Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(27)

Unified Diff: src/IceBitVector.h

Issue 1738683003: Subzero. Moar performance tweaks. (Closed) Base URL: https://chromium.googlesource.com/native_client/pnacl-subzero.git@master
Patch Set: Addresses comments Created 4 years, 10 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « no previous file | src/IceCfg.cpp » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: src/IceBitVector.h
diff --git a/src/IceBitVector.h b/src/IceBitVector.h
index 9c99e8aebd9d801d65961329faef612a0af5aae0..cc0fda8be0185e8b077291fd19608e5f713bf64b 100644
--- a/src/IceBitVector.h
+++ b/src/IceBitVector.h
@@ -8,24 +8,30 @@
//===----------------------------------------------------------------------===//
///
/// \file
-/// \brief Defines and implements a bit vector with inline storage. It is a drop
-/// in replacement for llvm::SmallBitVector in subzero -- i.e., not all of
-/// llvm::SmallBitVector interface is implemented.
+/// \brief Defines and implements a bit vector classes.
Jim Stichnoth 2016/02/26 15:18:23 s/a //
+///
+/// SmallBitVector is a drop in replacement for llvm::SmallBitVector. It uses
+/// inline storage, at the expense of limited, static size.
+///
+/// BitVector is a allocator aware version of llvm::BitVector. Its
Jim Stichnoth 2016/02/26 15:18:23 an allocator-aware
+/// implementation was copied ipsis literis from llvm.
///
//===----------------------------------------------------------------------===//
#ifndef SUBZERO_SRC_ICEBITVECTOR_H
#define SUBZERO_SRC_ICEBITVECTOR_H
-#include "IceDefs.h"
+#include "IceMemory.h"
#include "IceOperand.h"
#include "llvm/Support/MathExtras.h"
#include <algorithm>
+#include <cassert>
#include <climits>
#include <memory>
#include <type_traits>
+#include <utility>
namespace Ice {
class SmallBitVector {
@@ -240,6 +246,566 @@ private:
}
};
+class BitVector {
+ typedef unsigned long BitWord;
+ using Allocator = CfgLocalAllocator<BitWord>;
+
+ enum { BITWORD_SIZE = (unsigned)sizeof(BitWord) * CHAR_BIT };
+
+ static_assert(BITWORD_SIZE == 64 || BITWORD_SIZE == 32,
+ "Unsupported word size");
+
+ BitWord *Bits; // Actual bits.
+ unsigned Size; // Size of bitvector in bits.
+ unsigned Capacity; // Size of allocated memory in BitWord.
+ Allocator Alloc;
+
+public:
+ typedef unsigned size_type;
+ // Encapsulation of a single bit.
+ class reference {
+ friend class BitVector;
+
+ BitWord *WordRef;
+ unsigned BitPos;
+
+ reference(); // Undefined
+
+ public:
+ reference(BitVector &b, unsigned Idx) {
+ WordRef = &b.Bits[Idx / BITWORD_SIZE];
+ BitPos = Idx % BITWORD_SIZE;
+ }
+
+ reference(const reference &) = default;
+
+ reference &operator=(reference t) {
+ *this = bool(t);
+ return *this;
+ }
+
+ reference &operator=(bool t) {
+ if (t)
+ *WordRef |= BitWord(1) << BitPos;
+ else
+ *WordRef &= ~(BitWord(1) << BitPos);
+ return *this;
+ }
+
+ operator bool() const {
+ return ((*WordRef) & (BitWord(1) << BitPos)) ? true : false;
+ }
+ };
+
+ /// BitVector default ctor - Creates an empty bitvector.
+ BitVector(Allocator A = Allocator())
+ : Size(0), Capacity(0), Alloc(std::move(A)) {
+ Bits = nullptr;
+ }
+
+ /// BitVector ctor - Creates a bitvector of specified number of bits. All
+ /// bits are initialized to the specified value.
+ explicit BitVector(unsigned s, bool t = false, Allocator A = Allocator())
+ : Size(s), Alloc(std::move(A)) {
+ Capacity = NumBitWords(s);
+ Bits = Alloc.allocate(Capacity * sizeof(BitWord));
+ init_words(Bits, Capacity, t);
+ if (t)
+ clear_unused_bits();
+ }
+
+ /// BitVector copy ctor.
+ BitVector(const BitVector &RHS) : Size(RHS.size()), Alloc(RHS.Alloc) {
+ if (Size == 0) {
+ Bits = nullptr;
+ Capacity = 0;
+ return;
+ }
+
+ Capacity = NumBitWords(RHS.size());
+ Bits = Alloc.allocate(Capacity * sizeof(BitWord));
+ std::memcpy(Bits, RHS.Bits, Capacity * sizeof(BitWord));
+ }
+
+ BitVector(BitVector &&RHS)
+ : Bits(RHS.Bits), Size(RHS.Size), Capacity(RHS.Capacity),
+ Alloc(std::move(RHS.Alloc)) {
+ RHS.Bits = nullptr;
+ }
+
+ ~BitVector() {
+ if (Bits != nullptr) {
+ Alloc.deallocate(Bits, Capacity * sizeof(BitWord));
+ }
+ }
+
+ /// empty - Tests whether there are no bits in this bitvector.
+ bool empty() const { return Size == 0; }
+
+ /// size - Returns the number of bits in this bitvector.
+ size_type size() const { return Size; }
+
+ /// count - Returns the number of bits which are set.
+ size_type count() const {
+ unsigned NumBits = 0;
+ for (unsigned i = 0; i < NumBitWords(size()); ++i)
+ NumBits += llvm::countPopulation(Bits[i]);
+ return NumBits;
+ }
+
+ /// any - Returns true if any bit is set.
+ bool any() const {
+ for (unsigned i = 0; i < NumBitWords(size()); ++i)
+ if (Bits[i] != 0)
+ return true;
+ return false;
+ }
+
+ /// all - Returns true if all bits are set.
+ bool all() const {
+ for (unsigned i = 0; i < Size / BITWORD_SIZE; ++i)
+ if (Bits[i] != ~0UL)
+ return false;
+
+ // If bits remain check that they are ones. The unused bits are always zero.
+ if (unsigned Remainder = Size % BITWORD_SIZE)
+ return Bits[Size / BITWORD_SIZE] == (1UL << Remainder) - 1;
+
+ return true;
+ }
+
+ /// none - Returns true if none of the bits are set.
+ bool none() const { return !any(); }
+
+ /// find_first - Returns the index of the first set bit, -1 if none
+ /// of the bits are set.
+ int find_first() const {
+ for (unsigned i = 0; i < NumBitWords(size()); ++i)
+ if (Bits[i] != 0)
+ return i * BITWORD_SIZE + llvm::countTrailingZeros(Bits[i]);
+ return -1;
+ }
+
+ /// find_next - Returns the index of the next set bit following the
+ /// "Prev" bit. Returns -1 if the next set bit is not found.
+ int find_next(unsigned Prev) const {
+ ++Prev;
+ if (Prev >= Size)
+ return -1;
+
+ unsigned WordPos = Prev / BITWORD_SIZE;
+ unsigned BitPos = Prev % BITWORD_SIZE;
+ BitWord Copy = Bits[WordPos];
+ // Mask off previous bits.
+ Copy &= ~0UL << BitPos;
+
+ if (Copy != 0)
+ return WordPos * BITWORD_SIZE + llvm::countTrailingZeros(Copy);
+
+ // Check subsequent words.
+ for (unsigned i = WordPos + 1; i < NumBitWords(size()); ++i)
+ if (Bits[i] != 0)
+ return i * BITWORD_SIZE + llvm::countTrailingZeros(Bits[i]);
+ return -1;
+ }
+
+ /// clear - Clear all bits.
+ void clear() { Size = 0; }
+
+ /// resize - Grow or shrink the bitvector.
+ void resize(unsigned N, bool t = false) {
+ if (N > Capacity * BITWORD_SIZE) {
+ unsigned OldCapacity = Capacity;
+ grow(N);
+ init_words(&Bits[OldCapacity], (Capacity - OldCapacity), t);
+ }
+
+ // Set any old unused bits that are now included in the BitVector. This
+ // may set bits that are not included in the new vector, but we will clear
+ // them back out below.
+ if (N > Size)
+ set_unused_bits(t);
+
+ // Update the size, and clear out any bits that are now unused
+ unsigned OldSize = Size;
+ Size = N;
+ if (t || N < OldSize)
+ clear_unused_bits();
+ }
+
+ void reserve(unsigned N) {
+ if (N > Capacity * BITWORD_SIZE)
+ grow(N);
+ }
+
+ // Set, reset, flip
+ BitVector &set() {
+ init_words(Bits, Capacity, true);
+ clear_unused_bits();
+ return *this;
+ }
+
+ BitVector &set(unsigned Idx) {
+ assert(Bits && "Bits never allocated");
+ Bits[Idx / BITWORD_SIZE] |= BitWord(1) << (Idx % BITWORD_SIZE);
+ return *this;
+ }
+
+ /// set - Efficiently set a range of bits in [I, E)
+ BitVector &set(unsigned I, unsigned E) {
+ assert(I <= E && "Attempted to set backwards range!");
+ assert(E <= size() && "Attempted to set out-of-bounds range!");
+
+ if (I == E)
+ return *this;
+
+ if (I / BITWORD_SIZE == E / BITWORD_SIZE) {
+ BitWord EMask = 1UL << (E % BITWORD_SIZE);
+ BitWord IMask = 1UL << (I % BITWORD_SIZE);
+ BitWord Mask = EMask - IMask;
+ Bits[I / BITWORD_SIZE] |= Mask;
+ return *this;
+ }
+
+ BitWord PrefixMask = ~0UL << (I % BITWORD_SIZE);
+ Bits[I / BITWORD_SIZE] |= PrefixMask;
+ I = llvm::RoundUpToAlignment(I, BITWORD_SIZE);
+
+ for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE)
+ Bits[I / BITWORD_SIZE] = ~0UL;
+
+ BitWord PostfixMask = (1UL << (E % BITWORD_SIZE)) - 1;
+ if (I < E)
+ Bits[I / BITWORD_SIZE] |= PostfixMask;
+
+ return *this;
+ }
+
+ BitVector &reset() {
+ init_words(Bits, Capacity, false);
+ return *this;
+ }
+
+ BitVector &reset(unsigned Idx) {
+ Bits[Idx / BITWORD_SIZE] &= ~(BitWord(1) << (Idx % BITWORD_SIZE));
+ return *this;
+ }
+
+ /// reset - Efficiently reset a range of bits in [I, E)
+ BitVector &reset(unsigned I, unsigned E) {
+ assert(I <= E && "Attempted to reset backwards range!");
+ assert(E <= size() && "Attempted to reset out-of-bounds range!");
+
+ if (I == E)
+ return *this;
+
+ if (I / BITWORD_SIZE == E / BITWORD_SIZE) {
+ BitWord EMask = 1UL << (E % BITWORD_SIZE);
+ BitWord IMask = 1UL << (I % BITWORD_SIZE);
+ BitWord Mask = EMask - IMask;
+ Bits[I / BITWORD_SIZE] &= ~Mask;
+ return *this;
+ }
+
+ BitWord PrefixMask = ~0UL << (I % BITWORD_SIZE);
+ Bits[I / BITWORD_SIZE] &= ~PrefixMask;
+ I = llvm::RoundUpToAlignment(I, BITWORD_SIZE);
+
+ for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE)
+ Bits[I / BITWORD_SIZE] = 0UL;
+
+ BitWord PostfixMask = (1UL << (E % BITWORD_SIZE)) - 1;
+ if (I < E)
+ Bits[I / BITWORD_SIZE] &= ~PostfixMask;
+
+ return *this;
+ }
+
+ BitVector &flip() {
+ for (unsigned i = 0; i < NumBitWords(size()); ++i)
+ Bits[i] = ~Bits[i];
+ clear_unused_bits();
+ return *this;
+ }
+
+ BitVector &flip(unsigned Idx) {
+ Bits[Idx / BITWORD_SIZE] ^= BitWord(1) << (Idx % BITWORD_SIZE);
+ return *this;
+ }
+
+ // Indexing.
+ reference operator[](unsigned Idx) {
+ assert(Idx < Size && "Out-of-bounds Bit access.");
+ return reference(*this, Idx);
+ }
+
+ bool operator[](unsigned Idx) const {
+ assert(Idx < Size && "Out-of-bounds Bit access.");
+ BitWord Mask = BitWord(1) << (Idx % BITWORD_SIZE);
+ return (Bits[Idx / BITWORD_SIZE] & Mask) != 0;
+ }
+
+ bool test(unsigned Idx) const { return (*this)[Idx]; }
+
+ /// Test if any common bits are set.
+ bool anyCommon(const BitVector &RHS) const {
+ unsigned ThisWords = NumBitWords(size());
+ unsigned RHSWords = NumBitWords(RHS.size());
+ for (unsigned i = 0, e = std::min(ThisWords, RHSWords); i != e; ++i)
+ if (Bits[i] & RHS.Bits[i])
+ return true;
+ return false;
+ }
+
+ // Comparison operators.
+ bool operator==(const BitVector &RHS) const {
+ unsigned ThisWords = NumBitWords(size());
+ unsigned RHSWords = NumBitWords(RHS.size());
+ unsigned i;
+ for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
+ if (Bits[i] != RHS.Bits[i])
+ return false;
+
+ // Verify that any extra words are all zeros.
+ if (i != ThisWords) {
+ for (; i != ThisWords; ++i)
+ if (Bits[i])
+ return false;
+ } else if (i != RHSWords) {
+ for (; i != RHSWords; ++i)
+ if (RHS.Bits[i])
+ return false;
+ }
+ return true;
+ }
+
+ bool operator!=(const BitVector &RHS) const { return !(*this == RHS); }
+
+ /// Intersection, union, disjoint union.
+ BitVector &operator&=(const BitVector &RHS) {
+ unsigned ThisWords = NumBitWords(size());
+ unsigned RHSWords = NumBitWords(RHS.size());
+ unsigned i;
+ for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
+ Bits[i] &= RHS.Bits[i];
+
+ // Any bits that are just in this bitvector become zero, because they aren't
+ // in the RHS bit vector. Any words only in RHS are ignored because they
+ // are already zero in the LHS.
+ for (; i != ThisWords; ++i)
+ Bits[i] = 0;
+
+ return *this;
+ }
+
+ /// reset - Reset bits that are set in RHS. Same as *this &= ~RHS.
+ BitVector &reset(const BitVector &RHS) {
+ unsigned ThisWords = NumBitWords(size());
+ unsigned RHSWords = NumBitWords(RHS.size());
+ unsigned i;
+ for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
+ Bits[i] &= ~RHS.Bits[i];
+ return *this;
+ }
+
+ /// test - Check if (This - RHS) is zero.
+ /// This is the same as reset(RHS) and any().
+ bool test(const BitVector &RHS) const {
+ unsigned ThisWords = NumBitWords(size());
+ unsigned RHSWords = NumBitWords(RHS.size());
+ unsigned i;
+ for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
+ if ((Bits[i] & ~RHS.Bits[i]) != 0)
+ return true;
+
+ for (; i != ThisWords; ++i)
+ if (Bits[i] != 0)
+ return true;
+
+ return false;
+ }
+
+ BitVector &operator|=(const BitVector &RHS) {
+ if (size() < RHS.size())
+ resize(RHS.size());
+ for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i)
+ Bits[i] |= RHS.Bits[i];
+ return *this;
+ }
+
+ BitVector &operator^=(const BitVector &RHS) {
+ if (size() < RHS.size())
+ resize(RHS.size());
+ for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i)
+ Bits[i] ^= RHS.Bits[i];
+ return *this;
+ }
+
+ // Assignment operator.
+ const BitVector &operator=(const BitVector &RHS) {
+ if (this == &RHS)
+ return *this;
+
+ Size = RHS.size();
+ unsigned RHSWords = NumBitWords(Size);
+ if (Size <= Capacity * BITWORD_SIZE) {
+ if (Size)
+ std::memcpy(Bits, RHS.Bits, RHSWords * sizeof(BitWord));
+ clear_unused_bits();
+ return *this;
+ }
+
+ // Grow the bitvector to have enough elements.
+ const auto OldCapacity = Capacity;
+ Capacity = RHSWords;
+ assert(Capacity > 0 && "negative capacity?");
+ BitWord *NewBits = Alloc.allocate(Capacity * sizeof(BitWord));
+ std::memcpy(NewBits, RHS.Bits, Capacity * sizeof(BitWord));
+
+ // Destroy the old bits.
+ Alloc.deallocate(Bits, OldCapacity * sizeof(BitWord));
+ Bits = NewBits;
+
+ return *this;
+ }
+
+ const BitVector &operator=(BitVector &&RHS) {
+ if (this == &RHS)
+ return *this;
+
+ Alloc.deallocate(Bits, Capacity * sizeof(BitWord));
+ Bits = RHS.Bits;
+ Size = RHS.Size;
+ Capacity = RHS.Capacity;
+
+ RHS.Bits = nullptr;
+
+ return *this;
+ }
+
+ void swap(BitVector &RHS) {
+ std::swap(Bits, RHS.Bits);
+ std::swap(Size, RHS.Size);
+ std::swap(Capacity, RHS.Capacity);
+ }
+
+ //===--------------------------------------------------------------------===//
+ // Portable bit mask operations.
+ //===--------------------------------------------------------------------===//
+ //
+ // These methods all operate on arrays of uint32_t, each holding 32 bits. The
+ // fixed word size makes it easier to work with literal bit vector constants
+ // in portable code.
+ //
+ // The LSB in each word is the lowest numbered bit. The size of a portable
+ // bit mask is always a whole multiple of 32 bits. If no bit mask size is
+ // given, the bit mask is assumed to cover the entire BitVector.
+
+ /// setBitsInMask - Add '1' bits from Mask to this vector. Don't resize.
+ /// This computes "*this |= Mask".
+ void setBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
+ applyMask<true, false>(Mask, MaskWords);
+ }
+
+ /// clearBitsInMask - Clear any bits in this vector that are set in Mask.
+ /// Don't resize. This computes "*this &= ~Mask".
+ void clearBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
+ applyMask<false, false>(Mask, MaskWords);
+ }
+
+ /// setBitsNotInMask - Add a bit to this vector for every '0' bit in Mask.
+ /// Don't resize. This computes "*this |= ~Mask".
+ void setBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
+ applyMask<true, true>(Mask, MaskWords);
+ }
+
+ /// clearBitsNotInMask - Clear a bit in this vector for every '0' bit in Mask.
+ /// Don't resize. This computes "*this &= Mask".
+ void clearBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
+ applyMask<false, true>(Mask, MaskWords);
+ }
+
+private:
+ unsigned NumBitWords(unsigned S) const {
+ return (S + BITWORD_SIZE - 1) / BITWORD_SIZE;
+ }
+
+ // Set the unused bits in the high words.
+ void set_unused_bits(bool t = true) {
+ // Set high words first.
+ unsigned UsedWords = NumBitWords(Size);
+ if (Capacity > UsedWords)
+ init_words(&Bits[UsedWords], (Capacity - UsedWords), t);
+
+ // Then set any stray high bits of the last used word.
+ unsigned ExtraBits = Size % BITWORD_SIZE;
+ if (ExtraBits) {
+ BitWord ExtraBitMask = ~0UL << ExtraBits;
+ if (t)
+ Bits[UsedWords - 1] |= ExtraBitMask;
+ else
+ Bits[UsedWords - 1] &= ~ExtraBitMask;
+ }
+ }
+
+ // Clear the unused bits in the high words.
+ void clear_unused_bits() { set_unused_bits(false); }
+
+ void grow(unsigned NewSize) {
+ const auto OldCapacity = Capacity;
+ Capacity = std::max(NumBitWords(NewSize), Capacity * 2);
+ assert(Capacity > 0 && "realloc-ing zero space");
+ auto *NewBits = Alloc.allocate(Capacity * sizeof(BitWord));
+ std::memcpy(Bits, NewBits, OldCapacity * sizeof(BitWord));
+ Alloc.deallocate(Bits, OldCapacity * sizeof(BitWord));
+ Bits = NewBits;
+
+ clear_unused_bits();
+ }
+
+ void init_words(BitWord *B, unsigned NumWords, bool t) {
+ memset(B, 0 - (int)t, NumWords * sizeof(BitWord));
+ }
+
+ template <bool AddBits, bool InvertMask>
+ void applyMask(const uint32_t *Mask, unsigned MaskWords) {
+ static_assert(BITWORD_SIZE % 32 == 0, "Unsupported BitWord size.");
+ MaskWords = std::min(MaskWords, (size() + 31) / 32);
+ const unsigned Scale = BITWORD_SIZE / 32;
+ unsigned i;
+ for (i = 0; MaskWords >= Scale; ++i, MaskWords -= Scale) {
+ BitWord BW = Bits[i];
+ // This inner loop should unroll completely when BITWORD_SIZE > 32.
+ for (unsigned b = 0; b != BITWORD_SIZE; b += 32) {
+ uint32_t M = *Mask++;
+ if (InvertMask)
+ M = ~M;
+ if (AddBits)
+ BW |= BitWord(M) << b;
+ else
+ BW &= ~(BitWord(M) << b);
+ }
+ Bits[i] = BW;
+ }
+ for (unsigned b = 0; MaskWords; b += 32, --MaskWords) {
+ uint32_t M = *Mask++;
+ if (InvertMask)
+ M = ~M;
+ if (AddBits)
+ Bits[i] |= BitWord(M) << b;
+ else
+ Bits[i] &= ~(BitWord(M) << b);
+ }
+ if (AddBits)
+ clear_unused_bits();
+ }
+};
+
} // end of namespace Ice
+namespace std {
+/// Implement std::swap in terms of BitVector swap.
+inline void swap(Ice::BitVector &LHS, Ice::BitVector &RHS) { LHS.swap(RHS); }
+}
+
#endif // SUBZERO_SRC_ICEBITVECTOR_H
« no previous file with comments | « no previous file | src/IceCfg.cpp » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698