OLD | NEW |
---|---|
1 //===- subzero/src/IceBitVector.h - Inline bit vector. ----------*- C++ -*-===// | 1 //===- subzero/src/IceBitVector.h - Inline bit vector. ----------*- C++ -*-===// |
2 // | 2 // |
3 // The Subzero Code Generator | 3 // The Subzero Code Generator |
4 // | 4 // |
5 // This file is distributed under the University of Illinois Open Source | 5 // This file is distributed under the University of Illinois Open Source |
6 // License. See LICENSE.TXT for details. | 6 // License. See LICENSE.TXT for details. |
7 // | 7 // |
8 //===----------------------------------------------------------------------===// | 8 //===----------------------------------------------------------------------===// |
9 /// | 9 /// |
10 /// \file | 10 /// \file |
11 /// \brief Defines and implements a bit vector with inline storage. It is a drop | 11 /// \brief Defines and implements a bit vector classes. |
Jim Stichnoth
2016/02/26 15:18:23
s/a //
| |
12 /// in replacement for llvm::SmallBitVector in subzero -- i.e., not all of | 12 /// |
13 /// llvm::SmallBitVector interface is implemented. | 13 /// SmallBitVector is a drop in replacement for llvm::SmallBitVector. It uses |
14 /// inline storage, at the expense of limited, static size. | |
15 /// | |
16 /// BitVector is a allocator aware version of llvm::BitVector. Its | |
Jim Stichnoth
2016/02/26 15:18:23
an allocator-aware
| |
17 /// implementation was copied ipsis literis from llvm. | |
14 /// | 18 /// |
15 //===----------------------------------------------------------------------===// | 19 //===----------------------------------------------------------------------===// |
16 | 20 |
17 #ifndef SUBZERO_SRC_ICEBITVECTOR_H | 21 #ifndef SUBZERO_SRC_ICEBITVECTOR_H |
18 #define SUBZERO_SRC_ICEBITVECTOR_H | 22 #define SUBZERO_SRC_ICEBITVECTOR_H |
19 | 23 |
20 #include "IceDefs.h" | 24 #include "IceMemory.h" |
21 #include "IceOperand.h" | 25 #include "IceOperand.h" |
22 | 26 |
23 #include "llvm/Support/MathExtras.h" | 27 #include "llvm/Support/MathExtras.h" |
24 | 28 |
25 #include <algorithm> | 29 #include <algorithm> |
30 #include <cassert> | |
26 #include <climits> | 31 #include <climits> |
27 #include <memory> | 32 #include <memory> |
28 #include <type_traits> | 33 #include <type_traits> |
34 #include <utility> | |
29 | 35 |
30 namespace Ice { | 36 namespace Ice { |
31 class SmallBitVector { | 37 class SmallBitVector { |
32 public: | 38 public: |
33 using ElementType = uint64_t; | 39 using ElementType = uint64_t; |
34 static constexpr SizeT BitIndexSize = 6; // log2(NumBitsPerPos); | 40 static constexpr SizeT BitIndexSize = 6; // log2(NumBitsPerPos); |
35 static constexpr SizeT NumBitsPerPos = sizeof(ElementType) * CHAR_BIT; | 41 static constexpr SizeT NumBitsPerPos = sizeof(ElementType) * CHAR_BIT; |
36 static_assert(1 << BitIndexSize == NumBitsPerPos, "Invalid BitIndexSize."); | 42 static_assert(1 << BitIndexSize == NumBitsPerPos, "Invalid BitIndexSize."); |
37 | 43 |
38 SmallBitVector(const SmallBitVector &BV) { *this = BV; } | 44 SmallBitVector(const SmallBitVector &BV) { *this = BV; } |
(...skipping 194 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
233 Bits[Pos] ^= ~ElementType(0); | 239 Bits[Pos] ^= ~ElementType(0); |
234 } else { | 240 } else { |
235 const ElementType Mask = | 241 const ElementType Mask = |
236 (ElementType(1) << (size() - (Pos * NumBitsPerPos))) - 1; | 242 (ElementType(1) << (size() - (Pos * NumBitsPerPos))) - 1; |
237 Bits[Pos] ^= Mask; | 243 Bits[Pos] ^= Mask; |
238 } | 244 } |
239 invert<Pos + 1>(); | 245 invert<Pos + 1>(); |
240 } | 246 } |
241 }; | 247 }; |
242 | 248 |
249 class BitVector { | |
250 typedef unsigned long BitWord; | |
251 using Allocator = CfgLocalAllocator<BitWord>; | |
252 | |
253 enum { BITWORD_SIZE = (unsigned)sizeof(BitWord) * CHAR_BIT }; | |
254 | |
255 static_assert(BITWORD_SIZE == 64 || BITWORD_SIZE == 32, | |
256 "Unsupported word size"); | |
257 | |
258 BitWord *Bits; // Actual bits. | |
259 unsigned Size; // Size of bitvector in bits. | |
260 unsigned Capacity; // Size of allocated memory in BitWord. | |
261 Allocator Alloc; | |
262 | |
263 public: | |
264 typedef unsigned size_type; | |
265 // Encapsulation of a single bit. | |
266 class reference { | |
267 friend class BitVector; | |
268 | |
269 BitWord *WordRef; | |
270 unsigned BitPos; | |
271 | |
272 reference(); // Undefined | |
273 | |
274 public: | |
275 reference(BitVector &b, unsigned Idx) { | |
276 WordRef = &b.Bits[Idx / BITWORD_SIZE]; | |
277 BitPos = Idx % BITWORD_SIZE; | |
278 } | |
279 | |
280 reference(const reference &) = default; | |
281 | |
282 reference &operator=(reference t) { | |
283 *this = bool(t); | |
284 return *this; | |
285 } | |
286 | |
287 reference &operator=(bool t) { | |
288 if (t) | |
289 *WordRef |= BitWord(1) << BitPos; | |
290 else | |
291 *WordRef &= ~(BitWord(1) << BitPos); | |
292 return *this; | |
293 } | |
294 | |
295 operator bool() const { | |
296 return ((*WordRef) & (BitWord(1) << BitPos)) ? true : false; | |
297 } | |
298 }; | |
299 | |
300 /// BitVector default ctor - Creates an empty bitvector. | |
301 BitVector(Allocator A = Allocator()) | |
302 : Size(0), Capacity(0), Alloc(std::move(A)) { | |
303 Bits = nullptr; | |
304 } | |
305 | |
306 /// BitVector ctor - Creates a bitvector of specified number of bits. All | |
307 /// bits are initialized to the specified value. | |
308 explicit BitVector(unsigned s, bool t = false, Allocator A = Allocator()) | |
309 : Size(s), Alloc(std::move(A)) { | |
310 Capacity = NumBitWords(s); | |
311 Bits = Alloc.allocate(Capacity * sizeof(BitWord)); | |
312 init_words(Bits, Capacity, t); | |
313 if (t) | |
314 clear_unused_bits(); | |
315 } | |
316 | |
317 /// BitVector copy ctor. | |
318 BitVector(const BitVector &RHS) : Size(RHS.size()), Alloc(RHS.Alloc) { | |
319 if (Size == 0) { | |
320 Bits = nullptr; | |
321 Capacity = 0; | |
322 return; | |
323 } | |
324 | |
325 Capacity = NumBitWords(RHS.size()); | |
326 Bits = Alloc.allocate(Capacity * sizeof(BitWord)); | |
327 std::memcpy(Bits, RHS.Bits, Capacity * sizeof(BitWord)); | |
328 } | |
329 | |
330 BitVector(BitVector &&RHS) | |
331 : Bits(RHS.Bits), Size(RHS.Size), Capacity(RHS.Capacity), | |
332 Alloc(std::move(RHS.Alloc)) { | |
333 RHS.Bits = nullptr; | |
334 } | |
335 | |
336 ~BitVector() { | |
337 if (Bits != nullptr) { | |
338 Alloc.deallocate(Bits, Capacity * sizeof(BitWord)); | |
339 } | |
340 } | |
341 | |
342 /// empty - Tests whether there are no bits in this bitvector. | |
343 bool empty() const { return Size == 0; } | |
344 | |
345 /// size - Returns the number of bits in this bitvector. | |
346 size_type size() const { return Size; } | |
347 | |
348 /// count - Returns the number of bits which are set. | |
349 size_type count() const { | |
350 unsigned NumBits = 0; | |
351 for (unsigned i = 0; i < NumBitWords(size()); ++i) | |
352 NumBits += llvm::countPopulation(Bits[i]); | |
353 return NumBits; | |
354 } | |
355 | |
356 /// any - Returns true if any bit is set. | |
357 bool any() const { | |
358 for (unsigned i = 0; i < NumBitWords(size()); ++i) | |
359 if (Bits[i] != 0) | |
360 return true; | |
361 return false; | |
362 } | |
363 | |
364 /// all - Returns true if all bits are set. | |
365 bool all() const { | |
366 for (unsigned i = 0; i < Size / BITWORD_SIZE; ++i) | |
367 if (Bits[i] != ~0UL) | |
368 return false; | |
369 | |
370 // If bits remain check that they are ones. The unused bits are always zero. | |
371 if (unsigned Remainder = Size % BITWORD_SIZE) | |
372 return Bits[Size / BITWORD_SIZE] == (1UL << Remainder) - 1; | |
373 | |
374 return true; | |
375 } | |
376 | |
377 /// none - Returns true if none of the bits are set. | |
378 bool none() const { return !any(); } | |
379 | |
380 /// find_first - Returns the index of the first set bit, -1 if none | |
381 /// of the bits are set. | |
382 int find_first() const { | |
383 for (unsigned i = 0; i < NumBitWords(size()); ++i) | |
384 if (Bits[i] != 0) | |
385 return i * BITWORD_SIZE + llvm::countTrailingZeros(Bits[i]); | |
386 return -1; | |
387 } | |
388 | |
389 /// find_next - Returns the index of the next set bit following the | |
390 /// "Prev" bit. Returns -1 if the next set bit is not found. | |
391 int find_next(unsigned Prev) const { | |
392 ++Prev; | |
393 if (Prev >= Size) | |
394 return -1; | |
395 | |
396 unsigned WordPos = Prev / BITWORD_SIZE; | |
397 unsigned BitPos = Prev % BITWORD_SIZE; | |
398 BitWord Copy = Bits[WordPos]; | |
399 // Mask off previous bits. | |
400 Copy &= ~0UL << BitPos; | |
401 | |
402 if (Copy != 0) | |
403 return WordPos * BITWORD_SIZE + llvm::countTrailingZeros(Copy); | |
404 | |
405 // Check subsequent words. | |
406 for (unsigned i = WordPos + 1; i < NumBitWords(size()); ++i) | |
407 if (Bits[i] != 0) | |
408 return i * BITWORD_SIZE + llvm::countTrailingZeros(Bits[i]); | |
409 return -1; | |
410 } | |
411 | |
412 /// clear - Clear all bits. | |
413 void clear() { Size = 0; } | |
414 | |
415 /// resize - Grow or shrink the bitvector. | |
416 void resize(unsigned N, bool t = false) { | |
417 if (N > Capacity * BITWORD_SIZE) { | |
418 unsigned OldCapacity = Capacity; | |
419 grow(N); | |
420 init_words(&Bits[OldCapacity], (Capacity - OldCapacity), t); | |
421 } | |
422 | |
423 // Set any old unused bits that are now included in the BitVector. This | |
424 // may set bits that are not included in the new vector, but we will clear | |
425 // them back out below. | |
426 if (N > Size) | |
427 set_unused_bits(t); | |
428 | |
429 // Update the size, and clear out any bits that are now unused | |
430 unsigned OldSize = Size; | |
431 Size = N; | |
432 if (t || N < OldSize) | |
433 clear_unused_bits(); | |
434 } | |
435 | |
436 void reserve(unsigned N) { | |
437 if (N > Capacity * BITWORD_SIZE) | |
438 grow(N); | |
439 } | |
440 | |
441 // Set, reset, flip | |
442 BitVector &set() { | |
443 init_words(Bits, Capacity, true); | |
444 clear_unused_bits(); | |
445 return *this; | |
446 } | |
447 | |
448 BitVector &set(unsigned Idx) { | |
449 assert(Bits && "Bits never allocated"); | |
450 Bits[Idx / BITWORD_SIZE] |= BitWord(1) << (Idx % BITWORD_SIZE); | |
451 return *this; | |
452 } | |
453 | |
454 /// set - Efficiently set a range of bits in [I, E) | |
455 BitVector &set(unsigned I, unsigned E) { | |
456 assert(I <= E && "Attempted to set backwards range!"); | |
457 assert(E <= size() && "Attempted to set out-of-bounds range!"); | |
458 | |
459 if (I == E) | |
460 return *this; | |
461 | |
462 if (I / BITWORD_SIZE == E / BITWORD_SIZE) { | |
463 BitWord EMask = 1UL << (E % BITWORD_SIZE); | |
464 BitWord IMask = 1UL << (I % BITWORD_SIZE); | |
465 BitWord Mask = EMask - IMask; | |
466 Bits[I / BITWORD_SIZE] |= Mask; | |
467 return *this; | |
468 } | |
469 | |
470 BitWord PrefixMask = ~0UL << (I % BITWORD_SIZE); | |
471 Bits[I / BITWORD_SIZE] |= PrefixMask; | |
472 I = llvm::RoundUpToAlignment(I, BITWORD_SIZE); | |
473 | |
474 for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE) | |
475 Bits[I / BITWORD_SIZE] = ~0UL; | |
476 | |
477 BitWord PostfixMask = (1UL << (E % BITWORD_SIZE)) - 1; | |
478 if (I < E) | |
479 Bits[I / BITWORD_SIZE] |= PostfixMask; | |
480 | |
481 return *this; | |
482 } | |
483 | |
484 BitVector &reset() { | |
485 init_words(Bits, Capacity, false); | |
486 return *this; | |
487 } | |
488 | |
489 BitVector &reset(unsigned Idx) { | |
490 Bits[Idx / BITWORD_SIZE] &= ~(BitWord(1) << (Idx % BITWORD_SIZE)); | |
491 return *this; | |
492 } | |
493 | |
494 /// reset - Efficiently reset a range of bits in [I, E) | |
495 BitVector &reset(unsigned I, unsigned E) { | |
496 assert(I <= E && "Attempted to reset backwards range!"); | |
497 assert(E <= size() && "Attempted to reset out-of-bounds range!"); | |
498 | |
499 if (I == E) | |
500 return *this; | |
501 | |
502 if (I / BITWORD_SIZE == E / BITWORD_SIZE) { | |
503 BitWord EMask = 1UL << (E % BITWORD_SIZE); | |
504 BitWord IMask = 1UL << (I % BITWORD_SIZE); | |
505 BitWord Mask = EMask - IMask; | |
506 Bits[I / BITWORD_SIZE] &= ~Mask; | |
507 return *this; | |
508 } | |
509 | |
510 BitWord PrefixMask = ~0UL << (I % BITWORD_SIZE); | |
511 Bits[I / BITWORD_SIZE] &= ~PrefixMask; | |
512 I = llvm::RoundUpToAlignment(I, BITWORD_SIZE); | |
513 | |
514 for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE) | |
515 Bits[I / BITWORD_SIZE] = 0UL; | |
516 | |
517 BitWord PostfixMask = (1UL << (E % BITWORD_SIZE)) - 1; | |
518 if (I < E) | |
519 Bits[I / BITWORD_SIZE] &= ~PostfixMask; | |
520 | |
521 return *this; | |
522 } | |
523 | |
524 BitVector &flip() { | |
525 for (unsigned i = 0; i < NumBitWords(size()); ++i) | |
526 Bits[i] = ~Bits[i]; | |
527 clear_unused_bits(); | |
528 return *this; | |
529 } | |
530 | |
531 BitVector &flip(unsigned Idx) { | |
532 Bits[Idx / BITWORD_SIZE] ^= BitWord(1) << (Idx % BITWORD_SIZE); | |
533 return *this; | |
534 } | |
535 | |
536 // Indexing. | |
537 reference operator[](unsigned Idx) { | |
538 assert(Idx < Size && "Out-of-bounds Bit access."); | |
539 return reference(*this, Idx); | |
540 } | |
541 | |
542 bool operator[](unsigned Idx) const { | |
543 assert(Idx < Size && "Out-of-bounds Bit access."); | |
544 BitWord Mask = BitWord(1) << (Idx % BITWORD_SIZE); | |
545 return (Bits[Idx / BITWORD_SIZE] & Mask) != 0; | |
546 } | |
547 | |
548 bool test(unsigned Idx) const { return (*this)[Idx]; } | |
549 | |
550 /// Test if any common bits are set. | |
551 bool anyCommon(const BitVector &RHS) const { | |
552 unsigned ThisWords = NumBitWords(size()); | |
553 unsigned RHSWords = NumBitWords(RHS.size()); | |
554 for (unsigned i = 0, e = std::min(ThisWords, RHSWords); i != e; ++i) | |
555 if (Bits[i] & RHS.Bits[i]) | |
556 return true; | |
557 return false; | |
558 } | |
559 | |
560 // Comparison operators. | |
561 bool operator==(const BitVector &RHS) const { | |
562 unsigned ThisWords = NumBitWords(size()); | |
563 unsigned RHSWords = NumBitWords(RHS.size()); | |
564 unsigned i; | |
565 for (i = 0; i != std::min(ThisWords, RHSWords); ++i) | |
566 if (Bits[i] != RHS.Bits[i]) | |
567 return false; | |
568 | |
569 // Verify that any extra words are all zeros. | |
570 if (i != ThisWords) { | |
571 for (; i != ThisWords; ++i) | |
572 if (Bits[i]) | |
573 return false; | |
574 } else if (i != RHSWords) { | |
575 for (; i != RHSWords; ++i) | |
576 if (RHS.Bits[i]) | |
577 return false; | |
578 } | |
579 return true; | |
580 } | |
581 | |
582 bool operator!=(const BitVector &RHS) const { return !(*this == RHS); } | |
583 | |
584 /// Intersection, union, disjoint union. | |
585 BitVector &operator&=(const BitVector &RHS) { | |
586 unsigned ThisWords = NumBitWords(size()); | |
587 unsigned RHSWords = NumBitWords(RHS.size()); | |
588 unsigned i; | |
589 for (i = 0; i != std::min(ThisWords, RHSWords); ++i) | |
590 Bits[i] &= RHS.Bits[i]; | |
591 | |
592 // Any bits that are just in this bitvector become zero, because they aren't | |
593 // in the RHS bit vector. Any words only in RHS are ignored because they | |
594 // are already zero in the LHS. | |
595 for (; i != ThisWords; ++i) | |
596 Bits[i] = 0; | |
597 | |
598 return *this; | |
599 } | |
600 | |
601 /// reset - Reset bits that are set in RHS. Same as *this &= ~RHS. | |
602 BitVector &reset(const BitVector &RHS) { | |
603 unsigned ThisWords = NumBitWords(size()); | |
604 unsigned RHSWords = NumBitWords(RHS.size()); | |
605 unsigned i; | |
606 for (i = 0; i != std::min(ThisWords, RHSWords); ++i) | |
607 Bits[i] &= ~RHS.Bits[i]; | |
608 return *this; | |
609 } | |
610 | |
611 /// test - Check if (This - RHS) is zero. | |
612 /// This is the same as reset(RHS) and any(). | |
613 bool test(const BitVector &RHS) const { | |
614 unsigned ThisWords = NumBitWords(size()); | |
615 unsigned RHSWords = NumBitWords(RHS.size()); | |
616 unsigned i; | |
617 for (i = 0; i != std::min(ThisWords, RHSWords); ++i) | |
618 if ((Bits[i] & ~RHS.Bits[i]) != 0) | |
619 return true; | |
620 | |
621 for (; i != ThisWords; ++i) | |
622 if (Bits[i] != 0) | |
623 return true; | |
624 | |
625 return false; | |
626 } | |
627 | |
628 BitVector &operator|=(const BitVector &RHS) { | |
629 if (size() < RHS.size()) | |
630 resize(RHS.size()); | |
631 for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i) | |
632 Bits[i] |= RHS.Bits[i]; | |
633 return *this; | |
634 } | |
635 | |
636 BitVector &operator^=(const BitVector &RHS) { | |
637 if (size() < RHS.size()) | |
638 resize(RHS.size()); | |
639 for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i) | |
640 Bits[i] ^= RHS.Bits[i]; | |
641 return *this; | |
642 } | |
643 | |
644 // Assignment operator. | |
645 const BitVector &operator=(const BitVector &RHS) { | |
646 if (this == &RHS) | |
647 return *this; | |
648 | |
649 Size = RHS.size(); | |
650 unsigned RHSWords = NumBitWords(Size); | |
651 if (Size <= Capacity * BITWORD_SIZE) { | |
652 if (Size) | |
653 std::memcpy(Bits, RHS.Bits, RHSWords * sizeof(BitWord)); | |
654 clear_unused_bits(); | |
655 return *this; | |
656 } | |
657 | |
658 // Grow the bitvector to have enough elements. | |
659 const auto OldCapacity = Capacity; | |
660 Capacity = RHSWords; | |
661 assert(Capacity > 0 && "negative capacity?"); | |
662 BitWord *NewBits = Alloc.allocate(Capacity * sizeof(BitWord)); | |
663 std::memcpy(NewBits, RHS.Bits, Capacity * sizeof(BitWord)); | |
664 | |
665 // Destroy the old bits. | |
666 Alloc.deallocate(Bits, OldCapacity * sizeof(BitWord)); | |
667 Bits = NewBits; | |
668 | |
669 return *this; | |
670 } | |
671 | |
672 const BitVector &operator=(BitVector &&RHS) { | |
673 if (this == &RHS) | |
674 return *this; | |
675 | |
676 Alloc.deallocate(Bits, Capacity * sizeof(BitWord)); | |
677 Bits = RHS.Bits; | |
678 Size = RHS.Size; | |
679 Capacity = RHS.Capacity; | |
680 | |
681 RHS.Bits = nullptr; | |
682 | |
683 return *this; | |
684 } | |
685 | |
686 void swap(BitVector &RHS) { | |
687 std::swap(Bits, RHS.Bits); | |
688 std::swap(Size, RHS.Size); | |
689 std::swap(Capacity, RHS.Capacity); | |
690 } | |
691 | |
692 //===--------------------------------------------------------------------===// | |
693 // Portable bit mask operations. | |
694 //===--------------------------------------------------------------------===// | |
695 // | |
696 // These methods all operate on arrays of uint32_t, each holding 32 bits. The | |
697 // fixed word size makes it easier to work with literal bit vector constants | |
698 // in portable code. | |
699 // | |
700 // The LSB in each word is the lowest numbered bit. The size of a portable | |
701 // bit mask is always a whole multiple of 32 bits. If no bit mask size is | |
702 // given, the bit mask is assumed to cover the entire BitVector. | |
703 | |
704 /// setBitsInMask - Add '1' bits from Mask to this vector. Don't resize. | |
705 /// This computes "*this |= Mask". | |
706 void setBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { | |
707 applyMask<true, false>(Mask, MaskWords); | |
708 } | |
709 | |
710 /// clearBitsInMask - Clear any bits in this vector that are set in Mask. | |
711 /// Don't resize. This computes "*this &= ~Mask". | |
712 void clearBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { | |
713 applyMask<false, false>(Mask, MaskWords); | |
714 } | |
715 | |
716 /// setBitsNotInMask - Add a bit to this vector for every '0' bit in Mask. | |
717 /// Don't resize. This computes "*this |= ~Mask". | |
718 void setBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { | |
719 applyMask<true, true>(Mask, MaskWords); | |
720 } | |
721 | |
722 /// clearBitsNotInMask - Clear a bit in this vector for every '0' bit in Mask. | |
723 /// Don't resize. This computes "*this &= Mask". | |
724 void clearBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { | |
725 applyMask<false, true>(Mask, MaskWords); | |
726 } | |
727 | |
728 private: | |
729 unsigned NumBitWords(unsigned S) const { | |
730 return (S + BITWORD_SIZE - 1) / BITWORD_SIZE; | |
731 } | |
732 | |
733 // Set the unused bits in the high words. | |
734 void set_unused_bits(bool t = true) { | |
735 // Set high words first. | |
736 unsigned UsedWords = NumBitWords(Size); | |
737 if (Capacity > UsedWords) | |
738 init_words(&Bits[UsedWords], (Capacity - UsedWords), t); | |
739 | |
740 // Then set any stray high bits of the last used word. | |
741 unsigned ExtraBits = Size % BITWORD_SIZE; | |
742 if (ExtraBits) { | |
743 BitWord ExtraBitMask = ~0UL << ExtraBits; | |
744 if (t) | |
745 Bits[UsedWords - 1] |= ExtraBitMask; | |
746 else | |
747 Bits[UsedWords - 1] &= ~ExtraBitMask; | |
748 } | |
749 } | |
750 | |
751 // Clear the unused bits in the high words. | |
752 void clear_unused_bits() { set_unused_bits(false); } | |
753 | |
754 void grow(unsigned NewSize) { | |
755 const auto OldCapacity = Capacity; | |
756 Capacity = std::max(NumBitWords(NewSize), Capacity * 2); | |
757 assert(Capacity > 0 && "realloc-ing zero space"); | |
758 auto *NewBits = Alloc.allocate(Capacity * sizeof(BitWord)); | |
759 std::memcpy(Bits, NewBits, OldCapacity * sizeof(BitWord)); | |
760 Alloc.deallocate(Bits, OldCapacity * sizeof(BitWord)); | |
761 Bits = NewBits; | |
762 | |
763 clear_unused_bits(); | |
764 } | |
765 | |
766 void init_words(BitWord *B, unsigned NumWords, bool t) { | |
767 memset(B, 0 - (int)t, NumWords * sizeof(BitWord)); | |
768 } | |
769 | |
770 template <bool AddBits, bool InvertMask> | |
771 void applyMask(const uint32_t *Mask, unsigned MaskWords) { | |
772 static_assert(BITWORD_SIZE % 32 == 0, "Unsupported BitWord size."); | |
773 MaskWords = std::min(MaskWords, (size() + 31) / 32); | |
774 const unsigned Scale = BITWORD_SIZE / 32; | |
775 unsigned i; | |
776 for (i = 0; MaskWords >= Scale; ++i, MaskWords -= Scale) { | |
777 BitWord BW = Bits[i]; | |
778 // This inner loop should unroll completely when BITWORD_SIZE > 32. | |
779 for (unsigned b = 0; b != BITWORD_SIZE; b += 32) { | |
780 uint32_t M = *Mask++; | |
781 if (InvertMask) | |
782 M = ~M; | |
783 if (AddBits) | |
784 BW |= BitWord(M) << b; | |
785 else | |
786 BW &= ~(BitWord(M) << b); | |
787 } | |
788 Bits[i] = BW; | |
789 } | |
790 for (unsigned b = 0; MaskWords; b += 32, --MaskWords) { | |
791 uint32_t M = *Mask++; | |
792 if (InvertMask) | |
793 M = ~M; | |
794 if (AddBits) | |
795 Bits[i] |= BitWord(M) << b; | |
796 else | |
797 Bits[i] &= ~(BitWord(M) << b); | |
798 } | |
799 if (AddBits) | |
800 clear_unused_bits(); | |
801 } | |
802 }; | |
803 | |
243 } // end of namespace Ice | 804 } // end of namespace Ice |
244 | 805 |
806 namespace std { | |
807 /// Implement std::swap in terms of BitVector swap. | |
808 inline void swap(Ice::BitVector &LHS, Ice::BitVector &RHS) { LHS.swap(RHS); } | |
809 } | |
810 | |
245 #endif // SUBZERO_SRC_ICEBITVECTOR_H | 811 #endif // SUBZERO_SRC_ICEBITVECTOR_H |
OLD | NEW |