OLD | NEW |
| (Empty) |
1 // Copyright 2015 the V8 project authors. All rights reserved. | |
2 // Use of this source code is governed by a BSD-style license that can be | |
3 // found in the LICENSE file. | |
4 | |
5 #ifndef V8_HEAP_SLOTS_BUFFER_H_ | |
6 #define V8_HEAP_SLOTS_BUFFER_H_ | |
7 | |
8 #include "src/objects.h" | |
9 | |
10 namespace v8 { | |
11 namespace internal { | |
12 | |
13 // Forward declarations. | |
14 class SlotsBuffer; | |
15 | |
16 | |
17 // SlotsBufferAllocator manages the allocation and deallocation of slots buffer | |
18 // chunks and links them together. Slots buffer chunks are always created by the | |
19 // SlotsBufferAllocator. | |
20 class SlotsBufferAllocator { | |
21 public: | |
22 SlotsBuffer* AllocateBuffer(SlotsBuffer* next_buffer); | |
23 void DeallocateBuffer(SlotsBuffer* buffer); | |
24 | |
25 void DeallocateChain(SlotsBuffer** buffer_address); | |
26 }; | |
27 | |
28 | |
29 // SlotsBuffer records a sequence of slots that has to be updated | |
30 // after live objects were relocated from evacuation candidates. | |
31 // All slots are either untyped or typed: | |
32 // - Untyped slots are expected to contain a tagged object pointer. | |
33 // They are recorded by an address. | |
34 // - Typed slots are expected to contain an encoded pointer to a heap | |
35 // object where the way of encoding depends on the type of the slot. | |
36 // They are recorded as a pair (SlotType, slot address). | |
37 // We assume that zero-page is never mapped this allows us to distinguish | |
38 // untyped slots from typed slots during iteration by a simple comparison: | |
39 // if element of slots buffer is less than NUMBER_OF_SLOT_TYPES then it | |
40 // is the first element of typed slot's pair. | |
41 class SlotsBuffer { | |
42 public: | |
43 typedef Object** ObjectSlot; | |
44 | |
45 explicit SlotsBuffer(SlotsBuffer* next_buffer) | |
46 : idx_(0), chain_length_(1), next_(next_buffer) { | |
47 if (next_ != NULL) { | |
48 chain_length_ = next_->chain_length_ + 1; | |
49 } | |
50 } | |
51 | |
52 ~SlotsBuffer() {} | |
53 | |
54 void Add(ObjectSlot slot) { | |
55 DCHECK(0 <= idx_ && idx_ < kNumberOfElements); | |
56 #ifdef DEBUG | |
57 if (slot >= reinterpret_cast<ObjectSlot>(NUMBER_OF_SLOT_TYPES)) { | |
58 DCHECK_NOT_NULL(*slot); | |
59 } | |
60 #endif | |
61 slots_[idx_++] = slot; | |
62 } | |
63 | |
64 ObjectSlot Get(intptr_t i) { | |
65 DCHECK(i >= 0 && i < kNumberOfElements); | |
66 return slots_[i]; | |
67 } | |
68 | |
69 size_t Size() { | |
70 DCHECK(idx_ <= kNumberOfElements); | |
71 return idx_; | |
72 } | |
73 | |
74 enum SlotType { | |
75 EMBEDDED_OBJECT_SLOT, | |
76 OBJECT_SLOT, | |
77 RELOCATED_CODE_OBJECT, | |
78 CELL_TARGET_SLOT, | |
79 CODE_TARGET_SLOT, | |
80 CODE_ENTRY_SLOT, | |
81 DEBUG_TARGET_SLOT, | |
82 NUMBER_OF_SLOT_TYPES | |
83 }; | |
84 | |
85 static const char* SlotTypeToString(SlotType type) { | |
86 switch (type) { | |
87 case EMBEDDED_OBJECT_SLOT: | |
88 return "EMBEDDED_OBJECT_SLOT"; | |
89 case OBJECT_SLOT: | |
90 return "OBJECT_SLOT"; | |
91 case RELOCATED_CODE_OBJECT: | |
92 return "RELOCATED_CODE_OBJECT"; | |
93 case CELL_TARGET_SLOT: | |
94 return "CELL_TARGET_SLOT"; | |
95 case CODE_TARGET_SLOT: | |
96 return "CODE_TARGET_SLOT"; | |
97 case CODE_ENTRY_SLOT: | |
98 return "CODE_ENTRY_SLOT"; | |
99 case DEBUG_TARGET_SLOT: | |
100 return "DEBUG_TARGET_SLOT"; | |
101 case NUMBER_OF_SLOT_TYPES: | |
102 return "NUMBER_OF_SLOT_TYPES"; | |
103 } | |
104 return "UNKNOWN SlotType"; | |
105 } | |
106 | |
107 SlotsBuffer* next() { return next_; } | |
108 | |
109 static int SizeOfChain(SlotsBuffer* buffer) { | |
110 if (buffer == NULL) return 0; | |
111 return static_cast<int>(buffer->idx_ + | |
112 (buffer->chain_length_ - 1) * kNumberOfElements); | |
113 } | |
114 | |
115 inline bool IsFull() { return idx_ == kNumberOfElements; } | |
116 | |
117 inline bool HasSpaceForTypedSlot() { return idx_ < kNumberOfElements - 1; } | |
118 | |
119 enum AdditionMode { FAIL_ON_OVERFLOW, IGNORE_OVERFLOW }; | |
120 | |
121 static bool ChainLengthThresholdReached(SlotsBuffer* buffer) { | |
122 return buffer != NULL && buffer->chain_length_ >= kChainLengthThreshold; | |
123 } | |
124 | |
125 INLINE(static bool AddTo(SlotsBufferAllocator* allocator, | |
126 SlotsBuffer** buffer_address, ObjectSlot slot, | |
127 AdditionMode mode)) { | |
128 SlotsBuffer* buffer = *buffer_address; | |
129 if (buffer == NULL || buffer->IsFull()) { | |
130 if (mode == FAIL_ON_OVERFLOW && ChainLengthThresholdReached(buffer)) { | |
131 allocator->DeallocateChain(buffer_address); | |
132 return false; | |
133 } | |
134 buffer = allocator->AllocateBuffer(buffer); | |
135 *buffer_address = buffer; | |
136 } | |
137 buffer->Add(slot); | |
138 return true; | |
139 } | |
140 | |
141 static bool IsTypedSlot(ObjectSlot slot); | |
142 | |
143 static bool AddTo(SlotsBufferAllocator* allocator, | |
144 SlotsBuffer** buffer_address, SlotType type, Address addr, | |
145 AdditionMode mode); | |
146 | |
147 // Eliminates all stale entries from the slots buffer, i.e., slots that | |
148 // are not part of live objects anymore. This method must be called after | |
149 // marking, when the whole transitive closure is known and must be called | |
150 // before sweeping when mark bits are still intact. | |
151 static void RemoveInvalidSlots(Heap* heap, SlotsBuffer* buffer); | |
152 | |
153 // Eliminate all slots that are within the given address range. | |
154 static void RemoveObjectSlots(Heap* heap, SlotsBuffer* buffer, | |
155 Address start_slot, Address end_slot); | |
156 | |
157 // Ensures that there are no invalid slots in the chain of slots buffers. | |
158 static void VerifySlots(Heap* heap, SlotsBuffer* buffer); | |
159 | |
160 static const int kNumberOfElements = 1021; | |
161 | |
162 private: | |
163 static const int kChainLengthThreshold = 15; | |
164 | |
165 intptr_t idx_; | |
166 intptr_t chain_length_; | |
167 SlotsBuffer* next_; | |
168 ObjectSlot slots_[kNumberOfElements]; | |
169 }; | |
170 | |
171 | |
172 } // namespace internal | |
173 } // namespace v8 | |
174 | |
175 #endif // V8_HEAP_SLOTS_BUFFER_H_ | |
OLD | NEW |