 Chromium Code Reviews
 Chromium Code Reviews Issue 1738683003:
  Subzero. Moar performance tweaks.  (Closed) 
  Base URL: https://chromium.googlesource.com/native_client/pnacl-subzero.git@master
    
  
    Issue 1738683003:
  Subzero. Moar performance tweaks.  (Closed) 
  Base URL: https://chromium.googlesource.com/native_client/pnacl-subzero.git@master| Index: src/IceBitVector.h | 
| diff --git a/src/IceBitVector.h b/src/IceBitVector.h | 
| index 9c99e8aebd9d801d65961329faef612a0af5aae0..cc0fda8be0185e8b077291fd19608e5f713bf64b 100644 | 
| --- a/src/IceBitVector.h | 
| +++ b/src/IceBitVector.h | 
| @@ -8,24 +8,30 @@ | 
| //===----------------------------------------------------------------------===// | 
| /// | 
| /// \file | 
| -/// \brief Defines and implements a bit vector with inline storage. It is a drop | 
| -/// in replacement for llvm::SmallBitVector in subzero -- i.e., not all of | 
| -/// llvm::SmallBitVector interface is implemented. | 
| +/// \brief Defines and implements a bit vector classes. | 
| 
Jim Stichnoth
2016/02/26 15:18:23
s/a //
 | 
| +/// | 
| +/// SmallBitVector is a drop in replacement for llvm::SmallBitVector. It uses | 
| +/// inline storage, at the expense of limited, static size. | 
| +/// | 
| +/// BitVector is a allocator aware version of llvm::BitVector. Its | 
| 
Jim Stichnoth
2016/02/26 15:18:23
an allocator-aware
 | 
| +/// implementation was copied ipsis literis from llvm. | 
| /// | 
| //===----------------------------------------------------------------------===// | 
| #ifndef SUBZERO_SRC_ICEBITVECTOR_H | 
| #define SUBZERO_SRC_ICEBITVECTOR_H | 
| -#include "IceDefs.h" | 
| +#include "IceMemory.h" | 
| #include "IceOperand.h" | 
| #include "llvm/Support/MathExtras.h" | 
| #include <algorithm> | 
| +#include <cassert> | 
| #include <climits> | 
| #include <memory> | 
| #include <type_traits> | 
| +#include <utility> | 
| namespace Ice { | 
| class SmallBitVector { | 
| @@ -240,6 +246,566 @@ private: | 
| } | 
| }; | 
| +class BitVector { | 
| + typedef unsigned long BitWord; | 
| + using Allocator = CfgLocalAllocator<BitWord>; | 
| + | 
| + enum { BITWORD_SIZE = (unsigned)sizeof(BitWord) * CHAR_BIT }; | 
| + | 
| + static_assert(BITWORD_SIZE == 64 || BITWORD_SIZE == 32, | 
| + "Unsupported word size"); | 
| + | 
| + BitWord *Bits; // Actual bits. | 
| + unsigned Size; // Size of bitvector in bits. | 
| + unsigned Capacity; // Size of allocated memory in BitWord. | 
| + Allocator Alloc; | 
| + | 
| +public: | 
| + typedef unsigned size_type; | 
| + // Encapsulation of a single bit. | 
| + class reference { | 
| + friend class BitVector; | 
| + | 
| + BitWord *WordRef; | 
| + unsigned BitPos; | 
| + | 
| + reference(); // Undefined | 
| + | 
| + public: | 
| + reference(BitVector &b, unsigned Idx) { | 
| + WordRef = &b.Bits[Idx / BITWORD_SIZE]; | 
| + BitPos = Idx % BITWORD_SIZE; | 
| + } | 
| + | 
| + reference(const reference &) = default; | 
| + | 
| + reference &operator=(reference t) { | 
| + *this = bool(t); | 
| + return *this; | 
| + } | 
| + | 
| + reference &operator=(bool t) { | 
| + if (t) | 
| + *WordRef |= BitWord(1) << BitPos; | 
| + else | 
| + *WordRef &= ~(BitWord(1) << BitPos); | 
| + return *this; | 
| + } | 
| + | 
| + operator bool() const { | 
| + return ((*WordRef) & (BitWord(1) << BitPos)) ? true : false; | 
| + } | 
| + }; | 
| + | 
| + /// BitVector default ctor - Creates an empty bitvector. | 
| + BitVector(Allocator A = Allocator()) | 
| + : Size(0), Capacity(0), Alloc(std::move(A)) { | 
| + Bits = nullptr; | 
| + } | 
| + | 
| + /// BitVector ctor - Creates a bitvector of specified number of bits. All | 
| + /// bits are initialized to the specified value. | 
| + explicit BitVector(unsigned s, bool t = false, Allocator A = Allocator()) | 
| + : Size(s), Alloc(std::move(A)) { | 
| + Capacity = NumBitWords(s); | 
| + Bits = Alloc.allocate(Capacity * sizeof(BitWord)); | 
| + init_words(Bits, Capacity, t); | 
| + if (t) | 
| + clear_unused_bits(); | 
| + } | 
| + | 
| + /// BitVector copy ctor. | 
| + BitVector(const BitVector &RHS) : Size(RHS.size()), Alloc(RHS.Alloc) { | 
| + if (Size == 0) { | 
| + Bits = nullptr; | 
| + Capacity = 0; | 
| + return; | 
| + } | 
| + | 
| + Capacity = NumBitWords(RHS.size()); | 
| + Bits = Alloc.allocate(Capacity * sizeof(BitWord)); | 
| + std::memcpy(Bits, RHS.Bits, Capacity * sizeof(BitWord)); | 
| + } | 
| + | 
| + BitVector(BitVector &&RHS) | 
| + : Bits(RHS.Bits), Size(RHS.Size), Capacity(RHS.Capacity), | 
| + Alloc(std::move(RHS.Alloc)) { | 
| + RHS.Bits = nullptr; | 
| + } | 
| + | 
| + ~BitVector() { | 
| + if (Bits != nullptr) { | 
| + Alloc.deallocate(Bits, Capacity * sizeof(BitWord)); | 
| + } | 
| + } | 
| + | 
| + /// empty - Tests whether there are no bits in this bitvector. | 
| + bool empty() const { return Size == 0; } | 
| + | 
| + /// size - Returns the number of bits in this bitvector. | 
| + size_type size() const { return Size; } | 
| + | 
| + /// count - Returns the number of bits which are set. | 
| + size_type count() const { | 
| + unsigned NumBits = 0; | 
| + for (unsigned i = 0; i < NumBitWords(size()); ++i) | 
| + NumBits += llvm::countPopulation(Bits[i]); | 
| + return NumBits; | 
| + } | 
| + | 
| + /// any - Returns true if any bit is set. | 
| + bool any() const { | 
| + for (unsigned i = 0; i < NumBitWords(size()); ++i) | 
| + if (Bits[i] != 0) | 
| + return true; | 
| + return false; | 
| + } | 
| + | 
| + /// all - Returns true if all bits are set. | 
| + bool all() const { | 
| + for (unsigned i = 0; i < Size / BITWORD_SIZE; ++i) | 
| + if (Bits[i] != ~0UL) | 
| + return false; | 
| + | 
| + // If bits remain check that they are ones. The unused bits are always zero. | 
| + if (unsigned Remainder = Size % BITWORD_SIZE) | 
| + return Bits[Size / BITWORD_SIZE] == (1UL << Remainder) - 1; | 
| + | 
| + return true; | 
| + } | 
| + | 
| + /// none - Returns true if none of the bits are set. | 
| + bool none() const { return !any(); } | 
| + | 
| + /// find_first - Returns the index of the first set bit, -1 if none | 
| + /// of the bits are set. | 
| + int find_first() const { | 
| + for (unsigned i = 0; i < NumBitWords(size()); ++i) | 
| + if (Bits[i] != 0) | 
| + return i * BITWORD_SIZE + llvm::countTrailingZeros(Bits[i]); | 
| + return -1; | 
| + } | 
| + | 
| + /// find_next - Returns the index of the next set bit following the | 
| + /// "Prev" bit. Returns -1 if the next set bit is not found. | 
| + int find_next(unsigned Prev) const { | 
| + ++Prev; | 
| + if (Prev >= Size) | 
| + return -1; | 
| + | 
| + unsigned WordPos = Prev / BITWORD_SIZE; | 
| + unsigned BitPos = Prev % BITWORD_SIZE; | 
| + BitWord Copy = Bits[WordPos]; | 
| + // Mask off previous bits. | 
| + Copy &= ~0UL << BitPos; | 
| + | 
| + if (Copy != 0) | 
| + return WordPos * BITWORD_SIZE + llvm::countTrailingZeros(Copy); | 
| + | 
| + // Check subsequent words. | 
| + for (unsigned i = WordPos + 1; i < NumBitWords(size()); ++i) | 
| + if (Bits[i] != 0) | 
| + return i * BITWORD_SIZE + llvm::countTrailingZeros(Bits[i]); | 
| + return -1; | 
| + } | 
| + | 
| + /// clear - Clear all bits. | 
| + void clear() { Size = 0; } | 
| + | 
| + /// resize - Grow or shrink the bitvector. | 
| + void resize(unsigned N, bool t = false) { | 
| + if (N > Capacity * BITWORD_SIZE) { | 
| + unsigned OldCapacity = Capacity; | 
| + grow(N); | 
| + init_words(&Bits[OldCapacity], (Capacity - OldCapacity), t); | 
| + } | 
| + | 
| + // Set any old unused bits that are now included in the BitVector. This | 
| + // may set bits that are not included in the new vector, but we will clear | 
| + // them back out below. | 
| + if (N > Size) | 
| + set_unused_bits(t); | 
| + | 
| + // Update the size, and clear out any bits that are now unused | 
| + unsigned OldSize = Size; | 
| + Size = N; | 
| + if (t || N < OldSize) | 
| + clear_unused_bits(); | 
| + } | 
| + | 
| + void reserve(unsigned N) { | 
| + if (N > Capacity * BITWORD_SIZE) | 
| + grow(N); | 
| + } | 
| + | 
| + // Set, reset, flip | 
| + BitVector &set() { | 
| + init_words(Bits, Capacity, true); | 
| + clear_unused_bits(); | 
| + return *this; | 
| + } | 
| + | 
| + BitVector &set(unsigned Idx) { | 
| + assert(Bits && "Bits never allocated"); | 
| + Bits[Idx / BITWORD_SIZE] |= BitWord(1) << (Idx % BITWORD_SIZE); | 
| + return *this; | 
| + } | 
| + | 
| + /// set - Efficiently set a range of bits in [I, E) | 
| + BitVector &set(unsigned I, unsigned E) { | 
| + assert(I <= E && "Attempted to set backwards range!"); | 
| + assert(E <= size() && "Attempted to set out-of-bounds range!"); | 
| + | 
| + if (I == E) | 
| + return *this; | 
| + | 
| + if (I / BITWORD_SIZE == E / BITWORD_SIZE) { | 
| + BitWord EMask = 1UL << (E % BITWORD_SIZE); | 
| + BitWord IMask = 1UL << (I % BITWORD_SIZE); | 
| + BitWord Mask = EMask - IMask; | 
| + Bits[I / BITWORD_SIZE] |= Mask; | 
| + return *this; | 
| + } | 
| + | 
| + BitWord PrefixMask = ~0UL << (I % BITWORD_SIZE); | 
| + Bits[I / BITWORD_SIZE] |= PrefixMask; | 
| + I = llvm::RoundUpToAlignment(I, BITWORD_SIZE); | 
| + | 
| + for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE) | 
| + Bits[I / BITWORD_SIZE] = ~0UL; | 
| + | 
| + BitWord PostfixMask = (1UL << (E % BITWORD_SIZE)) - 1; | 
| + if (I < E) | 
| + Bits[I / BITWORD_SIZE] |= PostfixMask; | 
| + | 
| + return *this; | 
| + } | 
| + | 
| + BitVector &reset() { | 
| + init_words(Bits, Capacity, false); | 
| + return *this; | 
| + } | 
| + | 
| + BitVector &reset(unsigned Idx) { | 
| + Bits[Idx / BITWORD_SIZE] &= ~(BitWord(1) << (Idx % BITWORD_SIZE)); | 
| + return *this; | 
| + } | 
| + | 
| + /// reset - Efficiently reset a range of bits in [I, E) | 
| + BitVector &reset(unsigned I, unsigned E) { | 
| + assert(I <= E && "Attempted to reset backwards range!"); | 
| + assert(E <= size() && "Attempted to reset out-of-bounds range!"); | 
| + | 
| + if (I == E) | 
| + return *this; | 
| + | 
| + if (I / BITWORD_SIZE == E / BITWORD_SIZE) { | 
| + BitWord EMask = 1UL << (E % BITWORD_SIZE); | 
| + BitWord IMask = 1UL << (I % BITWORD_SIZE); | 
| + BitWord Mask = EMask - IMask; | 
| + Bits[I / BITWORD_SIZE] &= ~Mask; | 
| + return *this; | 
| + } | 
| + | 
| + BitWord PrefixMask = ~0UL << (I % BITWORD_SIZE); | 
| + Bits[I / BITWORD_SIZE] &= ~PrefixMask; | 
| + I = llvm::RoundUpToAlignment(I, BITWORD_SIZE); | 
| + | 
| + for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE) | 
| + Bits[I / BITWORD_SIZE] = 0UL; | 
| + | 
| + BitWord PostfixMask = (1UL << (E % BITWORD_SIZE)) - 1; | 
| + if (I < E) | 
| + Bits[I / BITWORD_SIZE] &= ~PostfixMask; | 
| + | 
| + return *this; | 
| + } | 
| + | 
| + BitVector &flip() { | 
| + for (unsigned i = 0; i < NumBitWords(size()); ++i) | 
| + Bits[i] = ~Bits[i]; | 
| + clear_unused_bits(); | 
| + return *this; | 
| + } | 
| + | 
| + BitVector &flip(unsigned Idx) { | 
| + Bits[Idx / BITWORD_SIZE] ^= BitWord(1) << (Idx % BITWORD_SIZE); | 
| + return *this; | 
| + } | 
| + | 
| + // Indexing. | 
| + reference operator[](unsigned Idx) { | 
| + assert(Idx < Size && "Out-of-bounds Bit access."); | 
| + return reference(*this, Idx); | 
| + } | 
| + | 
| + bool operator[](unsigned Idx) const { | 
| + assert(Idx < Size && "Out-of-bounds Bit access."); | 
| + BitWord Mask = BitWord(1) << (Idx % BITWORD_SIZE); | 
| + return (Bits[Idx / BITWORD_SIZE] & Mask) != 0; | 
| + } | 
| + | 
| + bool test(unsigned Idx) const { return (*this)[Idx]; } | 
| + | 
| + /// Test if any common bits are set. | 
| + bool anyCommon(const BitVector &RHS) const { | 
| + unsigned ThisWords = NumBitWords(size()); | 
| + unsigned RHSWords = NumBitWords(RHS.size()); | 
| + for (unsigned i = 0, e = std::min(ThisWords, RHSWords); i != e; ++i) | 
| + if (Bits[i] & RHS.Bits[i]) | 
| + return true; | 
| + return false; | 
| + } | 
| + | 
| + // Comparison operators. | 
| + bool operator==(const BitVector &RHS) const { | 
| + unsigned ThisWords = NumBitWords(size()); | 
| + unsigned RHSWords = NumBitWords(RHS.size()); | 
| + unsigned i; | 
| + for (i = 0; i != std::min(ThisWords, RHSWords); ++i) | 
| + if (Bits[i] != RHS.Bits[i]) | 
| + return false; | 
| + | 
| + // Verify that any extra words are all zeros. | 
| + if (i != ThisWords) { | 
| + for (; i != ThisWords; ++i) | 
| + if (Bits[i]) | 
| + return false; | 
| + } else if (i != RHSWords) { | 
| + for (; i != RHSWords; ++i) | 
| + if (RHS.Bits[i]) | 
| + return false; | 
| + } | 
| + return true; | 
| + } | 
| + | 
| + bool operator!=(const BitVector &RHS) const { return !(*this == RHS); } | 
| + | 
| + /// Intersection, union, disjoint union. | 
| + BitVector &operator&=(const BitVector &RHS) { | 
| + unsigned ThisWords = NumBitWords(size()); | 
| + unsigned RHSWords = NumBitWords(RHS.size()); | 
| + unsigned i; | 
| + for (i = 0; i != std::min(ThisWords, RHSWords); ++i) | 
| + Bits[i] &= RHS.Bits[i]; | 
| + | 
| + // Any bits that are just in this bitvector become zero, because they aren't | 
| + // in the RHS bit vector. Any words only in RHS are ignored because they | 
| + // are already zero in the LHS. | 
| + for (; i != ThisWords; ++i) | 
| + Bits[i] = 0; | 
| + | 
| + return *this; | 
| + } | 
| + | 
| + /// reset - Reset bits that are set in RHS. Same as *this &= ~RHS. | 
| + BitVector &reset(const BitVector &RHS) { | 
| + unsigned ThisWords = NumBitWords(size()); | 
| + unsigned RHSWords = NumBitWords(RHS.size()); | 
| + unsigned i; | 
| + for (i = 0; i != std::min(ThisWords, RHSWords); ++i) | 
| + Bits[i] &= ~RHS.Bits[i]; | 
| + return *this; | 
| + } | 
| + | 
| + /// test - Check if (This - RHS) is zero. | 
| + /// This is the same as reset(RHS) and any(). | 
| + bool test(const BitVector &RHS) const { | 
| + unsigned ThisWords = NumBitWords(size()); | 
| + unsigned RHSWords = NumBitWords(RHS.size()); | 
| + unsigned i; | 
| + for (i = 0; i != std::min(ThisWords, RHSWords); ++i) | 
| + if ((Bits[i] & ~RHS.Bits[i]) != 0) | 
| + return true; | 
| + | 
| + for (; i != ThisWords; ++i) | 
| + if (Bits[i] != 0) | 
| + return true; | 
| + | 
| + return false; | 
| + } | 
| + | 
| + BitVector &operator|=(const BitVector &RHS) { | 
| + if (size() < RHS.size()) | 
| + resize(RHS.size()); | 
| + for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i) | 
| + Bits[i] |= RHS.Bits[i]; | 
| + return *this; | 
| + } | 
| + | 
| + BitVector &operator^=(const BitVector &RHS) { | 
| + if (size() < RHS.size()) | 
| + resize(RHS.size()); | 
| + for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i) | 
| + Bits[i] ^= RHS.Bits[i]; | 
| + return *this; | 
| + } | 
| + | 
| + // Assignment operator. | 
| + const BitVector &operator=(const BitVector &RHS) { | 
| + if (this == &RHS) | 
| + return *this; | 
| + | 
| + Size = RHS.size(); | 
| + unsigned RHSWords = NumBitWords(Size); | 
| + if (Size <= Capacity * BITWORD_SIZE) { | 
| + if (Size) | 
| + std::memcpy(Bits, RHS.Bits, RHSWords * sizeof(BitWord)); | 
| + clear_unused_bits(); | 
| + return *this; | 
| + } | 
| + | 
| + // Grow the bitvector to have enough elements. | 
| + const auto OldCapacity = Capacity; | 
| + Capacity = RHSWords; | 
| + assert(Capacity > 0 && "negative capacity?"); | 
| + BitWord *NewBits = Alloc.allocate(Capacity * sizeof(BitWord)); | 
| + std::memcpy(NewBits, RHS.Bits, Capacity * sizeof(BitWord)); | 
| + | 
| + // Destroy the old bits. | 
| + Alloc.deallocate(Bits, OldCapacity * sizeof(BitWord)); | 
| + Bits = NewBits; | 
| + | 
| + return *this; | 
| + } | 
| + | 
| + const BitVector &operator=(BitVector &&RHS) { | 
| + if (this == &RHS) | 
| + return *this; | 
| + | 
| + Alloc.deallocate(Bits, Capacity * sizeof(BitWord)); | 
| + Bits = RHS.Bits; | 
| + Size = RHS.Size; | 
| + Capacity = RHS.Capacity; | 
| + | 
| + RHS.Bits = nullptr; | 
| + | 
| + return *this; | 
| + } | 
| + | 
| + void swap(BitVector &RHS) { | 
| + std::swap(Bits, RHS.Bits); | 
| + std::swap(Size, RHS.Size); | 
| + std::swap(Capacity, RHS.Capacity); | 
| + } | 
| + | 
| + //===--------------------------------------------------------------------===// | 
| + // Portable bit mask operations. | 
| + //===--------------------------------------------------------------------===// | 
| + // | 
| + // These methods all operate on arrays of uint32_t, each holding 32 bits. The | 
| + // fixed word size makes it easier to work with literal bit vector constants | 
| + // in portable code. | 
| + // | 
| + // The LSB in each word is the lowest numbered bit. The size of a portable | 
| + // bit mask is always a whole multiple of 32 bits. If no bit mask size is | 
| + // given, the bit mask is assumed to cover the entire BitVector. | 
| + | 
| + /// setBitsInMask - Add '1' bits from Mask to this vector. Don't resize. | 
| + /// This computes "*this |= Mask". | 
| + void setBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { | 
| + applyMask<true, false>(Mask, MaskWords); | 
| + } | 
| + | 
| + /// clearBitsInMask - Clear any bits in this vector that are set in Mask. | 
| + /// Don't resize. This computes "*this &= ~Mask". | 
| + void clearBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { | 
| + applyMask<false, false>(Mask, MaskWords); | 
| + } | 
| + | 
| + /// setBitsNotInMask - Add a bit to this vector for every '0' bit in Mask. | 
| + /// Don't resize. This computes "*this |= ~Mask". | 
| + void setBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { | 
| + applyMask<true, true>(Mask, MaskWords); | 
| + } | 
| + | 
| + /// clearBitsNotInMask - Clear a bit in this vector for every '0' bit in Mask. | 
| + /// Don't resize. This computes "*this &= Mask". | 
| + void clearBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { | 
| + applyMask<false, true>(Mask, MaskWords); | 
| + } | 
| + | 
| +private: | 
| + unsigned NumBitWords(unsigned S) const { | 
| + return (S + BITWORD_SIZE - 1) / BITWORD_SIZE; | 
| + } | 
| + | 
| + // Set the unused bits in the high words. | 
| + void set_unused_bits(bool t = true) { | 
| + // Set high words first. | 
| + unsigned UsedWords = NumBitWords(Size); | 
| + if (Capacity > UsedWords) | 
| + init_words(&Bits[UsedWords], (Capacity - UsedWords), t); | 
| + | 
| + // Then set any stray high bits of the last used word. | 
| + unsigned ExtraBits = Size % BITWORD_SIZE; | 
| + if (ExtraBits) { | 
| + BitWord ExtraBitMask = ~0UL << ExtraBits; | 
| + if (t) | 
| + Bits[UsedWords - 1] |= ExtraBitMask; | 
| + else | 
| + Bits[UsedWords - 1] &= ~ExtraBitMask; | 
| + } | 
| + } | 
| + | 
| + // Clear the unused bits in the high words. | 
| + void clear_unused_bits() { set_unused_bits(false); } | 
| + | 
| + void grow(unsigned NewSize) { | 
| + const auto OldCapacity = Capacity; | 
| + Capacity = std::max(NumBitWords(NewSize), Capacity * 2); | 
| + assert(Capacity > 0 && "realloc-ing zero space"); | 
| + auto *NewBits = Alloc.allocate(Capacity * sizeof(BitWord)); | 
| + std::memcpy(Bits, NewBits, OldCapacity * sizeof(BitWord)); | 
| + Alloc.deallocate(Bits, OldCapacity * sizeof(BitWord)); | 
| + Bits = NewBits; | 
| + | 
| + clear_unused_bits(); | 
| + } | 
| + | 
| + void init_words(BitWord *B, unsigned NumWords, bool t) { | 
| + memset(B, 0 - (int)t, NumWords * sizeof(BitWord)); | 
| + } | 
| + | 
| + template <bool AddBits, bool InvertMask> | 
| + void applyMask(const uint32_t *Mask, unsigned MaskWords) { | 
| + static_assert(BITWORD_SIZE % 32 == 0, "Unsupported BitWord size."); | 
| + MaskWords = std::min(MaskWords, (size() + 31) / 32); | 
| + const unsigned Scale = BITWORD_SIZE / 32; | 
| + unsigned i; | 
| + for (i = 0; MaskWords >= Scale; ++i, MaskWords -= Scale) { | 
| + BitWord BW = Bits[i]; | 
| + // This inner loop should unroll completely when BITWORD_SIZE > 32. | 
| + for (unsigned b = 0; b != BITWORD_SIZE; b += 32) { | 
| + uint32_t M = *Mask++; | 
| + if (InvertMask) | 
| + M = ~M; | 
| + if (AddBits) | 
| + BW |= BitWord(M) << b; | 
| + else | 
| + BW &= ~(BitWord(M) << b); | 
| + } | 
| + Bits[i] = BW; | 
| + } | 
| + for (unsigned b = 0; MaskWords; b += 32, --MaskWords) { | 
| + uint32_t M = *Mask++; | 
| + if (InvertMask) | 
| + M = ~M; | 
| + if (AddBits) | 
| + Bits[i] |= BitWord(M) << b; | 
| + else | 
| + Bits[i] &= ~(BitWord(M) << b); | 
| + } | 
| + if (AddBits) | 
| + clear_unused_bits(); | 
| + } | 
| +}; | 
| + | 
| } // end of namespace Ice | 
| +namespace std { | 
| +/// Implement std::swap in terms of BitVector swap. | 
| +inline void swap(Ice::BitVector &LHS, Ice::BitVector &RHS) { LHS.swap(RHS); } | 
| +} | 
| + | 
| #endif // SUBZERO_SRC_ICEBITVECTOR_H |