // These methods all operate on arrays of uint32_t, each holding 32 bits. The |
+ // fixed word size makes it easier to work with literal bit vector constants |
+ // in portable code. |
+ // |
+ // The LSB in each word is the lowest numbered bit. The size of a portable |
+ // bit mask is always a whole multiple of 32 bits. If no bit mask size is |
+ // given, the bit mask is assumed to cover the entire BitVector. |
+ |
+ /// setBitsInMask - Add '1' bits from Mask to this vector. Don't resize. |
+ /// This computes "*this |= Mask". |
+ void setBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { |
+ applyMask<true, false>(Mask, MaskWords); |
+ } |
+ |
+ /// clearBitsInMask - Clear any bits in this vector that are set in Mask. |
+ /// Don't resize. This computes "*this &= ~Mask". |
+ void clearBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { |
+ applyMask<false, false>(Mask, MaskWords); |
+ } |
+ |
+ /// setBitsNotInMask - Add a bit to this vector for every '0' bit in Mask. |
+ /// Don't resize. This computes "*this |= ~Mask". |
+ void setBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { |
+ applyMask<true, true>(Mask, MaskWords); |
+ } |
+ |
+ /// clearBitsNotInMask - Clear a bit in this vector for every '0' bit in Mask. |
+ /// Don't resize. This computes "*this &= Mask". |
+ void clearBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { |
+ applyMask<false, true>(Mask, MaskWords); |
+ } |
+ |
+private: |
+ unsigned NumBitWords(unsigned S) const { |
+ return (S + BITWORD_SIZE - 1) / BITWORD_SIZE; |
+ } |
+ |
+ // Set the unused bits in the high words. |
+ void set_unused_bits(bool t = true) { |
+ // Set high words first. |
+ unsigned UsedWords = NumBitWords(Size); |
+ if (Capacity > UsedWords) |
+ init_words(&Bits[UsedWords], (Capacity - UsedWords), t); |
+ |
+ // Then set any stray high bits of the last used word. |
+ unsigned ExtraBits = Size % BITWORD_SIZE; |
+ if (ExtraBits) { |
+ BitWord ExtraBitMask = ~0UL << ExtraBits; |
+ if (t) |
+ Bits[UsedWords - 1] |= ExtraBitMask; |
+ else |
+ Bits[UsedWords - 1] &= ~ExtraBitMask; |
+ } |
+ } |
+ |
+ // Clear the unused bits in the high words. |
+ void clear_unused_bits() { set_unused_bits(false); } |
+ |
+ void grow(unsigned NewSize) { |
+ const auto OldCapacity = Capacity; |
+ Capacity = std::max(NumBitWords(NewSize), Capacity * 2); |
+ assert(Capacity > 0 && "realloc-ing zero space"); |
+ auto *NewBits = Alloc.allocate(Capacity * sizeof(BitWord)); |
+ std::memcpy(Bits, NewBits, OldCapacity * sizeof(BitWord)); |
+ Alloc.deallocate(Bits, OldCapacity * sizeof(BitWord)); |
+ Bits = NewBits; |
+ |
+ clear_unused_bits(); |
+ } |
+ |
+ void init_words(BitWord *B, unsigned NumWords, bool t) { |
+ memset(B, 0 - (int)t, NumWords * sizeof(BitWord)); |
+ } |
+ |
+ template <bool AddBits, bool InvertMask> |
+ void applyMask(const uint32_t *Mask, unsigned MaskWords) { |
+ static_assert(BITWORD_SIZE % 32 == 0, "Unsupported BitWord size."); |
+ MaskWords = std::min(MaskWords, (size() + 31) / 32); |
+ const unsigned Scale = BITWORD_SIZE / 32; |
+ unsigned i; |
+ for (i = 0; MaskWords >= Scale; ++i, MaskWords -= Scale) { |
+ BitWord BW = Bits[i]; |
+ // This inner loop should unroll completely when BITWORD_SIZE > 32. |
+ for (unsigned b = 0; b != BITWORD_SIZE; b += 32) { |
+ uint32_t M = *Mask++; |
+ if (InvertMask) |
+ M = ~M; |
+ if (AddBits) |
+ BW |= BitWord(M) << b; |
+ else |
+ BW &= ~(BitWord(M) << b); |
+ } |
+ Bits[i] = BW; |
+ } |
+ for (unsigned b = 0; MaskWords; b += 32, --MaskWords) { |
+ uint32_t M = *Mask++; |
+ if (InvertMask) |
+ M = ~M; |
+ if (AddBits) |
+ Bits[i] |= BitWord(M) << b; |
+ else |
+ Bits[i] &= ~(BitWord(M) << b); |
+ } |
+ if (AddBits) |
+ clear_unused_bits(); |
+ } |
+}; |
+ |
} // end of namespace Ice |
+namespace std { |
+/// Implement std::swap in terms of BitVector swap. |
+inline void swap(Ice::BitVector &LHS, Ice::BitVector &RHS) { LHS.swap(RHS); } |
+} |
+ |
#endif // SUBZERO_SRC_ICEBITVECTOR_H |