OLD | NEW |
---|---|
(Empty) | |
1 // Copyright (c) 1994-2006 Sun Microsystems Inc. | |
2 // All Rights Reserved. | |
3 // | |
4 // Redistribution and use in source and binary forms, with or without | |
5 // modification, are permitted provided that the following conditions | |
6 // are met: | |
7 // | |
8 // - Redistributions of source code must retain the above copyright notice, | |
9 // this list of conditions and the following disclaimer. | |
10 // | |
11 // - Redistribution in binary form must reproduce the above copyright | |
12 // notice, this list of conditions and the following disclaimer in the | |
13 // documentation and/or other materials provided with the | |
14 // distribution. | |
15 // | |
16 // - Neither the name of Sun Microsystems or the names of contributors may | |
17 // be used to endorse or promote products derived from this software without | |
18 // specific prior written permission. | |
19 // | |
20 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |
21 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |
22 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS | |
23 // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE | |
24 // COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, | |
25 // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES | |
26 // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR | |
27 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | |
28 // HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | |
29 // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | |
30 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | |
31 // OF THE POSSIBILITY OF SUCH DAMAGE. | |
32 | |
33 // The original source code covered by the above license above has been | |
34 // modified significantly by Google Inc. | |
35 // Copyright 2014 the V8 project authors. All rights reserved. | |
jochen (gone - plz use gerrit)
2016/02/26 12:11:14
please update the year in V8 copyright headers to
| |
36 | |
37 // A light-weight S390 Assembler | |
38 // Generates user mode instructions for z/Architecture | |
39 | |
40 #ifndef V8_S390_ASSEMBLER_S390_H_ | |
41 #define V8_S390_ASSEMBLER_S390_H_ | |
42 #include <stdio.h> | |
43 #if V8_HOST_ARCH_S390 | |
44 // elf.h include is required for auxv check for STFLE facility used | |
45 // for hardware detection, which is sensible only on s390 hosts. | |
46 #include <elf.h> | |
47 #endif | |
48 | |
49 #include <fcntl.h> | |
50 #include <unistd.h> | |
51 #include "src/assembler.h" | |
52 #include "src/s390/constants-s390.h" | |
53 | |
54 #define ABI_USES_FUNCTION_DESCRIPTORS 0 | |
55 | |
56 #define ABI_PASSES_HANDLES_IN_REGS 1 | |
57 | |
58 // ObjectPair is defined under runtime/runtime-util.h. | |
59 // On 31-bit, ObjectPair == uint64_t. ABI dictates long long | |
60 // be returned with the lower addressed half in r2 | |
61 // and the higher addressed half in r3. (Returns in Regs) | |
62 // On 64-bit, ObjectPair is a Struct. ABI dictaes Structs be | |
63 // returned in a storage buffer allocated by the caller, | |
64 // with the address of this buffer passed as a hidden | |
65 // argument in r2. (Does NOT return in Regs) | |
66 // For x86 linux, ObjectPair is returned in registers. | |
67 #if V8_TARGET_ARCH_S390X | |
68 #define ABI_RETURNS_OBJECTPAIR_IN_REGS 0 | |
69 #else | |
70 #define ABI_RETURNS_OBJECTPAIR_IN_REGS 1 | |
71 #endif | |
72 | |
73 #define ABI_CALL_VIA_IP 1 | |
74 | |
75 #define INSTR_AND_DATA_CACHE_COHERENCY LWSYNC | |
76 | |
77 namespace v8 { | |
78 namespace internal { | |
79 | |
80 // clang-format off | |
81 #define GENERAL_REGISTERS(V) \ | |
82 V(r0) V(r1) V(r2) V(r3) V(r4) V(r5) V(r6) V(r7) \ | |
83 V(r8) V(r9) V(r10) V(fp) V(ip) V(r13) V(r14) V(sp) | |
84 | |
85 #define ALLOCATABLE_GENERAL_REGISTERS(V) \ | |
86 V(r2) V(r3) V(r4) V(r5) V(r6) V(r7) \ | |
87 V(r8) V(r9) V(r13) | |
88 | |
89 #define DOUBLE_REGISTERS(V) \ | |
90 V(d0) V(d1) V(d2) V(d3) V(d4) V(d5) V(d6) V(d7) \ | |
91 V(d8) V(d9) V(d10) V(d11) V(d12) V(d13) V(d14) V(d15) | |
92 | |
93 #define ALLOCATABLE_DOUBLE_REGISTERS(V) \ | |
94 V(d1) V(d2) V(d3) V(d4) V(d5) V(d6) V(d7) \ | |
95 V(d8) V(d9) V(d10) V(d11) V(d12) V(d15) V(d0) | |
96 // clang-format on | |
97 | |
98 // CPU Registers. | |
99 // | |
100 // 1) We would prefer to use an enum, but enum values are assignment- | |
101 // compatible with int, which has caused code-generation bugs. | |
102 // | |
103 // 2) We would prefer to use a class instead of a struct but we don't like | |
104 // the register initialization to depend on the particular initialization | |
105 // order (which appears to be different on OS X, Linux, and Windows for the | |
106 // installed versions of C++ we tried). Using a struct permits C-style | |
107 // "initialization". Also, the Register objects cannot be const as this | |
108 // forces initialization stubs in MSVC, making us dependent on initialization | |
109 // order. | |
110 // | |
111 // 3) By not using an enum, we are possibly preventing the compiler from | |
112 // doing certain constant folds, which may significantly reduce the | |
113 // code generated for some assembly instructions (because they boil down | |
114 // to a few constants). If this is a problem, we could change the code | |
115 // such that we use an enum in optimized mode, and the struct in debug | |
116 // mode. This way we get the compile-time error checking in debug mode | |
117 // and best performance in optimized code. | |
118 | |
119 struct Register { | |
120 enum Code { | |
121 #define REGISTER_CODE(R) kCode_##R, | |
122 GENERAL_REGISTERS(REGISTER_CODE) | |
123 #undef REGISTER_CODE | |
124 kAfterLast, | |
125 kCode_no_reg = -1 | |
126 }; | |
127 static const int kNumRegisters = Code::kAfterLast; | |
128 | |
129 #define REGISTER_COUNT(R) 1 + | |
130 static const int kNumAllocatable = | |
131 ALLOCATABLE_GENERAL_REGISTERS(REGISTER_COUNT) 0; | |
132 #undef REGISTER_COUNT | |
133 | |
134 #define REGISTER_BIT(R) 1 << kCode_##R | | |
135 static const RegList kAllocatable = | |
136 ALLOCATABLE_GENERAL_REGISTERS(REGISTER_BIT) 0; | |
137 #undef REGISTER_BIT | |
138 | |
139 static Register from_code(int code) { | |
140 DCHECK(code >= 0); | |
141 DCHECK(code < kNumRegisters); | |
142 Register r = {code}; | |
143 return r; | |
144 } | |
145 | |
146 const char* ToString(); | |
147 bool IsAllocatable() const; | |
148 bool is_valid() const { return 0 <= reg_code && reg_code < kNumRegisters; } | |
149 bool is(Register reg) const { return reg_code == reg.reg_code; } | |
150 int code() const { | |
151 DCHECK(is_valid()); | |
152 return reg_code; | |
153 } | |
154 int bit() const { | |
155 DCHECK(is_valid()); | |
156 return 1 << reg_code; | |
157 } | |
158 | |
159 void set_code(int code) { | |
160 reg_code = code; | |
161 DCHECK(is_valid()); | |
162 } | |
163 | |
164 #if V8_TARGET_LITTLE_ENDIAN | |
165 static const int kMantissaOffset = 0; | |
166 static const int kExponentOffset = 4; | |
167 #else | |
168 static const int kMantissaOffset = 4; | |
169 static const int kExponentOffset = 0; | |
170 #endif | |
171 | |
172 // Unfortunately we can't make this private in a struct. | |
173 int reg_code; | |
174 }; | |
175 | |
176 typedef struct Register Register; | |
177 | |
178 #define DECLARE_REGISTER(R) const Register R = {Register::kCode_##R}; | |
179 GENERAL_REGISTERS(DECLARE_REGISTER) | |
180 #undef DECLARE_REGISTER | |
181 const Register no_reg = {Register::kCode_no_reg}; | |
182 | |
183 // Register aliases | |
184 const Register kLithiumScratch = r1; // lithium scratch. | |
185 const Register kRootRegister = r10; // Roots array pointer. | |
186 const Register cp = r13; // JavaScript context pointer. | |
187 | |
188 // Double word FP register. | |
189 struct DoubleRegister { | |
190 enum Code { | |
191 #define REGISTER_CODE(R) kCode_##R, | |
192 DOUBLE_REGISTERS(REGISTER_CODE) | |
193 #undef REGISTER_CODE | |
194 kAfterLast, | |
195 kCode_no_reg = -1 | |
196 }; | |
197 | |
198 static const int kNumRegisters = Code::kAfterLast; | |
199 static const int kMaxNumRegisters = kNumRegisters; | |
200 | |
201 const char* ToString(); | |
202 bool IsAllocatable() const; | |
203 bool is_valid() const { return 0 <= reg_code && reg_code < kNumRegisters; } | |
204 bool is(DoubleRegister reg) const { return reg_code == reg.reg_code; } | |
205 | |
206 int code() const { | |
207 DCHECK(is_valid()); | |
208 return reg_code; | |
209 } | |
210 | |
211 int bit() const { | |
212 DCHECK(is_valid()); | |
213 return 1 << reg_code; | |
214 } | |
215 | |
216 static DoubleRegister from_code(int code) { | |
217 DoubleRegister r = {code}; | |
218 return r; | |
219 } | |
220 | |
221 int reg_code; | |
222 }; | |
223 | |
224 typedef DoubleRegister DoubleRegister; | |
225 | |
226 #define DECLARE_REGISTER(R) \ | |
227 const DoubleRegister R = {DoubleRegister::kCode_##R}; | |
228 DOUBLE_REGISTERS(DECLARE_REGISTER) | |
229 #undef DECLARE_REGISTER | |
230 const Register no_dreg = {Register::kCode_no_reg}; | |
231 | |
232 // Aliases for double registers. Defined using #define instead of | |
233 // "static const DoubleRegister&" because Clang complains otherwise when a | |
234 // compilation unit that includes this header doesn't use the variables. | |
235 #define kDoubleRegZero d14 | |
236 #define kScratchDoubleReg d13 | |
237 | |
238 Register ToRegister(int num); | |
239 | |
240 // Coprocessor register | |
241 struct CRegister { | |
242 bool is_valid() const { return 0 <= reg_code && reg_code < 16; } | |
243 bool is(CRegister creg) const { return reg_code == creg.reg_code; } | |
244 int code() const { | |
245 DCHECK(is_valid()); | |
246 return reg_code; | |
247 } | |
248 int bit() const { | |
249 DCHECK(is_valid()); | |
250 return 1 << reg_code; | |
251 } | |
252 | |
253 // Unfortunately we can't make this private in a struct. | |
254 int reg_code; | |
255 }; | |
256 | |
257 const CRegister no_creg = {-1}; | |
258 | |
259 const CRegister cr0 = {0}; | |
260 const CRegister cr1 = {1}; | |
261 const CRegister cr2 = {2}; | |
262 const CRegister cr3 = {3}; | |
263 const CRegister cr4 = {4}; | |
264 const CRegister cr5 = {5}; | |
265 const CRegister cr6 = {6}; | |
266 const CRegister cr7 = {7}; | |
267 const CRegister cr8 = {8}; | |
268 const CRegister cr9 = {9}; | |
269 const CRegister cr10 = {10}; | |
270 const CRegister cr11 = {11}; | |
271 const CRegister cr12 = {12}; | |
272 const CRegister cr13 = {13}; | |
273 const CRegister cr14 = {14}; | |
274 const CRegister cr15 = {15}; | |
275 | |
276 // TODO(john.yan) Define SIMD registers. | |
277 typedef DoubleRegister Simd128Register; | |
278 | |
279 // ----------------------------------------------------------------------------- | |
280 // Machine instruction Operands | |
281 | |
282 #if V8_TARGET_ARCH_S390X | |
283 const RelocInfo::Mode kRelocInfo_NONEPTR = RelocInfo::NONE64; | |
284 #else | |
285 const RelocInfo::Mode kRelocInfo_NONEPTR = RelocInfo::NONE32; | |
286 #endif | |
287 | |
288 // Class Operand represents a shifter operand in data processing instructions | |
289 // defining immediate numbers and masks | |
290 typedef uint8_t Length; | |
291 | |
292 struct Mask { | |
293 uint8_t mask; | |
294 uint8_t value() { return mask; } | |
295 static Mask from_value(uint8_t input) { | |
296 DCHECK(input <= 0x0F); | |
297 Mask m = {input}; | |
298 return m; | |
299 } | |
300 }; | |
301 | |
302 class Operand BASE_EMBEDDED { | |
303 public: | |
304 // immediate | |
305 INLINE(explicit Operand(intptr_t immediate, | |
306 RelocInfo::Mode rmode = kRelocInfo_NONEPTR)); | |
307 INLINE(static Operand Zero()) { return Operand(static_cast<intptr_t>(0)); } | |
308 INLINE(explicit Operand(const ExternalReference& f)); | |
309 explicit Operand(Handle<Object> handle); | |
310 INLINE(explicit Operand(Smi* value)); | |
311 | |
312 // rm | |
313 INLINE(explicit Operand(Register rm)); | |
314 | |
315 // Return true if this is a register operand. | |
316 INLINE(bool is_reg() const); | |
317 | |
318 bool must_output_reloc_info(const Assembler* assembler) const; | |
319 | |
320 inline intptr_t immediate() const { | |
321 DCHECK(!rm_.is_valid()); | |
322 return imm_; | |
323 } | |
324 | |
325 inline void setBits(int n) { | |
326 imm_ = (static_cast<uint32_t>(imm_) << (32 - n)) >> (32 - n); | |
327 } | |
328 | |
329 Register rm() const { return rm_; } | |
330 | |
331 private: | |
332 Register rm_; | |
333 intptr_t imm_; // valid if rm_ == no_reg | |
334 RelocInfo::Mode rmode_; | |
335 | |
336 friend class Assembler; | |
337 friend class MacroAssembler; | |
338 }; | |
339 | |
340 typedef int32_t Disp; | |
341 | |
342 // Class MemOperand represents a memory operand in load and store instructions | |
343 // On S390, we have various flavours of memory operands: | |
344 // 1) a base register + 16 bit unsigned displacement | |
345 // 2) a base register + index register + 16 bit unsigned displacement | |
346 // 3) a base register + index register + 20 bit signed displacement | |
347 class MemOperand BASE_EMBEDDED { | |
348 public: | |
349 explicit MemOperand(Register rx, Disp offset = 0); | |
350 explicit MemOperand(Register rx, Register rb, Disp offset = 0); | |
351 | |
352 int32_t offset() const { return offset_; } | |
353 uint32_t getDisplacement() const { return offset(); } | |
354 | |
355 // Base register | |
356 Register rb() const { | |
357 DCHECK(!baseRegister.is(no_reg)); | |
358 return baseRegister; | |
359 } | |
360 | |
361 Register getBaseRegister() const { return rb(); } | |
362 | |
363 // Index Register | |
364 Register rx() const { | |
365 DCHECK(!indexRegister.is(no_reg)); | |
366 return indexRegister; | |
367 } | |
368 Register getIndexRegister() const { return rx(); } | |
369 | |
370 private: | |
371 Register baseRegister; // base | |
372 Register indexRegister; // index | |
373 int32_t offset_; // offset | |
374 | |
375 friend class Assembler; | |
376 }; | |
377 | |
378 class DeferredRelocInfo { | |
379 public: | |
380 DeferredRelocInfo() {} | |
381 DeferredRelocInfo(int position, RelocInfo::Mode rmode, intptr_t data) | |
382 : position_(position), rmode_(rmode), data_(data) {} | |
383 | |
384 int position() const { return position_; } | |
385 RelocInfo::Mode rmode() const { return rmode_; } | |
386 intptr_t data() const { return data_; } | |
387 | |
388 private: | |
389 int position_; | |
390 RelocInfo::Mode rmode_; | |
391 intptr_t data_; | |
392 }; | |
393 | |
394 class Assembler : public AssemblerBase { | |
395 public: | |
396 // Create an assembler. Instructions and relocation information are emitted | |
397 // into a buffer, with the instructions starting from the beginning and the | |
398 // relocation information starting from the end of the buffer. See CodeDesc | |
399 // for a detailed comment on the layout (globals.h). | |
400 // | |
401 // If the provided buffer is NULL, the assembler allocates and grows its own | |
402 // buffer, and buffer_size determines the initial buffer size. The buffer is | |
403 // owned by the assembler and deallocated upon destruction of the assembler. | |
404 // | |
405 // If the provided buffer is not NULL, the assembler uses the provided buffer | |
406 // for code generation and assumes its size to be buffer_size. If the buffer | |
407 // is too small, a fatal error occurs. No deallocation of the buffer is done | |
408 // upon destruction of the assembler. | |
409 Assembler(Isolate* isolate, void* buffer, int buffer_size); | |
410 virtual ~Assembler() {} | |
411 | |
412 // GetCode emits any pending (non-emitted) code and fills the descriptor | |
413 // desc. GetCode() is idempotent; it returns the same result if no other | |
414 // Assembler functions are invoked in between GetCode() calls. | |
415 void GetCode(CodeDesc* desc); | |
416 | |
417 // Label operations & relative jumps (PPUM Appendix D) | |
418 // | |
419 // Takes a branch opcode (cc) and a label (L) and generates | |
420 // either a backward branch or a forward branch and links it | |
421 // to the label fixup chain. Usage: | |
422 // | |
423 // Label L; // unbound label | |
424 // j(cc, &L); // forward branch to unbound label | |
425 // bind(&L); // bind label to the current pc | |
426 // j(cc, &L); // backward branch to bound label | |
427 // bind(&L); // illegal: a label may be bound only once | |
428 // | |
429 // Note: The same Label can be used for forward and backward branches | |
430 // but it may be bound only once. | |
431 | |
432 void bind(Label* L); // binds an unbound label L to the current code position | |
433 | |
434 // Links a label at the current pc_offset(). If already bound, returns the | |
435 // bound position. If already linked, returns the position of the prior link. | |
436 // Otherwise, returns the current pc_offset(). | |
437 int link(Label* L); | |
438 | |
439 // Determines if Label is bound and near enough so that a single | |
440 // branch instruction can be used to reach it. | |
441 bool is_near(Label* L, Condition cond); | |
442 | |
443 // Returns the branch offset to the given label from the current code position | |
444 // Links the label to the current position if it is still unbound | |
445 int branch_offset(Label* L) { return link(L) - pc_offset(); } | |
446 | |
447 // Puts a labels target address at the given position. | |
448 // The high 8 bits are set to zero. | |
449 void label_at_put(Label* L, int at_offset); | |
450 void load_label_offset(Register r1, Label* L); | |
451 | |
452 // Read/Modify the code target address in the branch/call instruction at pc. | |
453 INLINE(static Address target_address_at(Address pc, Address constant_pool)); | |
454 INLINE(static void set_target_address_at( | |
455 Isolate* isolate, Address pc, Address constant_pool, Address target, | |
456 ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED)); | |
457 INLINE(static Address target_address_at(Address pc, Code* code)) { | |
458 Address constant_pool = NULL; | |
459 return target_address_at(pc, constant_pool); | |
460 } | |
461 INLINE(static void set_target_address_at( | |
462 Isolate* isolate, Address pc, Code* code, Address target, | |
463 ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED)) { | |
464 Address constant_pool = NULL; | |
465 set_target_address_at(isolate, pc, constant_pool, target, | |
466 icache_flush_mode); | |
467 } | |
468 | |
469 // Return the code target address at a call site from the return address | |
470 // of that call in the instruction stream. | |
471 inline static Address target_address_from_return_address(Address pc); | |
472 | |
473 // Given the address of the beginning of a call, return the address | |
474 // in the instruction stream that the call will return to. | |
475 INLINE(static Address return_address_from_call_start(Address pc)); | |
476 | |
477 inline Handle<Object> code_target_object_handle_at(Address pc); | |
478 // This sets the branch destination. | |
479 // This is for calls and branches within generated code. | |
480 inline static void deserialization_set_special_target_at( | |
481 Isolate* isolate, Address instruction_payload, Code* code, | |
482 Address target); | |
483 | |
484 // This sets the internal reference at the pc. | |
485 inline static void deserialization_set_target_internal_reference_at( | |
486 Isolate* isolate, Address pc, Address target, | |
487 RelocInfo::Mode mode = RelocInfo::INTERNAL_REFERENCE); | |
488 | |
489 // Here we are patching the address in the IIHF/IILF instruction pair. | |
490 // These values are used in the serialization process and must be zero for | |
491 // S390 platform, as Code, Embedded Object or External-reference pointers | |
492 // are split across two consecutive instructions and don't exist separately | |
493 // in the code, so the serializer should not step forwards in memory after | |
494 // a target is resolved and written. | |
495 static const int kSpecialTargetSize = 0; | |
496 | |
497 // Number of bytes for instructions used to store pointer sized constant. | |
498 #if V8_TARGET_ARCH_S390X | |
499 static const int kBytesForPtrConstant = 12; // IIHF + IILF | |
500 #else | |
501 static const int kBytesForPtrConstant = 6; // IILF | |
502 #endif | |
503 | |
504 // Distance between the instruction referring to the address of the call | |
505 // target and the return address. | |
506 | |
507 // Offset between call target address and return address | |
508 // for BRASL calls | |
509 // Patch will be appiled to other FIXED_SEQUENCE call | |
510 static const int kCallTargetAddressOffset = 6; | |
511 | |
512 // The length of FIXED_SEQUENCE call | |
513 // iihf r8, <address_hi> // <64-bit only> | |
514 // iilf r8, <address_lo> | |
515 // basr r14, r8 | |
516 #if V8_TARGET_ARCH_S390X | |
517 static const int kCallSequenceLength = 14; | |
518 #else | |
519 static const int kCallSequenceLength = 8; | |
520 #endif | |
521 | |
522 // This is the length of the BreakLocationIterator::SetDebugBreakAtReturn() | |
523 // code patch FIXED_SEQUENCE in bytes! | |
524 // JS Return Sequence = Call Sequence + BKPT | |
525 // static const int kJSReturnSequenceLength = kCallSequenceLength + 2; | |
526 | |
527 // This is the length of the code sequence from SetDebugBreakAtSlot() | |
528 // FIXED_SEQUENCE in bytes! | |
529 static const int kDebugBreakSlotLength = kCallSequenceLength; | |
530 static const int kPatchDebugBreakSlotReturnOffset = kCallTargetAddressOffset; | |
531 | |
532 // Length to patch between the start of the JS return sequence | |
533 // from SetDebugBreakAtReturn and the address from | |
534 // break_address_from_return_address. | |
535 // | |
536 // frame->pc() in Debug::SetAfterBreakTarget will point to BKPT in | |
537 // JS return sequence, so the length to patch will not include BKPT | |
538 // instruction length. | |
539 // static const int kPatchReturnSequenceAddressOffset = | |
540 // kCallSequenceLength - kPatchDebugBreakSlotReturnOffset; | |
541 | |
542 // Length to patch between the start of the FIXED call sequence from | |
543 // SetDebugBreakAtSlot() and the the address from | |
544 // break_address_from_return_address. | |
545 static const int kPatchDebugBreakSlotAddressOffset = | |
546 kDebugBreakSlotLength - kPatchDebugBreakSlotReturnOffset; | |
547 | |
548 static inline int encode_crbit(const CRegister& cr, enum CRBit crbit) { | |
549 return ((cr.code() * CRWIDTH) + crbit); | |
550 } | |
551 | |
552 // --------------------------------------------------------------------------- | |
553 // Code generation | |
554 | |
555 // Helper for unconditional branch to Label with update to save register | |
556 void b(Register r, Label* l) { | |
557 positions_recorder()->WriteRecordedPositions(); | |
558 int32_t halfwords = branch_offset(l) / 2; | |
559 brasl(r, Operand(halfwords)); | |
560 } | |
561 | |
562 // Conditional Branch Instruction - Generates either BRC / BRCL | |
563 void branchOnCond(Condition c, int branch_offset, bool is_bound = false); | |
564 | |
565 // Helpers for conditional branch to Label | |
566 void b(Condition cond, Label* l, Label::Distance dist = Label::kFar) { | |
567 branchOnCond(cond, branch_offset(l), | |
568 l->is_bound() || (dist == Label::kNear)); | |
569 } | |
570 | |
571 void bc_short(Condition cond, Label* l, Label::Distance dist = Label::kFar) { | |
572 b(cond, l, Label::kNear); | |
573 } | |
574 // Helpers for conditional branch to Label | |
575 void beq(Label* l, Label::Distance dist = Label::kFar) { b(eq, l, dist); } | |
576 void bne(Label* l, Label::Distance dist = Label::kFar) { b(ne, l, dist); } | |
577 void blt(Label* l, Label::Distance dist = Label::kFar) { b(lt, l, dist); } | |
578 void ble(Label* l, Label::Distance dist = Label::kFar) { b(le, l, dist); } | |
579 void bgt(Label* l, Label::Distance dist = Label::kFar) { b(gt, l, dist); } | |
580 void bge(Label* l, Label::Distance dist = Label::kFar) { b(ge, l, dist); } | |
581 void b(Label* l, Label::Distance dist = Label::kFar) { b(al, l, dist); } | |
582 void jmp(Label* l, Label::Distance dist = Label::kFar) { b(al, l, dist); } | |
583 void bunordered(Label* l, Label::Distance dist = Label::kFar) { | |
584 b(unordered, l, dist); | |
585 } | |
586 void bordered(Label* l, Label::Distance dist = Label::kFar) { | |
587 b(ordered, l, dist); | |
588 } | |
589 | |
590 // Helpers for conditional indirect branch off register | |
591 void b(Condition cond, Register r) { bcr(cond, r); } | |
592 void beq(Register r) { b(eq, r); } | |
593 void bne(Register r) { b(ne, r); } | |
594 void blt(Register r) { b(lt, r); } | |
595 void ble(Register r) { b(le, r); } | |
596 void bgt(Register r) { b(gt, r); } | |
597 void bge(Register r) { b(ge, r); } | |
598 void b(Register r) { b(al, r); } | |
599 void jmp(Register r) { b(al, r); } | |
600 void bunordered(Register r) { b(unordered, r); } | |
601 void bordered(Register r) { b(ordered, r); } | |
602 | |
603 // --------------------------------------------------------------------------- | |
604 // Code generation | |
605 | |
606 // Insert the smallest number of nop instructions | |
607 // possible to align the pc offset to a multiple | |
608 // of m. m must be a power of 2 (>= 4). | |
609 void Align(int m); | |
610 // Insert the smallest number of zero bytes possible to align the pc offset | |
611 // to a mulitple of m. m must be a power of 2 (>= 2). | |
612 void DataAlign(int m); | |
613 // Aligns code to something that's optimal for a jump target for the platform. | |
614 void CodeTargetAlign(); | |
615 | |
616 void breakpoint(bool do_print) { | |
617 if (do_print) { | |
618 printf("DebugBreak is inserted to %p\n", pc_); | |
619 } | |
620 #if V8_HOST_ARCH_64_BIT | |
621 int64_t value = reinterpret_cast<uint64_t>(&v8::base::OS::DebugBreak); | |
622 int32_t hi_32 = static_cast<int64_t>(value) >> 32; | |
623 int32_t lo_32 = static_cast<int32_t>(value); | |
624 | |
625 iihf(r1, Operand(hi_32)); | |
626 iilf(r1, Operand(lo_32)); | |
627 #else | |
628 iilf(r1, Operand(reinterpret_cast<uint32_t>(&v8::base::OS::DebugBreak))); | |
629 #endif | |
630 basr(r14, r1); | |
631 } | |
632 | |
633 void call(Handle<Code> target, RelocInfo::Mode rmode, | |
634 TypeFeedbackId ast_id = TypeFeedbackId::None()); | |
635 void jump(Handle<Code> target, RelocInfo::Mode rmode, Condition cond); | |
636 | |
637 // S390 instruction generation | |
638 #define I_FORM(name) void name(const Operand& i) | |
639 | |
640 #define RR_FORM(name) void name(Register r1, Register r2) | |
641 | |
642 #define RR2_FORM(name) void name(Condition m1, Register r2) | |
643 | |
644 #define RX_FORM(name) \ | |
645 void name(Register r1, Register x2, Register b2, Disp d2); \ | |
646 void name(Register r1, const MemOperand& opnd) | |
647 | |
648 #define RI1_FORM(name) void name(Register r, const Operand& i) | |
649 | |
650 #define RI2_FORM(name) void name(Condition m, const Operand& i) | |
651 | |
652 #define RIE_FORM(name) void name(Register r1, Register R3, const Operand& i) | |
653 | |
654 #define RIE_F_FORM(name) \ | |
655 void name(Register r1, Register r2, const Operand& i3, const Operand& i4, \ | |
656 const Operand& i5) | |
657 | |
658 #define RIL1_FORM(name) void name(Register r1, const Operand& i2) | |
659 | |
660 #define RIL2_FORM(name) void name(Condition m1, const Operand& i2) | |
661 | |
662 #define RXE_FORM(name) \ | |
663 void name(Register r1, const MemOperand& opnd); \ | |
664 void name(Register r1, Register b2, Register x2, Disp d2) | |
665 | |
666 #define RXF_FORM(name) \ | |
667 void name(Register r1, Register r3, const MemOperand& opnd); \ | |
668 void name(Register r1, Register r3, Register b2, Register x2, Disp d2) | |
669 | |
670 #define RXY_FORM(name) \ | |
671 void name(Register r1, Register x2, Register b2, Disp d2); \ | |
672 void name(Register r1, const MemOperand& opnd) | |
673 | |
674 #define RSI_FORM(name) void name(Register r1, Register r3, const Operand& i) | |
675 | |
676 #define RIS_FORM(name) \ | |
677 void name(Register r1, Condition m3, Register b4, Disp d4, \ | |
678 const Operand& i2); \ | |
679 void name(Register r1, const Operand& i2, Condition m3, \ | |
680 const MemOperand& opnd) | |
681 | |
682 #define SI_FORM(name) \ | |
683 void name(const MemOperand& opnd, const Operand& i); \ | |
684 void name(const Operand& i2, Register b1, Disp d1) | |
685 | |
686 #define SIL_FORM(name) \ | |
687 void name(Register b1, Disp d1, const Operand& i2); \ | |
688 void name(const MemOperand& opnd, const Operand& i2) | |
689 | |
690 #define RRE_FORM(name) void name(Register r1, Register r2) | |
691 | |
692 #define RRF1_FORM(name) void name(Register r1, Register r2, Register r3) | |
693 | |
694 #define RRF2_FORM(name) void name(Condition m1, Register r1, Register r2) | |
695 | |
696 #define RRF3_FORM(name) \ | |
697 void name(Register r3, Condition m4, Register r1, Register r2) | |
698 | |
699 #define RS1_FORM(name) \ | |
700 void name(Register r1, Register r3, const MemOperand& opnd); \ | |
701 void name(Register r1, Register r3, Register b2, Disp d2) | |
702 | |
703 #define RS2_FORM(name) \ | |
704 void name(Register r1, Condition m3, const MemOperand& opnd); \ | |
705 void name(Register r1, Condition m3, Register b2, Disp d2) | |
706 | |
707 #define RSE_FORM(name) \ | |
708 void name(Register r1, Register r3, const MemOperand& opnd); \ | |
709 void name(Register r1, Register r3, Register b2, Disp d2) | |
710 | |
711 #define RSL_FORM(name) \ | |
712 void name(Length l, Register b2, Disp d2); \ | |
713 void name(const MemOperand& opnd) | |
714 | |
715 #define RSY1_FORM(name) \ | |
716 void name(Register r1, Register r3, Register b2, Disp d2); \ | |
717 void name(Register r1, Register r3, const MemOperand& opnd) | |
718 | |
719 #define RSY2_FORM(name) \ | |
720 void name(Register r1, Condition m3, Register b2, Disp d2); \ | |
721 void name(Register r1, Condition m3, const MemOperand& opnd) | |
722 | |
723 #define RRD_FORM(name) void name(Register r1, Register r3, Register r2) | |
724 | |
725 #define RRS_FORM(name) \ | |
726 void name(Register r1, Register r2, Register b4, Disp d4, Condition m3); \ | |
727 void name(Register r1, Register r2, Condition m3, const MemOperand& opnd) | |
728 | |
729 #define S_FORM(name) \ | |
730 void name(Register b2, Disp d2); \ | |
731 void name(const MemOperand& opnd) | |
732 | |
733 #define SIY_FORM(name) \ | |
734 void name(const Operand& i2, Register b1, Disp d1); \ | |
735 void name(const MemOperand& opnd, const Operand& i) | |
736 | |
737 #define SS1_FORM(name) \ | |
738 void name(Register b1, Disp d1, Register b3, Disp d2, Length length); \ | |
739 void name(const MemOperand& opnd1, const MemOperand& opnd2, Length length) | |
740 | |
741 #define SS2_FORM(name) \ | |
742 void name(const MemOperand& opnd1, const MemOperand& opnd2, Length length1, \ | |
743 Length length2); \ | |
744 void name(Register b1, Disp d1, Register b2, Disp d2, Length l1, Length l2) | |
745 | |
746 #define SS3_FORM(name) \ | |
747 void name(const MemOperand& opnd1, const MemOperand& opnd2, Length length); \ | |
748 void name(const Operand& i3, Register b1, Disp d1, Register b2, Disp d2, \ | |
749 Length l1) | |
750 | |
751 #define SS4_FORM(name) \ | |
752 void name(const MemOperand& opnd1, const MemOperand& opnd2); \ | |
753 void name(Register r1, Register r3, Register b1, Disp d1, Register b2, \ | |
754 Disp d2) | |
755 | |
756 #define SS5_FORM(name) \ | |
757 void name(const MemOperand& opnd1, const MemOperand& opnd2); \ | |
758 void name(Register r1, Register r3, Register b3, Disp d2, Register b4, \ | |
759 Disp d4) | |
760 | |
761 #define SSE_FORM(name) \ | |
762 void name(Register b1, Disp d1, Register b2, Disp d2); \ | |
763 void name(const MemOperand& opnd1, const MemOperand& opnd2) | |
764 | |
765 #define SSF_FORM(name) \ | |
766 void name(Register r3, Register b1, Disp d1, Register b2, Disp d2); \ | |
767 void name(Register r3, const MemOperand& opnd1, const MemOperand& opnd2) | |
768 | |
769 // S390 instruction sets | |
770 RX_FORM(bc); | |
771 RR_FORM(bctr); | |
772 RX_FORM(cd); | |
773 RRE_FORM(cdr); | |
774 RXE_FORM(cdb); | |
775 RXE_FORM(ceb); | |
776 RRE_FORM(cefbr); | |
777 RXE_FORM(ddb); | |
778 RRE_FORM(ddbr); | |
779 SS1_FORM(ed); | |
780 RRE_FORM(epair); | |
781 RX_FORM(ex); | |
782 RRF2_FORM(fidbr); | |
783 RRE_FORM(flogr); | |
784 RX_FORM(ic_z); | |
785 RXY_FORM(icy); | |
786 RIL1_FORM(iihf); | |
787 RI1_FORM(iihh); | |
788 RI1_FORM(iihl); | |
789 RIL1_FORM(iilf); | |
790 RI1_FORM(iilh); | |
791 RI1_FORM(iill); | |
792 RRE_FORM(lcgr); | |
793 RR_FORM(lcr); | |
794 RX_FORM(le_z); | |
795 RXY_FORM(ley); | |
796 RIL1_FORM(llihf); | |
797 RIL1_FORM(llilf); | |
798 RRE_FORM(lngr); | |
799 RR_FORM(lnr); | |
800 RSY1_FORM(loc); | |
801 RXY_FORM(lrv); | |
802 RXY_FORM(lrvh); | |
803 RXE_FORM(mdb); | |
804 RRE_FORM(mdbr); | |
805 SS4_FORM(mvck); | |
806 SSF_FORM(mvcos); | |
807 SS4_FORM(mvcs); | |
808 SS1_FORM(mvn); | |
809 SS1_FORM(nc); | |
810 SI_FORM(ni); | |
811 RIL1_FORM(nihf); | |
812 RIL1_FORM(nilf); | |
813 RI1_FORM(nilh); | |
814 RI1_FORM(nill); | |
815 RIL1_FORM(oihf); | |
816 RIL1_FORM(oilf); | |
817 RI1_FORM(oill); | |
818 RRE_FORM(popcnt); | |
819 RXE_FORM(sdb); | |
820 RRE_FORM(sdbr); | |
821 RIL1_FORM(slfi); | |
822 RXY_FORM(slgf); | |
823 RIL1_FORM(slgfi); | |
824 RS1_FORM(srdl); | |
825 RX_FORM(ste); | |
826 RXY_FORM(stey); | |
827 RXY_FORM(strv); | |
828 RI1_FORM(tmll); | |
829 SS1_FORM(tr); | |
830 S_FORM(ts); | |
831 RIL1_FORM(xihf); | |
832 RIL1_FORM(xilf); | |
833 | |
834 // Load Address Instructions | |
835 void la(Register r, const MemOperand& opnd); | |
836 void lay(Register r, const MemOperand& opnd); | |
837 void larl(Register r1, const Operand& opnd); | |
838 void larl(Register r, Label* l); | |
839 | |
840 // Load Instructions | |
841 void lb(Register r, const MemOperand& src); | |
842 void lbr(Register r1, Register r2); | |
843 void lgb(Register r, const MemOperand& src); | |
844 void lgbr(Register r1, Register r2); | |
845 void lh(Register r, const MemOperand& src); | |
846 void lhy(Register r, const MemOperand& src); | |
847 void lhr(Register r1, Register r2); | |
848 void lgh(Register r, const MemOperand& src); | |
849 void lghr(Register r1, Register r2); | |
850 void l(Register r, const MemOperand& src); | |
851 void ly(Register r, const MemOperand& src); | |
852 void lr(Register r1, Register r2); | |
853 void lg(Register r, const MemOperand& src); | |
854 void lgr(Register r1, Register r2); | |
855 void lgf(Register r, const MemOperand& src); | |
856 void lgfr(Register r1, Register r2); | |
857 void lhi(Register r, const Operand& imm); | |
858 void lghi(Register r, const Operand& imm); | |
859 | |
860 // Load And Test Instructions | |
861 void lt_z(Register r, const MemOperand& src); | |
862 void ltg(Register r, const MemOperand& src); | |
863 void ltr(Register r1, Register r2); | |
864 void ltgr(Register r1, Register r2); | |
865 void ltgfr(Register r1, Register r2); | |
866 | |
867 // Load Logical Instructions | |
868 void llc(Register r, const MemOperand& src); | |
869 void llgc(Register r, const MemOperand& src); | |
870 void llgf(Register r, const MemOperand& src); | |
871 void llgfr(Register r1, Register r2); | |
872 void llh(Register r, const MemOperand& src); | |
873 void llgh(Register r, const MemOperand& src); | |
874 void llhr(Register r1, Register r2); | |
875 void llghr(Register r1, Register r2); | |
876 | |
877 // Load Multiple Instructions | |
878 void lm(Register r1, Register r2, const MemOperand& src); | |
879 void lmy(Register r1, Register r2, const MemOperand& src); | |
880 void lmg(Register r1, Register r2, const MemOperand& src); | |
881 | |
882 // Store Instructions | |
883 void st(Register r, const MemOperand& src); | |
884 void stc(Register r, const MemOperand& src); | |
885 void stcy(Register r, const MemOperand& src); | |
886 void stg(Register r, const MemOperand& src); | |
887 void sth(Register r, const MemOperand& src); | |
888 void sthy(Register r, const MemOperand& src); | |
889 void sty(Register r, const MemOperand& src); | |
890 | |
891 // Store Multiple Instructions | |
892 void stm(Register r1, Register r2, const MemOperand& src); | |
893 void stmy(Register r1, Register r2, const MemOperand& src); | |
894 void stmg(Register r1, Register r2, const MemOperand& src); | |
895 | |
896 // Compare Instructions | |
897 void c(Register r, const MemOperand& opnd); | |
898 void cy(Register r, const MemOperand& opnd); | |
899 void cr_z(Register r1, Register r2); | |
900 void cg(Register r, const MemOperand& opnd); | |
901 void cgr(Register r1, Register r2); | |
902 void ch(Register r, const MemOperand& opnd); | |
903 void chy(Register r, const MemOperand& opnd); | |
904 void chi(Register r, const Operand& opnd); | |
905 void cghi(Register r, const Operand& opnd); | |
906 void cfi(Register r, const Operand& opnd); | |
907 void cgfi(Register r, const Operand& opnd); | |
908 | |
909 // Compare Logical Instructions | |
910 void cl(Register r, const MemOperand& opnd); | |
911 void cly(Register r, const MemOperand& opnd); | |
912 void clr(Register r1, Register r2); | |
913 void clg(Register r, const MemOperand& opnd); | |
914 void clgr(Register r1, Register r2); | |
915 void clfi(Register r, const Operand& opnd); | |
916 void clgfi(Register r, const Operand& opnd); | |
917 void cli(const MemOperand& mem, const Operand& imm); | |
918 void cliy(const MemOperand& mem, const Operand& imm); | |
919 void clc(const MemOperand& opnd1, const MemOperand& opnd2, Length length); | |
920 | |
921 // Test Under Mask Instructions | |
922 void tm(const MemOperand& mem, const Operand& imm); | |
923 void tmy(const MemOperand& mem, const Operand& imm); | |
924 | |
925 // Rotate Instructions | |
926 void rll(Register r1, Register r3, Register opnd); | |
927 void rll(Register r1, Register r3, const Operand& opnd); | |
928 void rll(Register r1, Register r3, Register r2, const Operand& opnd); | |
929 void rllg(Register r1, Register r3, const Operand& opnd); | |
930 void rllg(Register r1, Register r3, const Register opnd); | |
931 void rllg(Register r1, Register r3, Register r2, const Operand& opnd); | |
932 | |
933 // Shift Instructions (32) | |
934 void sll(Register r1, Register opnd); | |
935 void sll(Register r1, const Operand& opnd); | |
936 void sllk(Register r1, Register r3, Register opnd); | |
937 void sllk(Register r1, Register r3, const Operand& opnd); | |
938 void srl(Register r1, Register opnd); | |
939 void srl(Register r1, const Operand& opnd); | |
940 void srlk(Register r1, Register r3, Register opnd); | |
941 void srlk(Register r1, Register r3, const Operand& opnd); | |
942 void sra(Register r1, Register opnd); | |
943 void sra(Register r1, const Operand& opnd); | |
944 void srak(Register r1, Register r3, Register opnd); | |
945 void srak(Register r1, Register r3, const Operand& opnd); | |
946 void sla(Register r1, Register opnd); | |
947 void sla(Register r1, const Operand& opnd); | |
948 void slak(Register r1, Register r3, Register opnd); | |
949 void slak(Register r1, Register r3, const Operand& opnd); | |
950 | |
951 // Shift Instructions (64) | |
952 void sllg(Register r1, Register r3, const Operand& opnd); | |
953 void sllg(Register r1, Register r3, const Register opnd); | |
954 void srlg(Register r1, Register r3, const Operand& opnd); | |
955 void srlg(Register r1, Register r3, const Register opnd); | |
956 void srag(Register r1, Register r3, const Operand& opnd); | |
957 void srag(Register r1, Register r3, const Register opnd); | |
958 void srda(Register r1, const Operand& opnd); | |
959 void srdl(Register r1, const Operand& opnd); | |
960 void slag(Register r1, Register r3, const Operand& opnd); | |
961 void slag(Register r1, Register r3, const Register opnd); | |
962 | |
963 // Rotate and Insert Selected Bits | |
964 void risbg(Register dst, Register src, const Operand& startBit, | |
965 const Operand& endBit, const Operand& shiftAmt, | |
966 bool zeroBits = true); | |
967 void risbgn(Register dst, Register src, const Operand& startBit, | |
968 const Operand& endBit, const Operand& shiftAmt, | |
969 bool zeroBits = true); | |
970 | |
971 // Move Character (Mem to Mem) | |
972 void mvc(const MemOperand& opnd1, const MemOperand& opnd2, uint32_t length); | |
973 | |
974 // Branch Instructions | |
975 void basr(Register r1, Register r2); | |
976 void bcr(Condition m, Register target); | |
977 void bct(Register r, const MemOperand& opnd); | |
978 void bctg(Register r, const MemOperand& opnd); | |
979 void bras(Register r, const Operand& opnd); | |
980 void brasl(Register r, const Operand& opnd); | |
981 void brc(Condition c, const Operand& opnd); | |
982 void brcl(Condition m, const Operand& opnd, bool isCodeTarget = false); | |
983 void brct(Register r1, const Operand& opnd); | |
984 void brctg(Register r1, const Operand& opnd); | |
985 | |
986 // 32-bit Add Instructions | |
987 void a(Register r1, const MemOperand& opnd); | |
988 void ay(Register r1, const MemOperand& opnd); | |
989 void afi(Register r1, const Operand& opnd); | |
990 void ah(Register r1, const MemOperand& opnd); | |
991 void ahy(Register r1, const MemOperand& opnd); | |
992 void ahi(Register r1, const Operand& opnd); | |
993 void ahik(Register r1, Register r3, const Operand& opnd); | |
994 void ar(Register r1, Register r2); | |
995 void ark(Register r1, Register r2, Register r3); | |
996 void asi(const MemOperand&, const Operand&); | |
997 | |
998 // 64-bit Add Instructions | |
999 void ag(Register r1, const MemOperand& opnd); | |
1000 void agf(Register r1, const MemOperand& opnd); | |
1001 void agfi(Register r1, const Operand& opnd); | |
1002 void agfr(Register r1, Register r2); | |
1003 void aghi(Register r1, const Operand& opnd); | |
1004 void aghik(Register r1, Register r3, const Operand& opnd); | |
1005 void agr(Register r1, Register r2); | |
1006 void agrk(Register r1, Register r2, Register r3); | |
1007 void agsi(const MemOperand&, const Operand&); | |
1008 | |
1009 // 32-bit Add Logical Instructions | |
1010 void al_z(Register r1, const MemOperand& opnd); | |
1011 void aly(Register r1, const MemOperand& opnd); | |
1012 void alfi(Register r1, const Operand& opnd); | |
1013 void alr(Register r1, Register r2); | |
1014 void alrk(Register r1, Register r2, Register r3); | |
1015 | |
1016 // 64-bit Add Logical Instructions | |
1017 void alg(Register r1, const MemOperand& opnd); | |
1018 void algfi(Register r1, const Operand& opnd); | |
1019 void algr(Register r1, Register r2); | |
1020 void algrk(Register r1, Register r2, Register r3); | |
1021 | |
1022 // 32-bit Subtract Instructions | |
1023 void s(Register r1, const MemOperand& opnd); | |
1024 void sy(Register r1, const MemOperand& opnd); | |
1025 void sh(Register r1, const MemOperand& opnd); | |
1026 void shy(Register r1, const MemOperand& opnd); | |
1027 void sr(Register r1, Register r2); | |
1028 void srk(Register r1, Register r2, Register r3); | |
1029 | |
1030 // 64-bit Subtract Instructions | |
1031 void sg(Register r1, const MemOperand& opnd); | |
1032 void sgf(Register r1, const MemOperand& opnd); | |
1033 void sgr(Register r1, Register r2); | |
1034 void sgfr(Register r1, Register r2); | |
1035 void sgrk(Register r1, Register r2, Register r3); | |
1036 | |
1037 // 32-bit Subtract Logical Instructions | |
1038 void sl(Register r1, const MemOperand& opnd); | |
1039 void sly(Register r1, const MemOperand& opnd); | |
1040 void slr(Register r1, Register r2); | |
1041 void slrk(Register r1, Register r2, Register r3); | |
1042 | |
1043 // 64-bit Subtract Logical Instructions | |
1044 void slg(Register r1, const MemOperand& opnd); | |
1045 void slgr(Register r1, Register r2); | |
1046 void slgrk(Register r1, Register r2, Register r3); | |
1047 | |
1048 // 32-bit Multiply Instructions | |
1049 void m(Register r1, const MemOperand& opnd); | |
1050 void mr_z(Register r1, Register r2); | |
1051 void ml(Register r1, const MemOperand& opnd); | |
1052 void mlr(Register r1, Register r2); | |
1053 void ms(Register r1, const MemOperand& opnd); | |
1054 void msy(Register r1, const MemOperand& opnd); | |
1055 void msfi(Register r1, const Operand& opnd); | |
1056 void msr(Register r1, Register r2); | |
1057 void mh(Register r1, const MemOperand& opnd); | |
1058 void mhy(Register r1, const MemOperand& opnd); | |
1059 void mhi(Register r1, const Operand& opnd); | |
1060 | |
1061 // 64-bit Multiply Instructions | |
1062 void mlg(Register r1, const MemOperand& opnd); | |
1063 void mlgr(Register r1, Register r2); | |
1064 void mghi(Register r1, const Operand& opnd); | |
1065 void msgfi(Register r1, const Operand& opnd); | |
1066 void msg(Register r1, const MemOperand& opnd); | |
1067 void msgr(Register r1, Register r2); | |
1068 | |
1069 // 32-bit Divide Instructions | |
1070 void d(Register r1, const MemOperand& opnd); | |
1071 void dr(Register r1, Register r2); | |
1072 void dl(Register r1, const MemOperand& opnd); | |
1073 void dlr(Register r1, Register r2); | |
1074 | |
1075 // 64-bit Divide Instructions | |
1076 void dlgr(Register r1, Register r2); | |
1077 void dsgr(Register r1, Register r2); | |
1078 | |
1079 // Bitwise Instructions (AND / OR / XOR) | |
1080 void n(Register r1, const MemOperand& opnd); | |
1081 void ny(Register r1, const MemOperand& opnd); | |
1082 void nr(Register r1, Register r2); | |
1083 void nrk(Register r1, Register r2, Register r3); | |
1084 void ng(Register r1, const MemOperand& opnd); | |
1085 void ngr(Register r1, Register r2); | |
1086 void ngrk(Register r1, Register r2, Register r3); | |
1087 void o(Register r1, const MemOperand& opnd); | |
1088 void oy(Register r1, const MemOperand& opnd); | |
1089 void or_z(Register r1, Register r2); | |
1090 void ork(Register r1, Register r2, Register r3); | |
1091 void og(Register r1, const MemOperand& opnd); | |
1092 void ogr(Register r1, Register r2); | |
1093 void ogrk(Register r1, Register r2, Register r3); | |
1094 void x(Register r1, const MemOperand& opnd); | |
1095 void xy(Register r1, const MemOperand& opnd); | |
1096 void xr(Register r1, Register r2); | |
1097 void xrk(Register r1, Register r2, Register r3); | |
1098 void xg(Register r1, const MemOperand& opnd); | |
1099 void xgr(Register r1, Register r2); | |
1100 void xgrk(Register r1, Register r2, Register r3); | |
1101 void xc(const MemOperand& opnd1, const MemOperand& opnd2, Length length); | |
1102 | |
1103 // Bitwise GPR <-> FPR Conversion Instructions | |
1104 void lgdr(Register r1, DoubleRegister f2); | |
1105 void ldgr(DoubleRegister f1, Register r2); | |
1106 | |
1107 // Floating Point Load / Store Instructions | |
1108 void ld(DoubleRegister r1, const MemOperand& opnd); | |
1109 void ldy(DoubleRegister r1, const MemOperand& opnd); | |
1110 void le_z(DoubleRegister r1, const MemOperand& opnd); | |
1111 void ley(DoubleRegister r1, const MemOperand& opnd); | |
1112 void ldr(DoubleRegister r1, DoubleRegister r2); | |
1113 void ltdbr(DoubleRegister r1, DoubleRegister r2); | |
1114 void ltebr(DoubleRegister r1, DoubleRegister r2); | |
1115 void std(DoubleRegister r1, const MemOperand& opnd); | |
1116 void stdy(DoubleRegister r1, const MemOperand& opnd); | |
1117 void ste(DoubleRegister r1, const MemOperand& opnd); | |
1118 void stey(DoubleRegister r1, const MemOperand& opnd); | |
1119 | |
1120 // Floating Point Load Rounded/Positive Instructions | |
1121 void ledbr(DoubleRegister r1, DoubleRegister r2); | |
1122 void ldebr(DoubleRegister r1, DoubleRegister r2); | |
1123 void lpebr(DoubleRegister r1, DoubleRegister r2); | |
1124 void lpdbr(DoubleRegister r1, DoubleRegister r2); | |
1125 | |
1126 // Floating <-> Fixed Point Conversion Instructions | |
1127 void cdlfbr(Condition m3, Condition m4, DoubleRegister fltReg, | |
1128 Register fixReg); | |
1129 void cdlgbr(Condition m3, Condition m4, DoubleRegister fltReg, | |
1130 Register fixReg); | |
1131 void celgbr(Condition m3, Condition m4, DoubleRegister fltReg, | |
1132 Register fixReg); | |
1133 void celfbr(Condition m3, Condition m4, DoubleRegister fltReg, | |
1134 Register fixReg); | |
1135 void clfdbr(Condition m3, Condition m4, Register fixReg, | |
1136 DoubleRegister fltReg); | |
1137 void clfebr(Condition m3, Condition m4, Register fixReg, | |
1138 DoubleRegister fltReg); | |
1139 void clgdbr(Condition m3, Condition m4, Register fixReg, | |
1140 DoubleRegister fltReg); | |
1141 void clgebr(Condition m3, Condition m4, Register fixReg, | |
1142 DoubleRegister fltReg); | |
1143 void cfdbr(Condition m, Register fixReg, DoubleRegister fltReg); | |
1144 void cdfbr(DoubleRegister fltReg, Register fixReg); | |
1145 void cgebr(Condition m, Register fixReg, DoubleRegister fltReg); | |
1146 void cgdbr(Condition m, Register fixReg, DoubleRegister fltReg); | |
1147 void cegbr(DoubleRegister fltReg, Register fixReg); | |
1148 void cdgbr(DoubleRegister fltReg, Register fixReg); | |
1149 void cfebr(Condition m3, Register fixReg, DoubleRegister fltReg); | |
1150 void cefbr(DoubleRegister fltReg, Register fixReg); | |
1151 | |
1152 // Floating Point Compare Instructions | |
1153 void cebr(DoubleRegister r1, DoubleRegister r2); | |
1154 void cdb(DoubleRegister r1, const MemOperand& opnd); | |
1155 void cdbr(DoubleRegister r1, DoubleRegister r2); | |
1156 | |
1157 // Floating Point Arithmetic Instructions | |
1158 void aebr(DoubleRegister r1, DoubleRegister r2); | |
1159 void adb(DoubleRegister r1, const MemOperand& opnd); | |
1160 void adbr(DoubleRegister r1, DoubleRegister r2); | |
1161 void lzdr(DoubleRegister r1); | |
1162 void sebr(DoubleRegister r1, DoubleRegister r2); | |
1163 void sdb(DoubleRegister r1, const MemOperand& opnd); | |
1164 void sdbr(DoubleRegister r1, DoubleRegister r2); | |
1165 void meebr(DoubleRegister r1, DoubleRegister r2); | |
1166 void mdb(DoubleRegister r1, const MemOperand& opnd); | |
1167 void mdbr(DoubleRegister r1, DoubleRegister r2); | |
1168 void debr(DoubleRegister r1, DoubleRegister r2); | |
1169 void ddb(DoubleRegister r1, const MemOperand& opnd); | |
1170 void ddbr(DoubleRegister r1, DoubleRegister r2); | |
1171 void madbr(DoubleRegister r1, DoubleRegister r2, DoubleRegister r3); | |
1172 void msdbr(DoubleRegister r1, DoubleRegister r2, DoubleRegister r3); | |
1173 void sqebr(DoubleRegister r1, DoubleRegister r2); | |
1174 void sqdb(DoubleRegister r1, const MemOperand& opnd); | |
1175 void sqdbr(DoubleRegister r1, DoubleRegister r2); | |
1176 void lcdbr(DoubleRegister r1, DoubleRegister r2); | |
1177 void ldeb(DoubleRegister r1, const MemOperand& opnd); | |
1178 | |
1179 enum FIDBRA_MASK3 { | |
1180 FIDBRA_CURRENT_ROUNDING_MODE = 0, | |
1181 FIDBRA_ROUND_TO_NEAREST_AWAY_FROM_0 = 1, | |
1182 // ... | |
1183 FIDBRA_ROUND_TOWARD_0 = 5, | |
1184 FIDBRA_ROUND_TOWARD_POS_INF = 6, | |
1185 FIDBRA_ROUND_TOWARD_NEG_INF = 7 | |
1186 }; | |
1187 void fiebra(DoubleRegister d1, DoubleRegister d2, FIDBRA_MASK3 m3); | |
1188 void fidbra(DoubleRegister d1, DoubleRegister d2, FIDBRA_MASK3 m3); | |
1189 | |
1190 // Move integer | |
1191 void mvhi(const MemOperand& opnd1, const Operand& i2); | |
1192 void mvghi(const MemOperand& opnd1, const Operand& i2); | |
1193 | |
1194 // Exception-generating instructions and debugging support | |
1195 void stop(const char* msg, Condition cond = al, | |
1196 int32_t code = kDefaultStopCode, CRegister cr = cr7); | |
1197 | |
1198 void bkpt(uint32_t imm16); // v5 and above | |
1199 | |
1200 // Different nop operations are used by the code generator to detect certain | |
1201 // states of the generated code. | |
1202 enum NopMarkerTypes { | |
1203 NON_MARKING_NOP = 0, | |
1204 GROUP_ENDING_NOP, | |
1205 DEBUG_BREAK_NOP, | |
1206 // IC markers. | |
1207 PROPERTY_ACCESS_INLINED, | |
1208 PROPERTY_ACCESS_INLINED_CONTEXT, | |
1209 PROPERTY_ACCESS_INLINED_CONTEXT_DONT_DELETE, | |
1210 // Helper values. | |
1211 LAST_CODE_MARKER, | |
1212 FIRST_IC_MARKER = PROPERTY_ACCESS_INLINED | |
1213 }; | |
1214 | |
1215 void nop(int type = 0); // 0 is the default non-marking type. | |
1216 | |
1217 // Check the code size generated from label to here. | |
1218 int SizeOfCodeGeneratedSince(Label* label) { | |
1219 return pc_offset() - label->pos(); | |
1220 } | |
1221 | |
1222 // Debugging | |
1223 | |
1224 // Mark generator continuation. | |
1225 void RecordGeneratorContinuation(); | |
1226 | |
1227 // Mark address of a debug break slot. | |
1228 void RecordDebugBreakSlot(RelocInfo::Mode mode); | |
1229 | |
1230 // Record the AST id of the CallIC being compiled, so that it can be placed | |
1231 // in the relocation information. | |
1232 void SetRecordedAstId(TypeFeedbackId ast_id) { recorded_ast_id_ = ast_id; } | |
1233 | |
1234 TypeFeedbackId RecordedAstId() { | |
1235 // roohack - another issue??? DCHECK(!recorded_ast_id_.IsNone()); | |
1236 return recorded_ast_id_; | |
1237 } | |
1238 | |
1239 void ClearRecordedAstId() { recorded_ast_id_ = TypeFeedbackId::None(); } | |
1240 | |
1241 // Record a comment relocation entry that can be used by a disassembler. | |
1242 // Use --code-comments to enable. | |
1243 void RecordComment(const char* msg); | |
1244 | |
1245 // Record a deoptimization reason that can be used by a log or cpu profiler. | |
1246 // Use --trace-deopt to enable. | |
1247 void RecordDeoptReason(const int reason, int raw_position); | |
1248 | |
1249 // Writes a single byte or word of data in the code stream. Used | |
1250 // for inline tables, e.g., jump-tables. | |
1251 void db(uint8_t data); | |
1252 void dd(uint32_t data); | |
1253 void dq(uint64_t data); | |
1254 void dp(uintptr_t data); | |
1255 | |
1256 PositionsRecorder* positions_recorder() { return &positions_recorder_; } | |
1257 | |
1258 void PatchConstantPoolAccessInstruction(int pc_offset, int offset, | |
1259 ConstantPoolEntry::Access access, | |
1260 ConstantPoolEntry::Type type) { | |
1261 // No embedded constant pool support. | |
1262 UNREACHABLE(); | |
1263 } | |
1264 | |
1265 // Read/patch instructions | |
1266 SixByteInstr instr_at(int pos) { | |
1267 return Instruction::InstructionBits(buffer_ + pos); | |
1268 } | |
1269 template <typename T> | |
1270 void instr_at_put(int pos, T instr) { | |
1271 Instruction::SetInstructionBits<T>(buffer_ + pos, instr); | |
1272 } | |
1273 | |
1274 // Decodes instruction at pos, and returns its length | |
1275 int32_t instr_length_at(int pos) { | |
1276 return Instruction::InstructionLength(buffer_ + pos); | |
1277 } | |
1278 | |
1279 static SixByteInstr instr_at(byte* pc) { | |
1280 return Instruction::InstructionBits(pc); | |
1281 } | |
1282 | |
1283 static Condition GetCondition(Instr instr); | |
1284 | |
1285 static bool IsBranch(Instr instr); | |
1286 #if V8_TARGET_ARCH_S390X | |
1287 static bool Is64BitLoadIntoIP(SixByteInstr instr1, SixByteInstr instr2); | |
1288 #else | |
1289 static bool Is32BitLoadIntoIP(SixByteInstr instr); | |
1290 #endif | |
1291 | |
1292 static bool IsCmpRegister(Instr instr); | |
1293 static bool IsCmpImmediate(Instr instr); | |
1294 static bool IsNop(SixByteInstr instr, int type = NON_MARKING_NOP); | |
1295 | |
1296 // The code currently calls CheckBuffer() too often. This has the side | |
1297 // effect of randomly growing the buffer in the middle of multi-instruction | |
1298 // sequences. | |
1299 // | |
1300 // This function allows outside callers to check and grow the buffer | |
1301 void EnsureSpaceFor(int space_needed); | |
1302 | |
1303 void EmitRelocations(); | |
1304 void emit_label_addr(Label* label); | |
1305 | |
1306 public: | |
1307 byte* buffer_pos() const { return buffer_; } | |
1308 | |
1309 protected: | |
1310 // Relocation for a type-recording IC has the AST id added to it. This | |
1311 // member variable is a way to pass the information from the call site to | |
1312 // the relocation info. | |
1313 TypeFeedbackId recorded_ast_id_; | |
1314 | |
1315 int buffer_space() const { return reloc_info_writer.pos() - pc_; } | |
1316 | |
1317 // Decode instruction(s) at pos and return backchain to previous | |
1318 // label reference or kEndOfChain. | |
1319 int target_at(int pos); | |
1320 | |
1321 // Patch instruction(s) at pos to target target_pos (e.g. branch) | |
1322 void target_at_put(int pos, int target_pos, bool* is_branch = nullptr); | |
1323 | |
1324 // Record reloc info for current pc_ | |
1325 void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0); | |
1326 | |
1327 private: | |
1328 // Code generation | |
1329 // The relocation writer's position is at least kGap bytes below the end of | |
1330 // the generated instructions. This is so that multi-instruction sequences do | |
1331 // not have to check for overflow. The same is true for writes of large | |
1332 // relocation info entries. | |
1333 static const int kGap = 32; | |
1334 | |
1335 // Relocation info generation | |
1336 // Each relocation is encoded as a variable size value | |
1337 static const int kMaxRelocSize = RelocInfoWriter::kMaxSize; | |
1338 RelocInfoWriter reloc_info_writer; | |
1339 std::vector<DeferredRelocInfo> relocations_; | |
1340 | |
1341 // The bound position, before this we cannot do instruction elimination. | |
1342 int last_bound_pos_; | |
1343 | |
1344 // Code emission | |
1345 inline void CheckBuffer(); | |
1346 void GrowBuffer(int needed = 0); | |
1347 inline void TrackBranch(); | |
1348 inline void UntrackBranch(); | |
1349 | |
1350 inline int32_t emit_code_target( | |
1351 Handle<Code> target, RelocInfo::Mode rmode, | |
1352 TypeFeedbackId ast_id = TypeFeedbackId::None()); | |
1353 | |
1354 // Helpers to emit binary encoding of 2/4/6 byte instructions. | |
1355 inline void emit2bytes(uint16_t x); | |
1356 inline void emit4bytes(uint32_t x); | |
1357 inline void emit6bytes(uint64_t x); | |
1358 | |
1359 // Helpers to emit binary encoding for various instruction formats. | |
1360 | |
1361 inline void rr_form(Opcode op, Register r1, Register r2); | |
1362 inline void rr_form(Opcode op, DoubleRegister r1, DoubleRegister r2); | |
1363 inline void rr_form(Opcode op, Condition m1, Register r2); | |
1364 inline void rr2_form(uint8_t op, Condition m1, Register r2); | |
1365 | |
1366 inline void rx_form(Opcode op, Register r1, Register x2, Register b2, | |
1367 Disp d2); | |
1368 inline void rx_form(Opcode op, DoubleRegister r1, Register x2, Register b2, | |
1369 Disp d2); | |
1370 | |
1371 inline void ri_form(Opcode op, Register r1, const Operand& i2); | |
1372 inline void ri_form(Opcode op, Condition m1, const Operand& i2); | |
1373 | |
1374 inline void rie_form(Opcode op, Register r1, Register r3, const Operand& i2); | |
1375 inline void rie_f_form(Opcode op, Register r1, Register r2, const Operand& i3, | |
1376 const Operand& i4, const Operand& i5); | |
1377 | |
1378 inline void ril_form(Opcode op, Register r1, const Operand& i2); | |
1379 inline void ril_form(Opcode op, Condition m1, const Operand& i2); | |
1380 | |
1381 inline void ris_form(Opcode op, Register r1, Condition m3, Register b4, | |
1382 Disp d4, const Operand& i2); | |
1383 | |
1384 inline void rrd_form(Opcode op, Register r1, Register r3, Register r2); | |
1385 | |
1386 inline void rre_form(Opcode op, Register r1, Register r2); | |
1387 inline void rre_form(Opcode op, DoubleRegister r1, DoubleRegister r2); | |
1388 | |
1389 inline void rrf1_form(Opcode op, Register r1, Register r2, Register r3); | |
1390 inline void rrf1_form(uint32_t x); | |
1391 inline void rrf2_form(uint32_t x); | |
1392 inline void rrf3_form(uint32_t x); | |
1393 inline void rrfe_form(Opcode op, Condition m3, Condition m4, Register r1, | |
1394 Register r2); | |
1395 | |
1396 inline void rrs_form(Opcode op, Register r1, Register r2, Register b4, | |
1397 Disp d4, Condition m3); | |
1398 | |
1399 inline void rs_form(Opcode op, Register r1, Condition m3, Register b2, | |
1400 const Disp d2); | |
1401 inline void rs_form(Opcode op, Register r1, Register r3, Register b2, | |
1402 const Disp d2); | |
1403 | |
1404 inline void rsi_form(Opcode op, Register r1, Register r3, const Operand& i2); | |
1405 inline void rsl_form(Opcode op, Length l1, Register b2, Disp d2); | |
1406 | |
1407 inline void rsy_form(Opcode op, Register r1, Register r3, Register b2, | |
1408 const Disp d2); | |
1409 inline void rsy_form(Opcode op, Register r1, Condition m3, Register b2, | |
1410 const Disp d2); | |
1411 | |
1412 inline void rxe_form(Opcode op, Register r1, Register x2, Register b2, | |
1413 Disp d2); | |
1414 | |
1415 inline void rxf_form(Opcode op, Register r1, Register r3, Register b2, | |
1416 Register x2, Disp d2); | |
1417 | |
1418 inline void rxy_form(Opcode op, Register r1, Register x2, Register b2, | |
1419 Disp d2); | |
1420 inline void rxy_form(Opcode op, DoubleRegister r1, Register x2, Register b2, | |
1421 Disp d2); | |
1422 | |
1423 inline void s_form(Opcode op, Register b1, Disp d2); | |
1424 | |
1425 inline void si_form(Opcode op, const Operand& i2, Register b1, Disp d1); | |
1426 inline void siy_form(Opcode op, const Operand& i2, Register b1, Disp d1); | |
1427 | |
1428 inline void sil_form(Opcode op, Register b1, Disp d1, const Operand& i2); | |
1429 | |
1430 inline void ss_form(Opcode op, Length l, Register b1, Disp d1, Register b2, | |
1431 Disp d2); | |
1432 inline void ss_form(Opcode op, Length l1, Length l2, Register b1, Disp d1, | |
1433 Register b2, Disp d2); | |
1434 inline void ss_form(Opcode op, Length l1, const Operand& i3, Register b1, | |
1435 Disp d1, Register b2, Disp d2); | |
1436 inline void ss_form(Opcode op, Register r1, Register r2, Register b1, Disp d1, | |
1437 Register b2, Disp d2); | |
1438 inline void sse_form(Opcode op, Register b1, Disp d1, Register b2, Disp d2); | |
1439 inline void ssf_form(Opcode op, Register r3, Register b1, Disp d1, | |
1440 Register b2, Disp d2); | |
1441 | |
1442 // Labels | |
1443 void print(Label* L); | |
1444 int max_reach_from(int pos); | |
1445 void bind_to(Label* L, int pos); | |
1446 void next(Label* L); | |
1447 | |
1448 friend class RegExpMacroAssemblerS390; | |
1449 friend class RelocInfo; | |
1450 friend class CodePatcher; | |
1451 | |
1452 List<Handle<Code> > code_targets_; | |
1453 | |
1454 PositionsRecorder positions_recorder_; | |
1455 friend class PositionsRecorder; | |
1456 friend class EnsureSpace; | |
1457 }; | |
1458 | |
1459 class EnsureSpace BASE_EMBEDDED { | |
1460 public: | |
1461 explicit EnsureSpace(Assembler* assembler) { assembler->CheckBuffer(); } | |
1462 }; | |
1463 | |
1464 } // namespace internal | |
1465 } // namespace v8 | |
1466 | |
1467 #endif // V8_S390_ASSEMBLER_S390_H_ | |
OLD | NEW |