OLD | NEW |
1 // Copyright 2014 the V8 project authors. All rights reserved. | 1 // Copyright 2015 the V8 project authors. All rights reserved. |
2 // Use of this source code is governed by a BSD-style license that can be | 2 // Use of this source code is governed by a BSD-style license that can be |
3 // found in the LICENSE file. | 3 // found in the LICENSE file. |
4 | 4 |
5 #include "src/ppc/codegen-ppc.h" | 5 #include "src/s390/codegen-s390.h" |
6 | 6 |
7 #if V8_TARGET_ARCH_PPC | 7 #if V8_TARGET_ARCH_S390 |
8 | 8 |
9 #include "src/codegen.h" | 9 #include "src/codegen.h" |
10 #include "src/macro-assembler.h" | 10 #include "src/macro-assembler.h" |
11 #include "src/ppc/simulator-ppc.h" | 11 #include "src/s390/simulator-s390.h" |
12 | 12 |
13 namespace v8 { | 13 namespace v8 { |
14 namespace internal { | 14 namespace internal { |
15 | 15 |
16 | |
17 #define __ masm. | 16 #define __ masm. |
18 | 17 |
19 | |
20 #if defined(USE_SIMULATOR) | 18 #if defined(USE_SIMULATOR) |
21 byte* fast_exp_ppc_machine_code = nullptr; | 19 byte* fast_exp_s390_machine_code = nullptr; |
22 double fast_exp_simulator(double x, Isolate* isolate) { | 20 double fast_exp_simulator(double x, Isolate* isolate) { |
23 return Simulator::current(isolate) | 21 return Simulator::current(isolate)->CallFPReturnsDouble( |
24 ->CallFPReturnsDouble(fast_exp_ppc_machine_code, x, 0); | 22 fast_exp_s390_machine_code, x, 0); |
25 } | 23 } |
26 #endif | 24 #endif |
27 | 25 |
28 | |
29 UnaryMathFunctionWithIsolate CreateExpFunction(Isolate* isolate) { | 26 UnaryMathFunctionWithIsolate CreateExpFunction(Isolate* isolate) { |
30 size_t actual_size; | 27 size_t actual_size; |
31 byte* buffer = | 28 byte* buffer = |
32 static_cast<byte*>(base::OS::Allocate(1 * KB, &actual_size, true)); | 29 static_cast<byte*>(base::OS::Allocate(1 * KB, &actual_size, true)); |
33 if (buffer == nullptr) return nullptr; | 30 if (buffer == nullptr) return nullptr; |
34 ExternalReference::InitializeMathExpData(); | 31 ExternalReference::InitializeMathExpData(); |
35 | 32 |
36 MacroAssembler masm(isolate, buffer, static_cast<int>(actual_size), | 33 MacroAssembler masm(isolate, buffer, static_cast<int>(actual_size), |
37 CodeObjectRequired::kNo); | 34 CodeObjectRequired::kNo); |
38 | 35 |
39 { | 36 { |
40 DoubleRegister input = d1; | 37 DoubleRegister input = d0; |
41 DoubleRegister result = d2; | 38 DoubleRegister result = d2; |
42 DoubleRegister double_scratch1 = d3; | 39 DoubleRegister double_scratch1 = d3; |
43 DoubleRegister double_scratch2 = d4; | 40 DoubleRegister double_scratch2 = d4; |
44 Register temp1 = r7; | 41 Register temp1 = r6; |
45 Register temp2 = r8; | 42 Register temp2 = r7; |
46 Register temp3 = r9; | 43 Register temp3 = r8; |
47 | |
48 // Called from C | |
49 __ function_descriptor(); | |
50 | 44 |
51 __ Push(temp3, temp2, temp1); | 45 __ Push(temp3, temp2, temp1); |
52 MathExpGenerator::EmitMathExp(&masm, input, result, double_scratch1, | 46 MathExpGenerator::EmitMathExp(&masm, input, result, double_scratch1, |
53 double_scratch2, temp1, temp2, temp3); | 47 double_scratch2, temp1, temp2, temp3); |
54 __ Pop(temp3, temp2, temp1); | 48 __ Pop(temp3, temp2, temp1); |
55 __ fmr(d1, result); | 49 __ ldr(d0, result); |
56 __ Ret(); | 50 __ Ret(); |
57 } | 51 } |
58 | 52 |
59 CodeDesc desc; | 53 CodeDesc desc; |
60 masm.GetCode(&desc); | 54 masm.GetCode(&desc); |
61 DCHECK(ABI_USES_FUNCTION_DESCRIPTORS || !RelocInfo::RequiresRelocation(desc)); | 55 DCHECK(ABI_USES_FUNCTION_DESCRIPTORS || !RelocInfo::RequiresRelocation(desc)); |
62 | 56 |
63 Assembler::FlushICache(isolate, buffer, actual_size); | 57 Assembler::FlushICache(isolate, buffer, actual_size); |
64 base::OS::ProtectCode(buffer, actual_size); | 58 base::OS::ProtectCode(buffer, actual_size); |
65 | 59 |
66 #if !defined(USE_SIMULATOR) | 60 #if !defined(USE_SIMULATOR) |
67 return FUNCTION_CAST<UnaryMathFunctionWithIsolate>(buffer); | 61 return FUNCTION_CAST<UnaryMathFunctionWithIsolate>(buffer); |
68 #else | 62 #else |
69 fast_exp_ppc_machine_code = buffer; | 63 fast_exp_s390_machine_code = buffer; |
70 return &fast_exp_simulator; | 64 return &fast_exp_simulator; |
71 #endif | 65 #endif |
72 } | 66 } |
73 | 67 |
74 | |
75 UnaryMathFunctionWithIsolate CreateSqrtFunction(Isolate* isolate) { | 68 UnaryMathFunctionWithIsolate CreateSqrtFunction(Isolate* isolate) { |
76 #if defined(USE_SIMULATOR) | 69 #if defined(USE_SIMULATOR) |
77 return nullptr; | 70 return nullptr; |
78 #else | 71 #else |
79 size_t actual_size; | 72 size_t actual_size; |
80 byte* buffer = | 73 byte* buffer = |
81 static_cast<byte*>(base::OS::Allocate(1 * KB, &actual_size, true)); | 74 static_cast<byte*>(base::OS::Allocate(1 * KB, &actual_size, true)); |
82 if (buffer == nullptr) return nullptr; | 75 if (buffer == nullptr) return nullptr; |
83 | 76 |
84 MacroAssembler masm(isolate, buffer, static_cast<int>(actual_size), | 77 MacroAssembler masm(isolate, buffer, static_cast<int>(actual_size), |
85 CodeObjectRequired::kNo); | 78 CodeObjectRequired::kNo); |
86 | 79 |
87 // Called from C | 80 __ MovFromFloatParameter(d0); |
88 __ function_descriptor(); | 81 __ sqdbr(d0, d0); |
89 | 82 __ MovToFloatResult(d0); |
90 __ MovFromFloatParameter(d1); | |
91 __ fsqrt(d1, d1); | |
92 __ MovToFloatResult(d1); | |
93 __ Ret(); | 83 __ Ret(); |
94 | 84 |
95 CodeDesc desc; | 85 CodeDesc desc; |
96 masm.GetCode(&desc); | 86 masm.GetCode(&desc); |
97 DCHECK(ABI_USES_FUNCTION_DESCRIPTORS || !RelocInfo::RequiresRelocation(desc)); | 87 DCHECK(ABI_USES_FUNCTION_DESCRIPTORS || !RelocInfo::RequiresRelocation(desc)); |
98 | 88 |
99 Assembler::FlushICache(isolate, buffer, actual_size); | 89 Assembler::FlushICache(isolate, buffer, actual_size); |
100 base::OS::ProtectCode(buffer, actual_size); | 90 base::OS::ProtectCode(buffer, actual_size); |
101 return FUNCTION_CAST<UnaryMathFunctionWithIsolate>(buffer); | 91 return FUNCTION_CAST<UnaryMathFunctionWithIsolate>(buffer); |
102 #endif | 92 #endif |
103 } | 93 } |
104 | 94 |
105 #undef __ | 95 #undef __ |
106 | 96 |
107 | |
108 // ------------------------------------------------------------------------- | 97 // ------------------------------------------------------------------------- |
109 // Platform-specific RuntimeCallHelper functions. | 98 // Platform-specific RuntimeCallHelper functions. |
110 | 99 |
111 void StubRuntimeCallHelper::BeforeCall(MacroAssembler* masm) const { | 100 void StubRuntimeCallHelper::BeforeCall(MacroAssembler* masm) const { |
112 masm->EnterFrame(StackFrame::INTERNAL); | 101 masm->EnterFrame(StackFrame::INTERNAL); |
113 DCHECK(!masm->has_frame()); | 102 DCHECK(!masm->has_frame()); |
114 masm->set_has_frame(true); | 103 masm->set_has_frame(true); |
115 } | 104 } |
116 | 105 |
117 | |
118 void StubRuntimeCallHelper::AfterCall(MacroAssembler* masm) const { | 106 void StubRuntimeCallHelper::AfterCall(MacroAssembler* masm) const { |
119 masm->LeaveFrame(StackFrame::INTERNAL); | 107 masm->LeaveFrame(StackFrame::INTERNAL); |
120 DCHECK(masm->has_frame()); | 108 DCHECK(masm->has_frame()); |
121 masm->set_has_frame(false); | 109 masm->set_has_frame(false); |
122 } | 110 } |
123 | 111 |
124 | |
125 // ------------------------------------------------------------------------- | 112 // ------------------------------------------------------------------------- |
126 // Code generators | 113 // Code generators |
127 | 114 |
128 #define __ ACCESS_MASM(masm) | 115 #define __ ACCESS_MASM(masm) |
129 | 116 |
130 void ElementsTransitionGenerator::GenerateMapChangeElementsTransition( | 117 void ElementsTransitionGenerator::GenerateMapChangeElementsTransition( |
131 MacroAssembler* masm, Register receiver, Register key, Register value, | 118 MacroAssembler* masm, Register receiver, Register key, Register value, |
132 Register target_map, AllocationSiteMode mode, | 119 Register target_map, AllocationSiteMode mode, |
133 Label* allocation_memento_found) { | 120 Label* allocation_memento_found) { |
134 Register scratch_elements = r7; | 121 Register scratch_elements = r6; |
135 DCHECK(!AreAliased(receiver, key, value, target_map, scratch_elements)); | 122 DCHECK(!AreAliased(receiver, key, value, target_map, scratch_elements)); |
136 | 123 |
137 if (mode == TRACK_ALLOCATION_SITE) { | 124 if (mode == TRACK_ALLOCATION_SITE) { |
138 DCHECK(allocation_memento_found != NULL); | 125 DCHECK(allocation_memento_found != NULL); |
139 __ JumpIfJSArrayHasAllocationMemento(receiver, scratch_elements, | 126 __ JumpIfJSArrayHasAllocationMemento(receiver, scratch_elements, |
140 allocation_memento_found); | 127 allocation_memento_found); |
141 } | 128 } |
142 | 129 |
143 // Set transitioned map. | 130 // Set transitioned map. |
144 __ StoreP(target_map, FieldMemOperand(receiver, HeapObject::kMapOffset), r0); | 131 __ StoreP(target_map, FieldMemOperand(receiver, HeapObject::kMapOffset)); |
145 __ RecordWriteField(receiver, HeapObject::kMapOffset, target_map, r11, | 132 __ RecordWriteField(receiver, HeapObject::kMapOffset, target_map, r1, |
146 kLRHasNotBeenSaved, kDontSaveFPRegs, EMIT_REMEMBERED_SET, | 133 kLRHasNotBeenSaved, kDontSaveFPRegs, EMIT_REMEMBERED_SET, |
147 OMIT_SMI_CHECK); | 134 OMIT_SMI_CHECK); |
148 } | 135 } |
149 | 136 |
150 | |
151 void ElementsTransitionGenerator::GenerateSmiToDouble( | 137 void ElementsTransitionGenerator::GenerateSmiToDouble( |
152 MacroAssembler* masm, Register receiver, Register key, Register value, | 138 MacroAssembler* masm, Register receiver, Register key, Register value, |
153 Register target_map, AllocationSiteMode mode, Label* fail) { | 139 Register target_map, AllocationSiteMode mode, Label* fail) { |
154 // lr contains the return address | 140 // lr contains the return address |
155 Label loop, entry, convert_hole, only_change_map, done; | 141 Label loop, entry, convert_hole, gc_required, only_change_map, done; |
156 Register elements = r7; | 142 Register elements = r6; |
157 Register length = r8; | 143 Register length = r7; |
158 Register array = r9; | 144 Register array = r8; |
159 Register array_end = array; | 145 Register array_end = array; |
160 | 146 |
161 // target_map parameter can be clobbered. | 147 // target_map parameter can be clobbered. |
162 Register scratch1 = target_map; | 148 Register scratch1 = target_map; |
163 Register scratch2 = r10; | 149 Register scratch2 = r1; |
164 Register scratch3 = r11; | |
165 Register scratch4 = r14; | |
166 | 150 |
167 // Verify input registers don't conflict with locals. | 151 // Verify input registers don't conflict with locals. |
168 DCHECK(!AreAliased(receiver, key, value, target_map, elements, length, array, | 152 DCHECK(!AreAliased(receiver, key, value, target_map, elements, length, array, |
169 scratch2)); | 153 scratch2)); |
170 | 154 |
171 if (mode == TRACK_ALLOCATION_SITE) { | 155 if (mode == TRACK_ALLOCATION_SITE) { |
172 __ JumpIfJSArrayHasAllocationMemento(receiver, elements, fail); | 156 __ JumpIfJSArrayHasAllocationMemento(receiver, elements, fail); |
173 } | 157 } |
174 | 158 |
175 // Check for empty arrays, which only require a map transition and no changes | 159 // Check for empty arrays, which only require a map transition and no changes |
176 // to the backing store. | 160 // to the backing store. |
177 __ LoadP(elements, FieldMemOperand(receiver, JSObject::kElementsOffset)); | 161 __ LoadP(elements, FieldMemOperand(receiver, JSObject::kElementsOffset)); |
178 __ CompareRoot(elements, Heap::kEmptyFixedArrayRootIndex); | 162 __ CompareRoot(elements, Heap::kEmptyFixedArrayRootIndex); |
179 __ beq(&only_change_map); | 163 __ beq(&only_change_map, Label::kNear); |
| 164 |
| 165 // Preserve lr and use r14 as a temporary register. |
| 166 __ push(r14); |
180 | 167 |
181 __ LoadP(length, FieldMemOperand(elements, FixedArray::kLengthOffset)); | 168 __ LoadP(length, FieldMemOperand(elements, FixedArray::kLengthOffset)); |
182 // length: number of elements (smi-tagged) | 169 // length: number of elements (smi-tagged) |
183 | 170 |
184 // Allocate new FixedDoubleArray. | 171 // Allocate new FixedDoubleArray. |
185 __ SmiToDoubleArrayOffset(scratch3, length); | 172 __ SmiToDoubleArrayOffset(r14, length); |
186 __ addi(scratch3, scratch3, Operand(FixedDoubleArray::kHeaderSize)); | 173 __ AddP(r14, Operand(FixedDoubleArray::kHeaderSize)); |
187 __ Allocate(scratch3, array, scratch4, scratch2, fail, DOUBLE_ALIGNMENT); | 174 __ Allocate(r14, array, r9, scratch2, &gc_required, DOUBLE_ALIGNMENT); |
188 // array: destination FixedDoubleArray, not tagged as heap object. | |
189 // elements: source FixedArray. | |
190 | 175 |
191 // Set destination FixedDoubleArray's length and map. | 176 // Set destination FixedDoubleArray's length and map. |
192 __ LoadRoot(scratch2, Heap::kFixedDoubleArrayMapRootIndex); | 177 __ LoadRoot(scratch2, Heap::kFixedDoubleArrayMapRootIndex); |
193 __ StoreP(length, MemOperand(array, FixedDoubleArray::kLengthOffset)); | 178 __ StoreP(length, MemOperand(array, FixedDoubleArray::kLengthOffset)); |
194 // Update receiver's map. | 179 // Update receiver's map. |
195 __ StoreP(scratch2, MemOperand(array, HeapObject::kMapOffset)); | 180 __ StoreP(scratch2, MemOperand(array, HeapObject::kMapOffset)); |
196 | 181 |
197 __ StoreP(target_map, FieldMemOperand(receiver, HeapObject::kMapOffset), r0); | 182 __ StoreP(target_map, FieldMemOperand(receiver, HeapObject::kMapOffset)); |
198 __ RecordWriteField(receiver, HeapObject::kMapOffset, target_map, scratch2, | 183 __ RecordWriteField(receiver, HeapObject::kMapOffset, target_map, scratch2, |
199 kLRHasNotBeenSaved, kDontSaveFPRegs, OMIT_REMEMBERED_SET, | 184 kLRHasBeenSaved, kDontSaveFPRegs, OMIT_REMEMBERED_SET, |
200 OMIT_SMI_CHECK); | 185 OMIT_SMI_CHECK); |
201 // Replace receiver's backing store with newly created FixedDoubleArray. | 186 // Replace receiver's backing store with newly created FixedDoubleArray. |
202 __ addi(scratch1, array, Operand(kHeapObjectTag)); | 187 __ AddP(scratch1, array, Operand(kHeapObjectTag)); |
203 __ StoreP(scratch1, FieldMemOperand(receiver, JSObject::kElementsOffset), r0); | 188 __ StoreP(scratch1, FieldMemOperand(receiver, JSObject::kElementsOffset)); |
204 __ RecordWriteField(receiver, JSObject::kElementsOffset, scratch1, scratch2, | 189 __ RecordWriteField(receiver, JSObject::kElementsOffset, scratch1, scratch2, |
205 kLRHasNotBeenSaved, kDontSaveFPRegs, EMIT_REMEMBERED_SET, | 190 kLRHasBeenSaved, kDontSaveFPRegs, EMIT_REMEMBERED_SET, |
206 OMIT_SMI_CHECK); | 191 OMIT_SMI_CHECK); |
207 | 192 |
208 // Prepare for conversion loop. | 193 // Prepare for conversion loop. |
209 __ addi(scratch1, elements, | 194 __ AddP(target_map, elements, |
210 Operand(FixedArray::kHeaderSize - kHeapObjectTag)); | 195 Operand(FixedArray::kHeaderSize - kHeapObjectTag)); |
211 __ addi(scratch2, array, Operand(FixedDoubleArray::kHeaderSize)); | 196 __ AddP(r9, array, Operand(FixedDoubleArray::kHeaderSize)); |
212 __ SmiToDoubleArrayOffset(array_end, length); | 197 __ SmiToDoubleArrayOffset(array, length); |
213 __ add(array_end, scratch2, array_end); | 198 __ AddP(array_end, r9, array); |
214 // Repurpose registers no longer in use. | 199 // Repurpose registers no longer in use. |
215 #if V8_TARGET_ARCH_PPC64 | 200 #if V8_TARGET_ARCH_S390X |
216 Register hole_int64 = elements; | 201 Register hole_int64 = elements; |
217 __ mov(hole_int64, Operand(kHoleNanInt64)); | |
218 #else | 202 #else |
219 Register hole_lower = elements; | 203 Register hole_lower = elements; |
220 Register hole_upper = length; | 204 Register hole_upper = length; |
221 __ mov(hole_lower, Operand(kHoleNanLower32)); | |
222 __ mov(hole_upper, Operand(kHoleNanUpper32)); | |
223 #endif | 205 #endif |
224 // scratch1: begin of source FixedArray element fields, not tagged | 206 // scratch1: begin of source FixedArray element fields, not tagged |
225 // hole_lower: kHoleNanLower32 OR hol_int64 | 207 // hole_lower: kHoleNanLower32 OR hol_int64 |
226 // hole_upper: kHoleNanUpper32 | 208 // hole_upper: kHoleNanUpper32 |
227 // array_end: end of destination FixedDoubleArray, not tagged | 209 // array_end: end of destination FixedDoubleArray, not tagged |
228 // scratch2: begin of FixedDoubleArray element fields, not tagged | 210 // scratch2: begin of FixedDoubleArray element fields, not tagged |
229 | 211 |
230 __ b(&entry); | 212 __ b(&entry, Label::kNear); |
231 | 213 |
232 __ bind(&only_change_map); | 214 __ bind(&only_change_map); |
233 __ StoreP(target_map, FieldMemOperand(receiver, HeapObject::kMapOffset), r0); | 215 __ StoreP(target_map, FieldMemOperand(receiver, HeapObject::kMapOffset)); |
234 __ RecordWriteField(receiver, HeapObject::kMapOffset, target_map, scratch2, | 216 __ RecordWriteField(receiver, HeapObject::kMapOffset, target_map, scratch2, |
235 kLRHasNotBeenSaved, kDontSaveFPRegs, OMIT_REMEMBERED_SET, | 217 kLRHasNotBeenSaved, kDontSaveFPRegs, OMIT_REMEMBERED_SET, |
236 OMIT_SMI_CHECK); | 218 OMIT_SMI_CHECK); |
237 __ b(&done); | 219 __ b(&done, Label::kNear); |
| 220 |
| 221 // Call into runtime if GC is required. |
| 222 __ bind(&gc_required); |
| 223 __ pop(r14); |
| 224 __ b(fail); |
238 | 225 |
239 // Convert and copy elements. | 226 // Convert and copy elements. |
240 __ bind(&loop); | 227 __ bind(&loop); |
241 __ LoadP(scratch3, MemOperand(scratch1)); | 228 __ LoadP(r14, MemOperand(scratch1)); |
242 __ addi(scratch1, scratch1, Operand(kPointerSize)); | 229 __ la(scratch1, MemOperand(scratch1, kPointerSize)); |
243 // scratch3: current element | 230 // r1: current element |
244 __ UntagAndJumpIfNotSmi(scratch3, scratch3, &convert_hole); | 231 __ UntagAndJumpIfNotSmi(r14, r14, &convert_hole); |
245 | 232 |
246 // Normal smi, convert to double and store. | 233 // Normal smi, convert to double and store. |
247 __ ConvertIntToDouble(scratch3, d0); | 234 __ ConvertIntToDouble(r14, d0); |
248 __ stfd(d0, MemOperand(scratch2, 0)); | 235 __ StoreDouble(d0, MemOperand(r9, 0)); |
249 __ addi(scratch2, scratch2, Operand(8)); | 236 __ la(r9, MemOperand(r9, 8)); |
250 __ b(&entry); | 237 |
| 238 __ b(&entry, Label::kNear); |
251 | 239 |
252 // Hole found, store the-hole NaN. | 240 // Hole found, store the-hole NaN. |
253 __ bind(&convert_hole); | 241 __ bind(&convert_hole); |
254 if (FLAG_debug_code) { | 242 if (FLAG_debug_code) { |
255 __ LoadP(scratch3, MemOperand(scratch1, -kPointerSize)); | 243 // Restore a "smi-untagged" heap object. |
256 __ CompareRoot(scratch3, Heap::kTheHoleValueRootIndex); | 244 __ LoadP(r1, MemOperand(r5, -kPointerSize)); |
| 245 __ CompareRoot(r1, Heap::kTheHoleValueRootIndex); |
257 __ Assert(eq, kObjectFoundInSmiOnlyArray); | 246 __ Assert(eq, kObjectFoundInSmiOnlyArray); |
258 } | 247 } |
259 #if V8_TARGET_ARCH_PPC64 | 248 #if V8_TARGET_ARCH_S390X |
260 __ std(hole_int64, MemOperand(scratch2, 0)); | 249 __ stg(hole_int64, MemOperand(r9, 0)); |
261 #else | 250 #else |
262 __ stw(hole_upper, MemOperand(scratch2, Register::kExponentOffset)); | 251 __ StoreW(hole_upper, MemOperand(r9, Register::kExponentOffset)); |
263 __ stw(hole_lower, MemOperand(scratch2, Register::kMantissaOffset)); | 252 __ StoreW(hole_lower, MemOperand(r9, Register::kMantissaOffset)); |
264 #endif | 253 #endif |
265 __ addi(scratch2, scratch2, Operand(8)); | 254 __ AddP(r9, Operand(8)); |
266 | 255 |
267 __ bind(&entry); | 256 __ bind(&entry); |
268 __ cmp(scratch2, array_end); | 257 __ CmpP(r9, array_end); |
269 __ blt(&loop); | 258 __ blt(&loop); |
270 | 259 |
| 260 __ pop(r14); |
271 __ bind(&done); | 261 __ bind(&done); |
272 } | 262 } |
273 | 263 |
274 | |
275 void ElementsTransitionGenerator::GenerateDoubleToObject( | 264 void ElementsTransitionGenerator::GenerateDoubleToObject( |
276 MacroAssembler* masm, Register receiver, Register key, Register value, | 265 MacroAssembler* masm, Register receiver, Register key, Register value, |
277 Register target_map, AllocationSiteMode mode, Label* fail) { | 266 Register target_map, AllocationSiteMode mode, Label* fail) { |
278 // Register lr contains the return address. | 267 // Register lr contains the return address. |
279 Label loop, convert_hole, gc_required, only_change_map; | 268 Label loop, convert_hole, gc_required, only_change_map; |
280 Register elements = r7; | 269 Register elements = r6; |
281 Register array = r9; | 270 Register array = r8; |
282 Register length = r8; | 271 Register length = r7; |
283 Register scratch = r10; | 272 Register scratch = r1; |
284 Register scratch3 = r11; | |
285 Register hole_value = r14; | |
286 | 273 |
287 // Verify input registers don't conflict with locals. | 274 // Verify input registers don't conflict with locals. |
288 DCHECK(!AreAliased(receiver, key, value, target_map, elements, array, length, | 275 DCHECK(!AreAliased(receiver, key, value, target_map, elements, array, length, |
289 scratch)); | 276 scratch)); |
290 | 277 |
291 if (mode == TRACK_ALLOCATION_SITE) { | 278 if (mode == TRACK_ALLOCATION_SITE) { |
292 __ JumpIfJSArrayHasAllocationMemento(receiver, elements, fail); | 279 __ JumpIfJSArrayHasAllocationMemento(receiver, elements, fail); |
293 } | 280 } |
294 | 281 |
295 // Check for empty arrays, which only require a map transition and no changes | 282 // Check for empty arrays, which only require a map transition and no changes |
296 // to the backing store. | 283 // to the backing store. |
297 __ LoadP(elements, FieldMemOperand(receiver, JSObject::kElementsOffset)); | 284 __ LoadP(elements, FieldMemOperand(receiver, JSObject::kElementsOffset)); |
298 __ CompareRoot(elements, Heap::kEmptyFixedArrayRootIndex); | 285 __ CompareRoot(elements, Heap::kEmptyFixedArrayRootIndex); |
299 __ beq(&only_change_map); | 286 __ beq(&only_change_map); |
300 | 287 |
301 __ Push(target_map, receiver, key, value); | 288 __ Push(target_map, receiver, key, value); |
302 __ LoadP(length, FieldMemOperand(elements, FixedArray::kLengthOffset)); | 289 __ LoadP(length, FieldMemOperand(elements, FixedArray::kLengthOffset)); |
303 // elements: source FixedDoubleArray | 290 // elements: source FixedDoubleArray |
304 // length: number of elements (smi-tagged) | 291 // length: number of elements (smi-tagged) |
305 | 292 |
306 // Allocate new FixedArray. | 293 // Allocate new FixedArray. |
307 // Re-use value and target_map registers, as they have been saved on the | 294 // Re-use value and target_map registers, as they have been saved on the |
308 // stack. | 295 // stack. |
309 Register array_size = value; | 296 Register array_size = value; |
310 Register allocate_scratch = target_map; | 297 Register allocate_scratch = target_map; |
311 __ li(array_size, Operand(FixedDoubleArray::kHeaderSize)); | 298 __ LoadImmP(array_size, Operand(FixedDoubleArray::kHeaderSize)); |
312 __ SmiToPtrArrayOffset(r0, length); | 299 __ SmiToPtrArrayOffset(r0, length); |
313 __ add(array_size, array_size, r0); | 300 __ AddP(array_size, r0); |
314 __ Allocate(array_size, array, allocate_scratch, scratch, &gc_required, | 301 __ Allocate(array_size, array, allocate_scratch, scratch, &gc_required, |
315 NO_ALLOCATION_FLAGS); | 302 NO_ALLOCATION_FLAGS); |
316 // array: destination FixedArray, not tagged as heap object | 303 // array: destination FixedArray, not tagged as heap object |
317 // Set destination FixedDoubleArray's length and map. | 304 // Set destination FixedDoubleArray's length and map. |
318 __ LoadRoot(scratch, Heap::kFixedArrayMapRootIndex); | 305 __ LoadRoot(scratch, Heap::kFixedArrayMapRootIndex); |
319 __ StoreP(length, MemOperand(array, FixedDoubleArray::kLengthOffset)); | 306 __ StoreP(length, MemOperand(array, FixedDoubleArray::kLengthOffset)); |
320 __ StoreP(scratch, MemOperand(array, HeapObject::kMapOffset)); | 307 __ StoreP(scratch, MemOperand(array, HeapObject::kMapOffset)); |
321 __ addi(array, array, Operand(kHeapObjectTag)); | 308 __ AddP(array, Operand(kHeapObjectTag)); |
322 | 309 |
323 // Prepare for conversion loop. | 310 // Prepare for conversion loop. |
324 Register src_elements = elements; | 311 Register src_elements = elements; |
325 Register dst_elements = target_map; | 312 Register dst_elements = target_map; |
326 Register dst_end = length; | 313 Register dst_end = length; |
327 Register heap_number_map = scratch; | 314 Register heap_number_map = scratch; |
328 __ addi(src_elements, elements, | 315 __ AddP(src_elements, |
329 Operand(FixedDoubleArray::kHeaderSize - kHeapObjectTag)); | 316 Operand(FixedDoubleArray::kHeaderSize - kHeapObjectTag)); |
330 __ SmiToPtrArrayOffset(length, length); | 317 __ SmiToPtrArrayOffset(length, length); |
331 __ LoadRoot(hole_value, Heap::kTheHoleValueRootIndex); | 318 __ LoadRoot(r9, Heap::kTheHoleValueRootIndex); |
332 | 319 |
333 Label initialization_loop, loop_done; | 320 Label initialization_loop, loop_done; |
334 __ ShiftRightImm(r0, length, Operand(kPointerSizeLog2), SetRC); | 321 __ ShiftRightP(r0, length, Operand(kPointerSizeLog2)); |
335 __ beq(&loop_done, cr0); | 322 __ beq(&loop_done, Label::kNear /*, cr0*/); |
336 | 323 |
337 // Allocating heap numbers in the loop below can fail and cause a jump to | 324 // Allocating heap numbers in the loop below can fail and cause a jump to |
338 // gc_required. We can't leave a partly initialized FixedArray behind, | 325 // gc_required. We can't leave a partly initialized FixedArray behind, |
339 // so pessimistically fill it with holes now. | 326 // so pessimistically fill it with holes now. |
340 __ mtctr(r0); | 327 __ AddP(dst_elements, array, |
341 __ addi(dst_elements, array, | |
342 Operand(FixedArray::kHeaderSize - kHeapObjectTag - kPointerSize)); | 328 Operand(FixedArray::kHeaderSize - kHeapObjectTag - kPointerSize)); |
343 __ bind(&initialization_loop); | 329 __ bind(&initialization_loop); |
344 __ StorePU(hole_value, MemOperand(dst_elements, kPointerSize)); | 330 __ StoreP(r9, MemOperand(dst_elements, kPointerSize)); |
345 __ bdnz(&initialization_loop); | 331 __ lay(dst_elements, MemOperand(dst_elements, kPointerSize)); |
| 332 __ BranchOnCount(r0, &initialization_loop); |
346 | 333 |
347 __ addi(dst_elements, array, | 334 __ AddP(dst_elements, array, |
348 Operand(FixedArray::kHeaderSize - kHeapObjectTag)); | 335 Operand(FixedArray::kHeaderSize - kHeapObjectTag)); |
349 __ add(dst_end, dst_elements, length); | 336 __ AddP(dst_end, dst_elements, length); |
350 __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); | 337 __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); |
351 // Using offsetted addresses in src_elements to fully take advantage of | 338 // Using offsetted addresses in src_elements to fully take advantage of |
352 // post-indexing. | 339 // post-indexing. |
353 // dst_elements: begin of destination FixedArray element fields, not tagged | 340 // dst_elements: begin of destination FixedArray element fields, not tagged |
354 // src_elements: begin of source FixedDoubleArray element fields, | 341 // src_elements: begin of source FixedDoubleArray element fields, |
355 // not tagged, +4 | 342 // not tagged, +4 |
356 // dst_end: end of destination FixedArray, not tagged | 343 // dst_end: end of destination FixedArray, not tagged |
357 // array: destination FixedArray | 344 // array: destination FixedArray |
358 // hole_value: the-hole pointer | 345 // r9: the-hole pointer |
359 // heap_number_map: heap number map | 346 // heap_number_map: heap number map |
360 __ b(&loop); | 347 __ b(&loop, Label::kNear); |
361 | 348 |
362 // Call into runtime if GC is required. | 349 // Call into runtime if GC is required. |
363 __ bind(&gc_required); | 350 __ bind(&gc_required); |
364 __ Pop(target_map, receiver, key, value); | 351 __ Pop(target_map, receiver, key, value); |
365 __ b(fail); | 352 __ b(fail); |
366 | 353 |
367 // Replace the-hole NaN with the-hole pointer. | 354 // Replace the-hole NaN with the-hole pointer. |
368 __ bind(&convert_hole); | 355 __ bind(&convert_hole); |
369 __ StoreP(hole_value, MemOperand(dst_elements)); | 356 __ StoreP(r9, MemOperand(dst_elements)); |
370 __ addi(dst_elements, dst_elements, Operand(kPointerSize)); | 357 __ AddP(dst_elements, Operand(kPointerSize)); |
371 __ cmpl(dst_elements, dst_end); | 358 __ CmpLogicalP(dst_elements, dst_end); |
372 __ bge(&loop_done); | 359 __ bge(&loop_done); |
373 | 360 |
374 __ bind(&loop); | 361 __ bind(&loop); |
375 Register upper_bits = key; | 362 Register upper_bits = key; |
376 __ lwz(upper_bits, MemOperand(src_elements, Register::kExponentOffset)); | 363 __ LoadlW(upper_bits, MemOperand(src_elements, Register::kExponentOffset)); |
377 __ addi(src_elements, src_elements, Operand(kDoubleSize)); | 364 __ AddP(src_elements, Operand(kDoubleSize)); |
378 // upper_bits: current element's upper 32 bit | 365 // upper_bits: current element's upper 32 bit |
379 // src_elements: address of next element's upper 32 bit | 366 // src_elements: address of next element's upper 32 bit |
380 __ Cmpi(upper_bits, Operand(kHoleNanUpper32), r0); | 367 __ Cmp32(upper_bits, Operand(kHoleNanUpper32)); |
381 __ beq(&convert_hole); | 368 __ beq(&convert_hole, Label::kNear); |
382 | 369 |
383 // Non-hole double, copy value into a heap number. | 370 // Non-hole double, copy value into a heap number. |
384 Register heap_number = receiver; | 371 Register heap_number = receiver; |
385 Register scratch2 = value; | 372 Register scratch2 = value; |
386 __ AllocateHeapNumber(heap_number, scratch2, scratch3, heap_number_map, | 373 __ AllocateHeapNumber(heap_number, scratch2, r1, heap_number_map, |
387 &gc_required); | 374 &gc_required); |
388 // heap_number: new heap number | 375 // heap_number: new heap number |
389 #if V8_TARGET_ARCH_PPC64 | 376 #if V8_TARGET_ARCH_S390X |
390 __ ld(scratch2, MemOperand(src_elements, -kDoubleSize)); | 377 __ lg(scratch2, MemOperand(src_elements, -kDoubleSize)); |
391 // subtract tag for std | 378 // subtract tag for std |
392 __ addi(upper_bits, heap_number, Operand(-kHeapObjectTag)); | 379 __ AddP(upper_bits, heap_number, Operand(-kHeapObjectTag)); |
393 __ std(scratch2, MemOperand(upper_bits, HeapNumber::kValueOffset)); | 380 __ stg(scratch2, MemOperand(upper_bits, HeapNumber::kValueOffset)); |
394 #else | 381 #else |
395 __ lwz(scratch2, | 382 __ LoadlW(scratch2, |
396 MemOperand(src_elements, Register::kMantissaOffset - kDoubleSize)); | 383 MemOperand(src_elements, Register::kMantissaOffset - kDoubleSize)); |
397 __ lwz(upper_bits, | 384 __ LoadlW(upper_bits, |
398 MemOperand(src_elements, Register::kExponentOffset - kDoubleSize)); | 385 MemOperand(src_elements, Register::kExponentOffset - kDoubleSize)); |
399 __ stw(scratch2, FieldMemOperand(heap_number, HeapNumber::kMantissaOffset)); | 386 __ StoreW(scratch2, |
400 __ stw(upper_bits, FieldMemOperand(heap_number, HeapNumber::kExponentOffset)); | 387 FieldMemOperand(heap_number, HeapNumber::kMantissaOffset)); |
| 388 __ StoreW(upper_bits, |
| 389 FieldMemOperand(heap_number, HeapNumber::kExponentOffset)); |
401 #endif | 390 #endif |
402 __ mr(scratch2, dst_elements); | 391 __ LoadRR(scratch2, dst_elements); |
403 __ StoreP(heap_number, MemOperand(dst_elements)); | 392 __ StoreP(heap_number, MemOperand(dst_elements)); |
404 __ addi(dst_elements, dst_elements, Operand(kPointerSize)); | 393 __ AddP(dst_elements, Operand(kPointerSize)); |
405 __ RecordWrite(array, scratch2, heap_number, kLRHasNotBeenSaved, | 394 __ RecordWrite(array, scratch2, heap_number, kLRHasNotBeenSaved, |
406 kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); | 395 kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); |
407 __ cmpl(dst_elements, dst_end); | 396 __ CmpLogicalP(dst_elements, dst_end); |
408 __ blt(&loop); | 397 __ blt(&loop); |
409 __ bind(&loop_done); | 398 __ bind(&loop_done); |
410 | 399 |
411 __ Pop(target_map, receiver, key, value); | 400 __ Pop(target_map, receiver, key, value); |
412 // Replace receiver's backing store with newly created and filled FixedArray. | 401 // Replace receiver's backing store with newly created and filled FixedArray. |
413 __ StoreP(array, FieldMemOperand(receiver, JSObject::kElementsOffset), r0); | 402 __ StoreP(array, FieldMemOperand(receiver, JSObject::kElementsOffset)); |
414 __ RecordWriteField(receiver, JSObject::kElementsOffset, array, scratch, | 403 __ RecordWriteField(receiver, JSObject::kElementsOffset, array, scratch, |
415 kLRHasNotBeenSaved, kDontSaveFPRegs, EMIT_REMEMBERED_SET, | 404 kLRHasNotBeenSaved, kDontSaveFPRegs, EMIT_REMEMBERED_SET, |
416 OMIT_SMI_CHECK); | 405 OMIT_SMI_CHECK); |
417 | 406 |
418 __ bind(&only_change_map); | 407 __ bind(&only_change_map); |
419 // Update receiver's map. | 408 // Update receiver's map. |
420 __ StoreP(target_map, FieldMemOperand(receiver, HeapObject::kMapOffset), r0); | 409 __ StoreP(target_map, FieldMemOperand(receiver, HeapObject::kMapOffset)); |
421 __ RecordWriteField(receiver, HeapObject::kMapOffset, target_map, scratch, | 410 __ RecordWriteField(receiver, HeapObject::kMapOffset, target_map, scratch, |
422 kLRHasNotBeenSaved, kDontSaveFPRegs, OMIT_REMEMBERED_SET, | 411 kLRHasNotBeenSaved, kDontSaveFPRegs, OMIT_REMEMBERED_SET, |
423 OMIT_SMI_CHECK); | 412 OMIT_SMI_CHECK); |
424 } | 413 } |
425 | 414 |
426 | |
427 // assume ip can be used as a scratch register below | 415 // assume ip can be used as a scratch register below |
428 void StringCharLoadGenerator::Generate(MacroAssembler* masm, Register string, | 416 void StringCharLoadGenerator::Generate(MacroAssembler* masm, Register string, |
429 Register index, Register result, | 417 Register index, Register result, |
430 Label* call_runtime) { | 418 Label* call_runtime) { |
431 // Fetch the instance type of the receiver into result register. | 419 // Fetch the instance type of the receiver into result register. |
432 __ LoadP(result, FieldMemOperand(string, HeapObject::kMapOffset)); | 420 __ LoadP(result, FieldMemOperand(string, HeapObject::kMapOffset)); |
433 __ lbz(result, FieldMemOperand(result, Map::kInstanceTypeOffset)); | 421 __ LoadlB(result, FieldMemOperand(result, Map::kInstanceTypeOffset)); |
434 | 422 |
435 // We need special handling for indirect strings. | 423 // We need special handling for indirect strings. |
436 Label check_sequential; | 424 Label check_sequential; |
437 __ andi(r0, result, Operand(kIsIndirectStringMask)); | 425 __ mov(r0, Operand(kIsIndirectStringMask)); |
438 __ beq(&check_sequential, cr0); | 426 __ AndP(r0, result); |
| 427 __ beq(&check_sequential, Label::kNear /*, cr0*/); |
439 | 428 |
440 // Dispatch on the indirect string shape: slice or cons. | 429 // Dispatch on the indirect string shape: slice or cons. |
441 Label cons_string; | 430 Label cons_string; |
442 __ mov(ip, Operand(kSlicedNotConsMask)); | 431 __ mov(ip, Operand(kSlicedNotConsMask)); |
443 __ and_(r0, result, ip, SetRC); | 432 __ LoadRR(r0, result); |
444 __ beq(&cons_string, cr0); | 433 __ AndP(r0, ip /*, SetRC*/); // Should be okay to remove RC |
| 434 __ beq(&cons_string, Label::kNear /*, cr0*/); |
445 | 435 |
446 // Handle slices. | 436 // Handle slices. |
447 Label indirect_string_loaded; | 437 Label indirect_string_loaded; |
448 __ LoadP(result, FieldMemOperand(string, SlicedString::kOffsetOffset)); | 438 __ LoadP(result, FieldMemOperand(string, SlicedString::kOffsetOffset)); |
449 __ LoadP(string, FieldMemOperand(string, SlicedString::kParentOffset)); | 439 __ LoadP(string, FieldMemOperand(string, SlicedString::kParentOffset)); |
450 __ SmiUntag(ip, result); | 440 __ SmiUntag(ip, result); |
451 __ add(index, index, ip); | 441 __ AddP(index, ip); |
452 __ b(&indirect_string_loaded); | 442 __ b(&indirect_string_loaded, Label::kNear); |
453 | 443 |
454 // Handle cons strings. | 444 // Handle cons strings. |
455 // Check whether the right hand side is the empty string (i.e. if | 445 // Check whether the right hand side is the empty string (i.e. if |
456 // this is really a flat string in a cons string). If that is not | 446 // this is really a flat string in a cons string). If that is not |
457 // the case we would rather go to the runtime system now to flatten | 447 // the case we would rather go to the runtime system now to flatten |
458 // the string. | 448 // the string. |
459 __ bind(&cons_string); | 449 __ bind(&cons_string); |
460 __ LoadP(result, FieldMemOperand(string, ConsString::kSecondOffset)); | 450 __ LoadP(result, FieldMemOperand(string, ConsString::kSecondOffset)); |
461 __ CompareRoot(result, Heap::kempty_stringRootIndex); | 451 __ CompareRoot(result, Heap::kempty_stringRootIndex); |
462 __ bne(call_runtime); | 452 __ bne(call_runtime); |
463 // Get the first of the two strings and load its instance type. | 453 // Get the first of the two strings and load its instance type. |
464 __ LoadP(string, FieldMemOperand(string, ConsString::kFirstOffset)); | 454 __ LoadP(string, FieldMemOperand(string, ConsString::kFirstOffset)); |
465 | 455 |
466 __ bind(&indirect_string_loaded); | 456 __ bind(&indirect_string_loaded); |
467 __ LoadP(result, FieldMemOperand(string, HeapObject::kMapOffset)); | 457 __ LoadP(result, FieldMemOperand(string, HeapObject::kMapOffset)); |
468 __ lbz(result, FieldMemOperand(result, Map::kInstanceTypeOffset)); | 458 __ LoadlB(result, FieldMemOperand(result, Map::kInstanceTypeOffset)); |
469 | 459 |
470 // Distinguish sequential and external strings. Only these two string | 460 // Distinguish sequential and external strings. Only these two string |
471 // representations can reach here (slices and flat cons strings have been | 461 // representations can reach here (slices and flat cons strings have been |
472 // reduced to the underlying sequential or external string). | 462 // reduced to the underlying sequential or external string). |
473 Label external_string, check_encoding; | 463 Label external_string, check_encoding; |
474 __ bind(&check_sequential); | 464 __ bind(&check_sequential); |
475 STATIC_ASSERT(kSeqStringTag == 0); | 465 STATIC_ASSERT(kSeqStringTag == 0); |
476 __ andi(r0, result, Operand(kStringRepresentationMask)); | 466 __ mov(r0, Operand(kStringRepresentationMask)); |
477 __ bne(&external_string, cr0); | 467 __ AndP(r0, result); |
| 468 __ bne(&external_string, Label::kNear); |
478 | 469 |
479 // Prepare sequential strings | 470 // Prepare sequential strings |
480 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize); | 471 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize); |
481 __ addi(string, string, | 472 __ AddP(string, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); |
482 Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); | 473 __ b(&check_encoding, Label::kNear); |
483 __ b(&check_encoding); | |
484 | 474 |
485 // Handle external strings. | 475 // Handle external strings. |
486 __ bind(&external_string); | 476 __ bind(&external_string); |
487 if (FLAG_debug_code) { | 477 if (FLAG_debug_code) { |
488 // Assert that we do not have a cons or slice (indirect strings) here. | 478 // Assert that we do not have a cons or slice (indirect strings) here. |
489 // Sequential strings have already been ruled out. | 479 // Sequential strings have already been ruled out. |
490 __ andi(r0, result, Operand(kIsIndirectStringMask)); | 480 __ mov(r0, Operand(kIsIndirectStringMask)); |
| 481 __ AndP(r0, result); |
491 __ Assert(eq, kExternalStringExpectedButNotFound, cr0); | 482 __ Assert(eq, kExternalStringExpectedButNotFound, cr0); |
492 } | 483 } |
493 // Rule out short external strings. | 484 // Rule out short external strings. |
494 STATIC_ASSERT(kShortExternalStringTag != 0); | 485 STATIC_ASSERT(kShortExternalStringTag != 0); |
495 __ andi(r0, result, Operand(kShortExternalStringMask)); | 486 __ mov(r0, Operand(kShortExternalStringMask)); |
496 __ bne(call_runtime, cr0); | 487 __ AndP(r0, result); |
| 488 __ bne(call_runtime /*, cr0*/); |
497 __ LoadP(string, | 489 __ LoadP(string, |
498 FieldMemOperand(string, ExternalString::kResourceDataOffset)); | 490 FieldMemOperand(string, ExternalString::kResourceDataOffset)); |
499 | 491 |
500 Label one_byte, done; | 492 Label one_byte, done; |
501 __ bind(&check_encoding); | 493 __ bind(&check_encoding); |
502 STATIC_ASSERT(kTwoByteStringTag == 0); | 494 STATIC_ASSERT(kTwoByteStringTag == 0); |
503 __ andi(r0, result, Operand(kStringEncodingMask)); | 495 __ mov(r0, Operand(kStringEncodingMask)); |
504 __ bne(&one_byte, cr0); | 496 __ AndP(r0, result); |
| 497 __ bne(&one_byte, Label::kNear); |
505 // Two-byte string. | 498 // Two-byte string. |
506 __ ShiftLeftImm(result, index, Operand(1)); | 499 __ ShiftLeftP(result, index, Operand(1)); |
507 __ lhzx(result, MemOperand(string, result)); | 500 __ LoadLogicalHalfWordP(result, MemOperand(string, result)); |
508 __ b(&done); | 501 __ b(&done, Label::kNear); |
509 __ bind(&one_byte); | 502 __ bind(&one_byte); |
510 // One-byte string. | 503 // One-byte string. |
511 __ lbzx(result, MemOperand(string, index)); | 504 __ LoadlB(result, MemOperand(string, index)); |
512 __ bind(&done); | 505 __ bind(&done); |
513 } | 506 } |
514 | 507 |
515 | |
516 static MemOperand ExpConstant(int index, Register base) { | 508 static MemOperand ExpConstant(int index, Register base) { |
517 return MemOperand(base, index * kDoubleSize); | 509 return MemOperand(base, index * kDoubleSize); |
518 } | 510 } |
519 | 511 |
520 | |
521 void MathExpGenerator::EmitMathExp(MacroAssembler* masm, DoubleRegister input, | 512 void MathExpGenerator::EmitMathExp(MacroAssembler* masm, DoubleRegister input, |
522 DoubleRegister result, | 513 DoubleRegister result, |
523 DoubleRegister double_scratch1, | 514 DoubleRegister double_scratch1, |
524 DoubleRegister double_scratch2, | 515 DoubleRegister double_scratch2, |
525 Register temp1, Register temp2, | 516 Register temp1, Register temp2, |
526 Register temp3) { | 517 Register temp3) { |
527 DCHECK(!input.is(result)); | 518 DCHECK(!input.is(result)); |
528 DCHECK(!input.is(double_scratch1)); | 519 DCHECK(!input.is(double_scratch1)); |
529 DCHECK(!input.is(double_scratch2)); | 520 DCHECK(!input.is(double_scratch2)); |
530 DCHECK(!result.is(double_scratch1)); | 521 DCHECK(!result.is(double_scratch1)); |
531 DCHECK(!result.is(double_scratch2)); | 522 DCHECK(!result.is(double_scratch2)); |
532 DCHECK(!double_scratch1.is(double_scratch2)); | 523 DCHECK(!double_scratch1.is(double_scratch2)); |
533 DCHECK(!temp1.is(temp2)); | 524 DCHECK(!temp1.is(temp2)); |
534 DCHECK(!temp1.is(temp3)); | 525 DCHECK(!temp1.is(temp3)); |
535 DCHECK(!temp2.is(temp3)); | 526 DCHECK(!temp2.is(temp3)); |
536 DCHECK(ExternalReference::math_exp_constants(0).address() != NULL); | 527 DCHECK(ExternalReference::math_exp_constants(0).address() != NULL); |
537 DCHECK(!masm->serializer_enabled()); // External references not serializable. | 528 DCHECK(!masm->serializer_enabled()); // External references not serializable. |
538 | 529 |
539 Label zero, infinity, done; | 530 Label zero, infinity, done; |
540 | 531 |
541 __ mov(temp3, Operand(ExternalReference::math_exp_constants(0))); | 532 __ mov(temp3, Operand(ExternalReference::math_exp_constants(0))); |
542 | 533 |
543 __ lfd(double_scratch1, ExpConstant(0, temp3)); | 534 __ LoadDouble(double_scratch1, ExpConstant(0, temp3)); |
544 __ fcmpu(double_scratch1, input); | 535 __ cdbr(double_scratch1, input); |
545 __ fmr(result, input); | 536 __ ldr(result, input); |
546 __ bunordered(&done); | 537 __ bunordered(&done, Label::kNear); |
547 __ bge(&zero); | 538 __ bge(&zero, Label::kNear); |
548 | 539 |
549 __ lfd(double_scratch2, ExpConstant(1, temp3)); | 540 __ LoadDouble(double_scratch2, ExpConstant(1, temp3)); |
550 __ fcmpu(input, double_scratch2); | 541 __ cdbr(input, double_scratch2); |
551 __ bge(&infinity); | 542 __ bge(&infinity, Label::kNear); |
552 | 543 |
553 __ lfd(double_scratch1, ExpConstant(3, temp3)); | 544 __ LoadDouble(double_scratch1, ExpConstant(3, temp3)); |
554 __ lfd(result, ExpConstant(4, temp3)); | 545 __ LoadDouble(result, ExpConstant(4, temp3)); |
555 __ fmul(double_scratch1, double_scratch1, input); | 546 |
556 __ fadd(double_scratch1, double_scratch1, result); | 547 // Do not generate madbr, as intermediate result are not |
557 __ MovDoubleLowToInt(temp2, double_scratch1); | 548 // rounded properly |
558 __ fsub(double_scratch1, double_scratch1, result); | 549 __ mdbr(double_scratch1, input); |
559 __ lfd(result, ExpConstant(6, temp3)); | 550 __ adbr(double_scratch1, result); |
560 __ lfd(double_scratch2, ExpConstant(5, temp3)); | 551 |
561 __ fmul(double_scratch1, double_scratch1, double_scratch2); | 552 // Move low word of double_scratch1 to temp2 |
562 __ fsub(double_scratch1, double_scratch1, input); | 553 __ lgdr(temp2, double_scratch1); |
563 __ fsub(result, result, double_scratch1); | 554 __ nihf(temp2, Operand::Zero()); |
564 __ fmul(double_scratch2, double_scratch1, double_scratch1); | 555 |
565 __ fmul(result, result, double_scratch2); | 556 __ sdbr(double_scratch1, result); |
566 __ lfd(double_scratch2, ExpConstant(7, temp3)); | 557 __ LoadDouble(result, ExpConstant(6, temp3)); |
567 __ fmul(result, result, double_scratch2); | 558 __ LoadDouble(double_scratch2, ExpConstant(5, temp3)); |
568 __ fsub(result, result, double_scratch1); | 559 __ mdbr(double_scratch1, double_scratch2); |
569 __ lfd(double_scratch2, ExpConstant(8, temp3)); | 560 __ sdbr(double_scratch1, input); |
570 __ fadd(result, result, double_scratch2); | 561 __ sdbr(result, double_scratch1); |
571 __ srwi(temp1, temp2, Operand(11)); | 562 __ ldr(double_scratch2, double_scratch1); |
572 __ andi(temp2, temp2, Operand(0x7ff)); | 563 __ mdbr(double_scratch2, double_scratch2); |
573 __ addi(temp1, temp1, Operand(0x3ff)); | 564 __ mdbr(result, double_scratch2); |
| 565 __ LoadDouble(double_scratch2, ExpConstant(7, temp3)); |
| 566 __ mdbr(result, double_scratch2); |
| 567 __ sdbr(result, double_scratch1); |
| 568 __ LoadDouble(double_scratch2, ExpConstant(8, temp3)); |
| 569 __ adbr(result, double_scratch2); |
| 570 __ ShiftRight(temp1, temp2, Operand(11)); |
| 571 __ AndP(temp2, Operand(0x7ff)); |
| 572 __ AddP(temp1, Operand(0x3ff)); |
574 | 573 |
575 // Must not call ExpConstant() after overwriting temp3! | 574 // Must not call ExpConstant() after overwriting temp3! |
576 __ mov(temp3, Operand(ExternalReference::math_exp_log_table())); | 575 __ mov(temp3, Operand(ExternalReference::math_exp_log_table())); |
577 __ slwi(temp2, temp2, Operand(3)); | 576 __ ShiftLeft(temp2, temp2, Operand(3)); |
578 #if V8_TARGET_ARCH_PPC64 | |
579 __ ldx(temp2, MemOperand(temp3, temp2)); | |
580 __ sldi(temp1, temp1, Operand(52)); | |
581 __ orx(temp2, temp1, temp2); | |
582 __ MovInt64ToDouble(double_scratch1, temp2); | |
583 #else | |
584 __ add(ip, temp3, temp2); | |
585 __ lwz(temp3, MemOperand(ip, Register::kExponentOffset)); | |
586 __ lwz(temp2, MemOperand(ip, Register::kMantissaOffset)); | |
587 __ slwi(temp1, temp1, Operand(20)); | |
588 __ orx(temp3, temp1, temp3); | |
589 __ MovInt64ToDouble(double_scratch1, temp3, temp2); | |
590 #endif | |
591 | 577 |
592 __ fmul(result, result, double_scratch1); | 578 __ lg(temp2, MemOperand(temp2, temp3)); |
593 __ b(&done); | 579 __ sllg(temp1, temp1, Operand(52)); |
| 580 __ ogr(temp2, temp1); |
| 581 __ ldgr(double_scratch1, temp2); |
| 582 |
| 583 __ mdbr(result, double_scratch1); |
| 584 __ b(&done, Label::kNear); |
594 | 585 |
595 __ bind(&zero); | 586 __ bind(&zero); |
596 __ fmr(result, kDoubleRegZero); | 587 __ lzdr(kDoubleRegZero); |
597 __ b(&done); | 588 __ ldr(result, kDoubleRegZero); |
| 589 __ b(&done, Label::kNear); |
598 | 590 |
599 __ bind(&infinity); | 591 __ bind(&infinity); |
600 __ lfd(result, ExpConstant(2, temp3)); | 592 __ LoadDouble(result, ExpConstant(2, temp3)); |
601 | 593 |
602 __ bind(&done); | 594 __ bind(&done); |
603 } | 595 } |
604 | 596 |
605 #undef __ | 597 #undef __ |
606 | 598 |
607 CodeAgingHelper::CodeAgingHelper(Isolate* isolate) { | 599 CodeAgingHelper::CodeAgingHelper(Isolate* isolate) { |
608 USE(isolate); | 600 USE(isolate); |
609 DCHECK(young_sequence_.length() == kNoCodeAgeSequenceLength); | 601 DCHECK(young_sequence_.length() == kNoCodeAgeSequenceLength); |
610 // Since patcher is a large object, allocate it dynamically when needed, | 602 // Since patcher is a large object, allocate it dynamically when needed, |
611 // to avoid overloading the stack in stress conditions. | 603 // to avoid overloading the stack in stress conditions. |
612 // DONT_FLUSH is used because the CodeAgingHelper is initialized early in | 604 // DONT_FLUSH is used because the CodeAgingHelper is initialized early in |
613 // the process, before ARM simulator ICache is setup. | 605 // the process, before ARM simulator ICache is setup. |
614 base::SmartPointer<CodePatcher> patcher( | 606 base::SmartPointer<CodePatcher> patcher( |
615 new CodePatcher(isolate, young_sequence_.start(), | 607 new CodePatcher(isolate, young_sequence_.start(), |
616 young_sequence_.length() / Assembler::kInstrSize, | 608 young_sequence_.length(), CodePatcher::DONT_FLUSH)); |
617 CodePatcher::DONT_FLUSH)); | |
618 PredictableCodeSizeScope scope(patcher->masm(), young_sequence_.length()); | 609 PredictableCodeSizeScope scope(patcher->masm(), young_sequence_.length()); |
619 patcher->masm()->PushFixedFrame(r4); | 610 patcher->masm()->PushFixedFrame(r3); |
620 patcher->masm()->addi(fp, sp, | 611 patcher->masm()->la( |
621 Operand(StandardFrameConstants::kFixedFrameSizeFromFp)); | 612 fp, MemOperand(sp, StandardFrameConstants::kFixedFrameSizeFromFp)); |
622 for (int i = 0; i < kNoCodeAgeSequenceNops; i++) { | |
623 patcher->masm()->nop(); | |
624 } | |
625 } | 613 } |
626 | 614 |
627 | |
628 #ifdef DEBUG | 615 #ifdef DEBUG |
629 bool CodeAgingHelper::IsOld(byte* candidate) const { | 616 bool CodeAgingHelper::IsOld(byte* candidate) const { |
630 return Assembler::IsNop(Assembler::instr_at(candidate)); | 617 return Assembler::IsNop(Assembler::instr_at(candidate)); |
631 } | 618 } |
632 #endif | 619 #endif |
633 | 620 |
634 | |
635 bool Code::IsYoungSequence(Isolate* isolate, byte* sequence) { | 621 bool Code::IsYoungSequence(Isolate* isolate, byte* sequence) { |
636 bool result = isolate->code_aging_helper()->IsYoung(sequence); | 622 bool result = isolate->code_aging_helper()->IsYoung(sequence); |
637 DCHECK(result || isolate->code_aging_helper()->IsOld(sequence)); | 623 DCHECK(result || isolate->code_aging_helper()->IsOld(sequence)); |
638 return result; | 624 return result; |
639 } | 625 } |
640 | 626 |
641 | |
642 void Code::GetCodeAgeAndParity(Isolate* isolate, byte* sequence, Age* age, | 627 void Code::GetCodeAgeAndParity(Isolate* isolate, byte* sequence, Age* age, |
643 MarkingParity* parity) { | 628 MarkingParity* parity) { |
644 if (IsYoungSequence(isolate, sequence)) { | 629 if (IsYoungSequence(isolate, sequence)) { |
645 *age = kNoAgeCodeAge; | 630 *age = kNoAgeCodeAge; |
646 *parity = NO_MARKING_PARITY; | 631 *parity = NO_MARKING_PARITY; |
647 } else { | 632 } else { |
648 Code* code = NULL; | 633 Code* code = NULL; |
649 Address target_address = | 634 Address target_address = |
650 Assembler::target_address_at(sequence + kCodeAgingTargetDelta, code); | 635 Assembler::target_address_at(sequence + kCodeAgingTargetDelta, code); |
651 Code* stub = GetCodeFromTargetAddress(target_address); | 636 Code* stub = GetCodeFromTargetAddress(target_address); |
652 GetCodeAgeAndParity(stub, age, parity); | 637 GetCodeAgeAndParity(stub, age, parity); |
653 } | 638 } |
654 } | 639 } |
655 | 640 |
656 | |
657 void Code::PatchPlatformCodeAge(Isolate* isolate, byte* sequence, Code::Age age, | 641 void Code::PatchPlatformCodeAge(Isolate* isolate, byte* sequence, Code::Age age, |
658 MarkingParity parity) { | 642 MarkingParity parity) { |
659 uint32_t young_length = isolate->code_aging_helper()->young_sequence_length(); | 643 uint32_t young_length = isolate->code_aging_helper()->young_sequence_length(); |
660 if (age == kNoAgeCodeAge) { | 644 if (age == kNoAgeCodeAge) { |
661 isolate->code_aging_helper()->CopyYoungSequenceTo(sequence); | 645 isolate->code_aging_helper()->CopyYoungSequenceTo(sequence); |
662 Assembler::FlushICache(isolate, sequence, young_length); | 646 Assembler::FlushICache(isolate, sequence, young_length); |
663 } else { | 647 } else { |
664 // FIXED_SEQUENCE | 648 // FIXED_SEQUENCE |
665 Code* stub = GetCodeAgeStub(isolate, age, parity); | 649 Code* stub = GetCodeAgeStub(isolate, age, parity); |
666 CodePatcher patcher(isolate, sequence, | 650 CodePatcher patcher(isolate, sequence, young_length); |
667 young_length / Assembler::kInstrSize); | |
668 Assembler::BlockTrampolinePoolScope block_trampoline_pool(patcher.masm()); | |
669 intptr_t target = reinterpret_cast<intptr_t>(stub->instruction_start()); | 651 intptr_t target = reinterpret_cast<intptr_t>(stub->instruction_start()); |
670 // Don't use Call -- we need to preserve ip and lr. | 652 // We need to push lr on stack so that GenerateMakeCodeYoungAgainCommon |
671 // GenerateMakeCodeYoungAgainCommon for the stub code. | 653 // knows where to pick up the return address |
| 654 // |
| 655 // Since we can no longer guarentee ip will hold the branch address |
| 656 // because of BRASL, use Call so that GenerateMakeCodeYoungAgainCommon |
| 657 // can calculate the branch address offset |
672 patcher.masm()->nop(); // marker to detect sequence (see IsOld) | 658 patcher.masm()->nop(); // marker to detect sequence (see IsOld) |
673 patcher.masm()->mov(r3, Operand(target)); | 659 patcher.masm()->CleanseP(r14); |
674 patcher.masm()->Jump(r3); | 660 patcher.masm()->Push(r14); |
675 for (int i = 0; i < kCodeAgingSequenceNops; i++) { | 661 patcher.masm()->mov(r2, Operand(target)); |
676 patcher.masm()->nop(); | 662 patcher.masm()->Call(r2); |
| 663 for (int i = 0; i < kNoCodeAgeSequenceLength - kCodeAgingSequenceLength; |
| 664 i += 2) { |
| 665 // TODO(joransiu): Create nop function to pad |
| 666 // (kNoCodeAgeSequenceLength - kCodeAgingSequenceLength) bytes. |
| 667 patcher.masm()->nop(); // 2-byte nops(). |
677 } | 668 } |
678 } | 669 } |
679 } | 670 } |
| 671 |
680 } // namespace internal | 672 } // namespace internal |
681 } // namespace v8 | 673 } // namespace v8 |
682 | 674 |
683 #endif // V8_TARGET_ARCH_PPC | 675 #endif // V8_TARGET_ARCH_S390 |
OLD | NEW |