OLD | NEW |
(Empty) | |
| 1 // Copyright (c) 1994-2006 Sun Microsystems Inc. |
| 2 // All Rights Reserved. |
| 3 // |
| 4 // Redistribution and use in source and binary forms, with or without |
| 5 // modification, are permitted provided that the following conditions |
| 6 // are met: |
| 7 // |
| 8 // - Redistributions of source code must retain the above copyright notice, |
| 9 // this list of conditions and the following disclaimer. |
| 10 // |
| 11 // - Redistribution in binary form must reproduce the above copyright |
| 12 // notice, this list of conditions and the following disclaimer in the |
| 13 // documentation and/or other materials provided with the |
| 14 // distribution. |
| 15 // |
| 16 // - Neither the name of Sun Microsystems or the names of contributors may |
| 17 // be used to endorse or promote products derived from this software without |
| 18 // specific prior written permission. |
| 19 // |
| 20 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 21 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 22 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
| 23 // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
| 24 // COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
| 25 // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| 26 // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
| 27 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 28 // HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| 29 // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 30 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| 31 // OF THE POSSIBILITY OF SUCH DAMAGE. |
| 32 |
| 33 // The original source code covered by the above license above has been |
| 34 // modified significantly by Google Inc. |
| 35 // Copyright 2014 the V8 project authors. All rights reserved. |
| 36 |
| 37 // A light-weight S390 Assembler |
| 38 // Generates user mode instructions for z/Architecture |
| 39 |
| 40 #ifndef V8_S390_ASSEMBLER_S390_H_ |
| 41 #define V8_S390_ASSEMBLER_S390_H_ |
| 42 #include <stdio.h> |
| 43 #if V8_HOST_ARCH_S390 |
| 44 // elf.h include is required for auxv check for STFLE facility used |
| 45 // for hardware detection, which is sensible only on s390 hosts. |
| 46 #include <elf.h> |
| 47 #endif |
| 48 |
| 49 #include <fcntl.h> |
| 50 #include <unistd.h> |
| 51 #include "src/assembler.h" |
| 52 #include "src/s390/constants-s390.h" |
| 53 |
| 54 #define ABI_USES_FUNCTION_DESCRIPTORS 0 |
| 55 |
| 56 #define ABI_PASSES_HANDLES_IN_REGS 1 |
| 57 |
| 58 // ObjectPair is defined under runtime/runtime-util.h. |
| 59 // On 31-bit, ObjectPair == uint64_t. ABI dictates long long |
| 60 // be returned with the lower addressed half in r2 |
| 61 // and the higher addressed half in r3. (Returns in Regs) |
| 62 // On 64-bit, ObjectPair is a Struct. ABI dictaes Structs be |
| 63 // returned in a storage buffer allocated by the caller, |
| 64 // with the address of this buffer passed as a hidden |
| 65 // argument in r2. (Does NOT return in Regs) |
| 66 // For x86 linux, ObjectPair is returned in registers. |
| 67 #if V8_TARGET_ARCH_S390X |
| 68 #define ABI_RETURNS_OBJECTPAIR_IN_REGS 0 |
| 69 #else |
| 70 #define ABI_RETURNS_OBJECTPAIR_IN_REGS 1 |
| 71 #endif |
| 72 |
| 73 #define ABI_CALL_VIA_IP 1 |
| 74 |
| 75 #define INSTR_AND_DATA_CACHE_COHERENCY LWSYNC |
| 76 |
| 77 namespace v8 { |
| 78 namespace internal { |
| 79 |
| 80 // clang-format off |
| 81 #define GENERAL_REGISTERS(V) \ |
| 82 V(r0) V(r1) V(r2) V(r3) V(r4) V(r5) V(r6) V(r7) \ |
| 83 V(r8) V(r9) V(r10) V(fp) V(ip) V(r13) V(r14) V(sp) |
| 84 |
| 85 #define ALLOCATABLE_GENERAL_REGISTERS(V) \ |
| 86 V(r2) V(r3) V(r4) V(r5) V(r6) V(r7) \ |
| 87 V(r8) V(r9) V(r13) |
| 88 |
| 89 #define DOUBLE_REGISTERS(V) \ |
| 90 V(d0) V(d1) V(d2) V(d3) V(d4) V(d5) V(d6) V(d7) \ |
| 91 V(d8) V(d9) V(d10) V(d11) V(d12) V(d13) V(d14) V(d15) |
| 92 |
| 93 #define ALLOCATABLE_DOUBLE_REGISTERS(V) \ |
| 94 V(d1) V(d2) V(d3) V(d4) V(d5) V(d6) V(d7) \ |
| 95 V(d8) V(d9) V(d10) V(d11) V(d12) V(d15) V(d0) |
| 96 // clang-format on |
| 97 |
| 98 // CPU Registers. |
| 99 // |
| 100 // 1) We would prefer to use an enum, but enum values are assignment- |
| 101 // compatible with int, which has caused code-generation bugs. |
| 102 // |
| 103 // 2) We would prefer to use a class instead of a struct but we don't like |
| 104 // the register initialization to depend on the particular initialization |
| 105 // order (which appears to be different on OS X, Linux, and Windows for the |
| 106 // installed versions of C++ we tried). Using a struct permits C-style |
| 107 // "initialization". Also, the Register objects cannot be const as this |
| 108 // forces initialization stubs in MSVC, making us dependent on initialization |
| 109 // order. |
| 110 // |
| 111 // 3) By not using an enum, we are possibly preventing the compiler from |
| 112 // doing certain constant folds, which may significantly reduce the |
| 113 // code generated for some assembly instructions (because they boil down |
| 114 // to a few constants). If this is a problem, we could change the code |
| 115 // such that we use an enum in optimized mode, and the struct in debug |
| 116 // mode. This way we get the compile-time error checking in debug mode |
| 117 // and best performance in optimized code. |
| 118 |
| 119 struct Register { |
| 120 enum Code { |
| 121 #define REGISTER_CODE(R) kCode_##R, |
| 122 GENERAL_REGISTERS(REGISTER_CODE) |
| 123 #undef REGISTER_CODE |
| 124 kAfterLast, |
| 125 kCode_no_reg = -1 |
| 126 }; |
| 127 static const int kNumRegisters = Code::kAfterLast; |
| 128 |
| 129 #define REGISTER_COUNT(R) 1 + |
| 130 static const int kNumAllocatable = |
| 131 ALLOCATABLE_GENERAL_REGISTERS(REGISTER_COUNT) 0; |
| 132 #undef REGISTER_COUNT |
| 133 |
| 134 #define REGISTER_BIT(R) 1 << kCode_##R | |
| 135 static const RegList kAllocatable = |
| 136 ALLOCATABLE_GENERAL_REGISTERS(REGISTER_BIT) 0; |
| 137 #undef REGISTER_BIT |
| 138 |
| 139 static Register from_code(int code) { |
| 140 DCHECK(code >= 0); |
| 141 DCHECK(code < kNumRegisters); |
| 142 Register r = {code}; |
| 143 return r; |
| 144 } |
| 145 |
| 146 const char* ToString(); |
| 147 bool IsAllocatable() const; |
| 148 bool is_valid() const { return 0 <= reg_code && reg_code < kNumRegisters; } |
| 149 bool is(Register reg) const { return reg_code == reg.reg_code; } |
| 150 int code() const { |
| 151 DCHECK(is_valid()); |
| 152 return reg_code; |
| 153 } |
| 154 int bit() const { |
| 155 DCHECK(is_valid()); |
| 156 return 1 << reg_code; |
| 157 } |
| 158 |
| 159 void set_code(int code) { |
| 160 reg_code = code; |
| 161 DCHECK(is_valid()); |
| 162 } |
| 163 |
| 164 #if V8_TARGET_LITTLE_ENDIAN |
| 165 static const int kMantissaOffset = 0; |
| 166 static const int kExponentOffset = 4; |
| 167 #else |
| 168 static const int kMantissaOffset = 4; |
| 169 static const int kExponentOffset = 0; |
| 170 #endif |
| 171 |
| 172 // Unfortunately we can't make this private in a struct. |
| 173 int reg_code; |
| 174 }; |
| 175 |
| 176 typedef struct Register Register; |
| 177 |
| 178 #define DECLARE_REGISTER(R) const Register R = {Register::kCode_##R}; |
| 179 GENERAL_REGISTERS(DECLARE_REGISTER) |
| 180 #undef DECLARE_REGISTER |
| 181 const Register no_reg = {Register::kCode_no_reg}; |
| 182 |
| 183 // Register aliases |
| 184 const Register kLithiumScratch = r1; // lithium scratch. |
| 185 const Register kRootRegister = r10; // Roots array pointer. |
| 186 const Register cp = r13; // JavaScript context pointer. |
| 187 |
| 188 // Double word FP register. |
| 189 struct DoubleRegister { |
| 190 enum Code { |
| 191 #define REGISTER_CODE(R) kCode_##R, |
| 192 DOUBLE_REGISTERS(REGISTER_CODE) |
| 193 #undef REGISTER_CODE |
| 194 kAfterLast, |
| 195 kCode_no_reg = -1 |
| 196 }; |
| 197 |
| 198 static const int kNumRegisters = Code::kAfterLast; |
| 199 static const int kMaxNumRegisters = kNumRegisters; |
| 200 |
| 201 const char* ToString(); |
| 202 bool IsAllocatable() const; |
| 203 bool is_valid() const { return 0 <= reg_code && reg_code < kNumRegisters; } |
| 204 bool is(DoubleRegister reg) const { return reg_code == reg.reg_code; } |
| 205 |
| 206 int code() const { |
| 207 DCHECK(is_valid()); |
| 208 return reg_code; |
| 209 } |
| 210 |
| 211 int bit() const { |
| 212 DCHECK(is_valid()); |
| 213 return 1 << reg_code; |
| 214 } |
| 215 |
| 216 static DoubleRegister from_code(int code) { |
| 217 DoubleRegister r = {code}; |
| 218 return r; |
| 219 } |
| 220 |
| 221 int reg_code; |
| 222 }; |
| 223 |
| 224 typedef DoubleRegister DoubleRegister; |
| 225 |
| 226 #define DECLARE_REGISTER(R) \ |
| 227 const DoubleRegister R = {DoubleRegister::kCode_##R}; |
| 228 DOUBLE_REGISTERS(DECLARE_REGISTER) |
| 229 #undef DECLARE_REGISTER |
| 230 const Register no_dreg = {Register::kCode_no_reg}; |
| 231 |
| 232 // Aliases for double registers. Defined using #define instead of |
| 233 // "static const DoubleRegister&" because Clang complains otherwise when a |
| 234 // compilation unit that includes this header doesn't use the variables. |
| 235 #define kDoubleRegZero d14 |
| 236 #define kScratchDoubleReg d13 |
| 237 |
| 238 Register ToRegister(int num); |
| 239 |
| 240 // Coprocessor register |
| 241 struct CRegister { |
| 242 bool is_valid() const { return 0 <= reg_code && reg_code < 16; } |
| 243 bool is(CRegister creg) const { return reg_code == creg.reg_code; } |
| 244 int code() const { |
| 245 DCHECK(is_valid()); |
| 246 return reg_code; |
| 247 } |
| 248 int bit() const { |
| 249 DCHECK(is_valid()); |
| 250 return 1 << reg_code; |
| 251 } |
| 252 |
| 253 // Unfortunately we can't make this private in a struct. |
| 254 int reg_code; |
| 255 }; |
| 256 |
| 257 const CRegister no_creg = {-1}; |
| 258 |
| 259 const CRegister cr0 = {0}; |
| 260 const CRegister cr1 = {1}; |
| 261 const CRegister cr2 = {2}; |
| 262 const CRegister cr3 = {3}; |
| 263 const CRegister cr4 = {4}; |
| 264 const CRegister cr5 = {5}; |
| 265 const CRegister cr6 = {6}; |
| 266 const CRegister cr7 = {7}; |
| 267 const CRegister cr8 = {8}; |
| 268 const CRegister cr9 = {9}; |
| 269 const CRegister cr10 = {10}; |
| 270 const CRegister cr11 = {11}; |
| 271 const CRegister cr12 = {12}; |
| 272 const CRegister cr13 = {13}; |
| 273 const CRegister cr14 = {14}; |
| 274 const CRegister cr15 = {15}; |
| 275 |
| 276 // TODO(john.yan) Define SIMD registers. |
| 277 typedef DoubleRegister Simd128Register; |
| 278 |
| 279 // ----------------------------------------------------------------------------- |
| 280 // Machine instruction Operands |
| 281 |
| 282 #if V8_TARGET_ARCH_S390X |
| 283 const RelocInfo::Mode kRelocInfo_NONEPTR = RelocInfo::NONE64; |
| 284 #else |
| 285 const RelocInfo::Mode kRelocInfo_NONEPTR = RelocInfo::NONE32; |
| 286 #endif |
| 287 |
| 288 // Class Operand represents a shifter operand in data processing instructions |
| 289 // defining immediate numbers and masks |
| 290 typedef uint8_t Length; |
| 291 |
| 292 struct Mask { |
| 293 uint8_t mask; |
| 294 uint8_t value() { return mask; } |
| 295 static Mask from_value(uint8_t input) { |
| 296 DCHECK(input <= 0x0F); |
| 297 Mask m = {input}; |
| 298 return m; |
| 299 } |
| 300 }; |
| 301 |
| 302 class Operand BASE_EMBEDDED { |
| 303 public: |
| 304 // immediate |
| 305 INLINE(explicit Operand(intptr_t immediate, |
| 306 RelocInfo::Mode rmode = kRelocInfo_NONEPTR)); |
| 307 INLINE(static Operand Zero()) { return Operand(static_cast<intptr_t>(0)); } |
| 308 INLINE(explicit Operand(const ExternalReference& f)); |
| 309 explicit Operand(Handle<Object> handle); |
| 310 INLINE(explicit Operand(Smi* value)); |
| 311 |
| 312 // rm |
| 313 INLINE(explicit Operand(Register rm)); |
| 314 |
| 315 // Return true if this is a register operand. |
| 316 INLINE(bool is_reg() const); |
| 317 |
| 318 bool must_output_reloc_info(const Assembler* assembler) const; |
| 319 |
| 320 inline intptr_t immediate() const { |
| 321 DCHECK(!rm_.is_valid()); |
| 322 return imm_; |
| 323 } |
| 324 |
| 325 inline void setBits(int n) { |
| 326 imm_ = (static_cast<uint32_t>(imm_) << (32 - n)) >> (32 - n); |
| 327 } |
| 328 |
| 329 Register rm() const { return rm_; } |
| 330 |
| 331 private: |
| 332 Register rm_; |
| 333 intptr_t imm_; // valid if rm_ == no_reg |
| 334 RelocInfo::Mode rmode_; |
| 335 |
| 336 friend class Assembler; |
| 337 friend class MacroAssembler; |
| 338 }; |
| 339 |
| 340 typedef int32_t Disp; |
| 341 |
| 342 // Class MemOperand represents a memory operand in load and store instructions |
| 343 // On S390, we have various flavours of memory operands: |
| 344 // 1) a base register + 16 bit unsigned displacement |
| 345 // 2) a base register + index register + 16 bit unsigned displacement |
| 346 // 3) a base register + index register + 20 bit signed displacement |
| 347 class MemOperand BASE_EMBEDDED { |
| 348 public: |
| 349 explicit MemOperand(Register rx, Disp offset = 0); |
| 350 explicit MemOperand(Register rx, Register rb, Disp offset = 0); |
| 351 |
| 352 int32_t offset() const { return offset_; } |
| 353 uint32_t getDisplacement() const { return offset(); } |
| 354 |
| 355 // Base register |
| 356 Register rb() const { |
| 357 DCHECK(!baseRegister.is(no_reg)); |
| 358 return baseRegister; |
| 359 } |
| 360 |
| 361 Register getBaseRegister() const { return rb(); } |
| 362 |
| 363 // Index Register |
| 364 Register rx() const { |
| 365 DCHECK(!indexRegister.is(no_reg)); |
| 366 return indexRegister; |
| 367 } |
| 368 Register getIndexRegister() const { return rx(); } |
| 369 |
| 370 private: |
| 371 Register baseRegister; // base |
| 372 Register indexRegister; // index |
| 373 int32_t offset_; // offset |
| 374 |
| 375 friend class Assembler; |
| 376 }; |
| 377 |
| 378 class DeferredRelocInfo { |
| 379 public: |
| 380 DeferredRelocInfo() {} |
| 381 DeferredRelocInfo(int position, RelocInfo::Mode rmode, intptr_t data) |
| 382 : position_(position), rmode_(rmode), data_(data) {} |
| 383 |
| 384 int position() const { return position_; } |
| 385 RelocInfo::Mode rmode() const { return rmode_; } |
| 386 intptr_t data() const { return data_; } |
| 387 |
| 388 private: |
| 389 int position_; |
| 390 RelocInfo::Mode rmode_; |
| 391 intptr_t data_; |
| 392 }; |
| 393 |
| 394 class Assembler : public AssemblerBase { |
| 395 public: |
| 396 // Create an assembler. Instructions and relocation information are emitted |
| 397 // into a buffer, with the instructions starting from the beginning and the |
| 398 // relocation information starting from the end of the buffer. See CodeDesc |
| 399 // for a detailed comment on the layout (globals.h). |
| 400 // |
| 401 // If the provided buffer is NULL, the assembler allocates and grows its own |
| 402 // buffer, and buffer_size determines the initial buffer size. The buffer is |
| 403 // owned by the assembler and deallocated upon destruction of the assembler. |
| 404 // |
| 405 // If the provided buffer is not NULL, the assembler uses the provided buffer |
| 406 // for code generation and assumes its size to be buffer_size. If the buffer |
| 407 // is too small, a fatal error occurs. No deallocation of the buffer is done |
| 408 // upon destruction of the assembler. |
| 409 Assembler(Isolate* isolate, void* buffer, int buffer_size); |
| 410 virtual ~Assembler() {} |
| 411 |
| 412 // GetCode emits any pending (non-emitted) code and fills the descriptor |
| 413 // desc. GetCode() is idempotent; it returns the same result if no other |
| 414 // Assembler functions are invoked in between GetCode() calls. |
| 415 void GetCode(CodeDesc* desc); |
| 416 |
| 417 // Label operations & relative jumps (PPUM Appendix D) |
| 418 // |
| 419 // Takes a branch opcode (cc) and a label (L) and generates |
| 420 // either a backward branch or a forward branch and links it |
| 421 // to the label fixup chain. Usage: |
| 422 // |
| 423 // Label L; // unbound label |
| 424 // j(cc, &L); // forward branch to unbound label |
| 425 // bind(&L); // bind label to the current pc |
| 426 // j(cc, &L); // backward branch to bound label |
| 427 // bind(&L); // illegal: a label may be bound only once |
| 428 // |
| 429 // Note: The same Label can be used for forward and backward branches |
| 430 // but it may be bound only once. |
| 431 |
| 432 void bind(Label* L); // binds an unbound label L to the current code position |
| 433 |
| 434 // Links a label at the current pc_offset(). If already bound, returns the |
| 435 // bound position. If already linked, returns the position of the prior link. |
| 436 // Otherwise, returns the current pc_offset(). |
| 437 int link(Label* L); |
| 438 |
| 439 // Determines if Label is bound and near enough so that a single |
| 440 // branch instruction can be used to reach it. |
| 441 bool is_near(Label* L, Condition cond); |
| 442 |
| 443 // Returns the branch offset to the given label from the current code position |
| 444 // Links the label to the current position if it is still unbound |
| 445 int branch_offset(Label* L) { return link(L) - pc_offset(); } |
| 446 |
| 447 // Puts a labels target address at the given position. |
| 448 // The high 8 bits are set to zero. |
| 449 void label_at_put(Label* L, int at_offset); |
| 450 void load_label_offset(Register r1, Label* L); |
| 451 |
| 452 // Read/Modify the code target address in the branch/call instruction at pc. |
| 453 INLINE(static Address target_address_at(Address pc, Address constant_pool)); |
| 454 INLINE(static void set_target_address_at( |
| 455 Isolate* isolate, Address pc, Address constant_pool, Address target, |
| 456 ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED)); |
| 457 INLINE(static Address target_address_at(Address pc, Code* code)) { |
| 458 Address constant_pool = NULL; |
| 459 return target_address_at(pc, constant_pool); |
| 460 } |
| 461 INLINE(static void set_target_address_at( |
| 462 Isolate* isolate, Address pc, Code* code, Address target, |
| 463 ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED)) { |
| 464 Address constant_pool = NULL; |
| 465 set_target_address_at(isolate, pc, constant_pool, target, |
| 466 icache_flush_mode); |
| 467 } |
| 468 |
| 469 // Return the code target address at a call site from the return address |
| 470 // of that call in the instruction stream. |
| 471 inline static Address target_address_from_return_address(Address pc); |
| 472 |
| 473 // Given the address of the beginning of a call, return the address |
| 474 // in the instruction stream that the call will return to. |
| 475 INLINE(static Address return_address_from_call_start(Address pc)); |
| 476 |
| 477 inline Handle<Object> code_target_object_handle_at(Address pc); |
| 478 // This sets the branch destination. |
| 479 // This is for calls and branches within generated code. |
| 480 inline static void deserialization_set_special_target_at( |
| 481 Isolate* isolate, Address instruction_payload, Code* code, |
| 482 Address target); |
| 483 |
| 484 // This sets the internal reference at the pc. |
| 485 inline static void deserialization_set_target_internal_reference_at( |
| 486 Isolate* isolate, Address pc, Address target, |
| 487 RelocInfo::Mode mode = RelocInfo::INTERNAL_REFERENCE); |
| 488 |
| 489 // Here we are patching the address in the IIHF/IILF instruction pair. |
| 490 // These values are used in the serialization process and must be zero for |
| 491 // S390 platform, as Code, Embedded Object or External-reference pointers |
| 492 // are split across two consecutive instructions and don't exist separately |
| 493 // in the code, so the serializer should not step forwards in memory after |
| 494 // a target is resolved and written. |
| 495 static const int kSpecialTargetSize = 0; |
| 496 |
| 497 // Number of bytes for instructions used to store pointer sized constant. |
| 498 #if V8_TARGET_ARCH_S390X |
| 499 static const int kBytesForPtrConstant = 12; // IIHF + IILF |
| 500 #else |
| 501 static const int kBytesForPtrConstant = 6; // IILF |
| 502 #endif |
| 503 |
| 504 // Distance between the instruction referring to the address of the call |
| 505 // target and the return address. |
| 506 |
| 507 // Offset between call target address and return address |
| 508 // for BRASL calls |
| 509 // Patch will be appiled to other FIXED_SEQUENCE call |
| 510 static const int kCallTargetAddressOffset = 6; |
| 511 |
| 512 // The length of FIXED_SEQUENCE call |
| 513 // iihf r8, <address_hi> // <64-bit only> |
| 514 // iilf r8, <address_lo> |
| 515 // basr r14, r8 |
| 516 #if V8_TARGET_ARCH_S390X |
| 517 static const int kCallSequenceLength = 14; |
| 518 #else |
| 519 static const int kCallSequenceLength = 8; |
| 520 #endif |
| 521 |
| 522 // This is the length of the BreakLocationIterator::SetDebugBreakAtReturn() |
| 523 // code patch FIXED_SEQUENCE in bytes! |
| 524 // JS Return Sequence = Call Sequence + BKPT |
| 525 // static const int kJSReturnSequenceLength = kCallSequenceLength + 2; |
| 526 |
| 527 // This is the length of the code sequence from SetDebugBreakAtSlot() |
| 528 // FIXED_SEQUENCE in bytes! |
| 529 static const int kDebugBreakSlotLength = kCallSequenceLength; |
| 530 static const int kPatchDebugBreakSlotReturnOffset = kCallTargetAddressOffset; |
| 531 |
| 532 // Length to patch between the start of the JS return sequence |
| 533 // from SetDebugBreakAtReturn and the address from |
| 534 // break_address_from_return_address. |
| 535 // |
| 536 // frame->pc() in Debug::SetAfterBreakTarget will point to BKPT in |
| 537 // JS return sequence, so the length to patch will not include BKPT |
| 538 // instruction length. |
| 539 // static const int kPatchReturnSequenceAddressOffset = |
| 540 // kCallSequenceLength - kPatchDebugBreakSlotReturnOffset; |
| 541 |
| 542 // Length to patch between the start of the FIXED call sequence from |
| 543 // SetDebugBreakAtSlot() and the the address from |
| 544 // break_address_from_return_address. |
| 545 static const int kPatchDebugBreakSlotAddressOffset = |
| 546 kDebugBreakSlotLength - kPatchDebugBreakSlotReturnOffset; |
| 547 |
| 548 static inline int encode_crbit(const CRegister& cr, enum CRBit crbit) { |
| 549 return ((cr.code() * CRWIDTH) + crbit); |
| 550 } |
| 551 |
| 552 // --------------------------------------------------------------------------- |
| 553 // Code generation |
| 554 |
| 555 // Helper for unconditional branch to Label with update to save register |
| 556 void b(Register r, Label* l) { |
| 557 positions_recorder()->WriteRecordedPositions(); |
| 558 int32_t halfwords = branch_offset(l) / 2; |
| 559 brasl(r, Operand(halfwords)); |
| 560 } |
| 561 |
| 562 // Conditional Branch Instruction - Generates either BRC / BRCL |
| 563 void branchOnCond(Condition c, int branch_offset, bool is_bound = false); |
| 564 |
| 565 // Helpers for conditional branch to Label |
| 566 void b(Condition cond, Label* l, Label::Distance dist = Label::kFar) { |
| 567 branchOnCond(cond, branch_offset(l), |
| 568 l->is_bound() || (dist == Label::kNear)); |
| 569 } |
| 570 |
| 571 void bc_short(Condition cond, Label* l, Label::Distance dist = Label::kFar) { |
| 572 b(cond, l, Label::kNear); |
| 573 } |
| 574 // Helpers for conditional branch to Label |
| 575 void beq(Label* l, Label::Distance dist = Label::kFar) { b(eq, l, dist); } |
| 576 void bne(Label* l, Label::Distance dist = Label::kFar) { b(ne, l, dist); } |
| 577 void blt(Label* l, Label::Distance dist = Label::kFar) { b(lt, l, dist); } |
| 578 void ble(Label* l, Label::Distance dist = Label::kFar) { b(le, l, dist); } |
| 579 void bgt(Label* l, Label::Distance dist = Label::kFar) { b(gt, l, dist); } |
| 580 void bge(Label* l, Label::Distance dist = Label::kFar) { b(ge, l, dist); } |
| 581 void b(Label* l, Label::Distance dist = Label::kFar) { b(al, l, dist); } |
| 582 void jmp(Label* l, Label::Distance dist = Label::kFar) { b(al, l, dist); } |
| 583 void bunordered(Label* l, Label::Distance dist = Label::kFar) { |
| 584 b(unordered, l, dist); |
| 585 } |
| 586 void bordered(Label* l, Label::Distance dist = Label::kFar) { |
| 587 b(ordered, l, dist); |
| 588 } |
| 589 |
| 590 // Helpers for conditional indirect branch off register |
| 591 void b(Condition cond, Register r) { bcr(cond, r); } |
| 592 void beq(Register r) { b(eq, r); } |
| 593 void bne(Register r) { b(ne, r); } |
| 594 void blt(Register r) { b(lt, r); } |
| 595 void ble(Register r) { b(le, r); } |
| 596 void bgt(Register r) { b(gt, r); } |
| 597 void bge(Register r) { b(ge, r); } |
| 598 void b(Register r) { b(al, r); } |
| 599 void jmp(Register r) { b(al, r); } |
| 600 void bunordered(Register r) { b(unordered, r); } |
| 601 void bordered(Register r) { b(ordered, r); } |
| 602 |
| 603 // --------------------------------------------------------------------------- |
| 604 // Code generation |
| 605 |
| 606 // Insert the smallest number of nop instructions |
| 607 // possible to align the pc offset to a multiple |
| 608 // of m. m must be a power of 2 (>= 4). |
| 609 void Align(int m); |
| 610 // Insert the smallest number of zero bytes possible to align the pc offset |
| 611 // to a mulitple of m. m must be a power of 2 (>= 2). |
| 612 void DataAlign(int m); |
| 613 // Aligns code to something that's optimal for a jump target for the platform. |
| 614 void CodeTargetAlign(); |
| 615 |
| 616 void breakpoint(bool do_print) { |
| 617 if (do_print) { |
| 618 printf("DebugBreak is inserted to %p\n", pc_); |
| 619 } |
| 620 #if V8_HOST_ARCH_64_BIT |
| 621 int64_t value = reinterpret_cast<uint64_t>(&v8::base::OS::DebugBreak); |
| 622 int32_t hi_32 = static_cast<int64_t>(value) >> 32; |
| 623 int32_t lo_32 = static_cast<int32_t>(value); |
| 624 |
| 625 iihf(r1, Operand(hi_32)); |
| 626 iilf(r1, Operand(lo_32)); |
| 627 #else |
| 628 iilf(r1, Operand(reinterpret_cast<uint32_t>(&v8::base::OS::DebugBreak))); |
| 629 #endif |
| 630 basr(r14, r1); |
| 631 } |
| 632 |
| 633 void call(Handle<Code> target, RelocInfo::Mode rmode, |
| 634 TypeFeedbackId ast_id = TypeFeedbackId::None()); |
| 635 void jump(Handle<Code> target, RelocInfo::Mode rmode, Condition cond); |
| 636 |
| 637 // S390 instruction generation |
| 638 #define I_FORM(name) void name(const Operand& i) |
| 639 |
| 640 #define RR_FORM(name) void name(Register r1, Register r2) |
| 641 |
| 642 #define RR2_FORM(name) void name(Condition m1, Register r2) |
| 643 |
| 644 #define RX_FORM(name) \ |
| 645 void name(Register r1, Register x2, Register b2, Disp d2); \ |
| 646 void name(Register r1, const MemOperand& opnd) |
| 647 |
| 648 #define RI1_FORM(name) void name(Register r, const Operand& i) |
| 649 |
| 650 #define RI2_FORM(name) void name(Condition m, const Operand& i) |
| 651 |
| 652 #define RIE_FORM(name) void name(Register r1, Register R3, const Operand& i) |
| 653 |
| 654 #define RIE_F_FORM(name) \ |
| 655 void name(Register r1, Register r2, const Operand& i3, const Operand& i4, \ |
| 656 const Operand& i5) |
| 657 |
| 658 #define RIL1_FORM(name) void name(Register r1, const Operand& i2) |
| 659 |
| 660 #define RIL2_FORM(name) void name(Condition m1, const Operand& i2) |
| 661 |
| 662 #define RXE_FORM(name) \ |
| 663 void name(Register r1, const MemOperand& opnd); \ |
| 664 void name(Register r1, Register b2, Register x2, Disp d2) |
| 665 |
| 666 #define RXF_FORM(name) \ |
| 667 void name(Register r1, Register r3, const MemOperand& opnd); \ |
| 668 void name(Register r1, Register r3, Register b2, Register x2, Disp d2) |
| 669 |
| 670 #define RXY_FORM(name) \ |
| 671 void name(Register r1, Register x2, Register b2, Disp d2); \ |
| 672 void name(Register r1, const MemOperand& opnd) |
| 673 |
| 674 #define RSI_FORM(name) void name(Register r1, Register r3, const Operand& i) |
| 675 |
| 676 #define RIS_FORM(name) \ |
| 677 void name(Register r1, Condition m3, Register b4, Disp d4, \ |
| 678 const Operand& i2); \ |
| 679 void name(Register r1, const Operand& i2, Condition m3, \ |
| 680 const MemOperand& opnd) |
| 681 |
| 682 #define SI_FORM(name) \ |
| 683 void name(const MemOperand& opnd, const Operand& i); \ |
| 684 void name(const Operand& i2, Register b1, Disp d1) |
| 685 |
| 686 #define SIL_FORM(name) \ |
| 687 void name(Register b1, Disp d1, const Operand& i2); \ |
| 688 void name(const MemOperand& opnd, const Operand& i2) |
| 689 |
| 690 #define RRE_FORM(name) void name(Register r1, Register r2) |
| 691 |
| 692 #define RRF1_FORM(name) void name(Register r1, Register r2, Register r3) |
| 693 |
| 694 #define RRF2_FORM(name) void name(Condition m1, Register r1, Register r2) |
| 695 |
| 696 #define RRF3_FORM(name) \ |
| 697 void name(Register r3, Condition m4, Register r1, Register r2) |
| 698 |
| 699 #define RS1_FORM(name) \ |
| 700 void name(Register r1, Register r3, const MemOperand& opnd); \ |
| 701 void name(Register r1, Register r3, Register b2, Disp d2) |
| 702 |
| 703 #define RS2_FORM(name) \ |
| 704 void name(Register r1, Condition m3, const MemOperand& opnd); \ |
| 705 void name(Register r1, Condition m3, Register b2, Disp d2) |
| 706 |
| 707 #define RSE_FORM(name) \ |
| 708 void name(Register r1, Register r3, const MemOperand& opnd); \ |
| 709 void name(Register r1, Register r3, Register b2, Disp d2) |
| 710 |
| 711 #define RSL_FORM(name) \ |
| 712 void name(Length l, Register b2, Disp d2); \ |
| 713 void name(const MemOperand& opnd) |
| 714 |
| 715 #define RSY1_FORM(name) \ |
| 716 void name(Register r1, Register r3, Register b2, Disp d2); \ |
| 717 void name(Register r1, Register r3, const MemOperand& opnd) |
| 718 |
| 719 #define RSY2_FORM(name) \ |
| 720 void name(Register r1, Condition m3, Register b2, Disp d2); \ |
| 721 void name(Register r1, Condition m3, const MemOperand& opnd) |
| 722 |
| 723 #define RRD_FORM(name) void name(Register r1, Register r3, Register r2) |
| 724 |
| 725 #define RRS_FORM(name) \ |
| 726 void name(Register r1, Register r2, Register b4, Disp d4, Condition m3); \ |
| 727 void name(Register r1, Register r2, Condition m3, const MemOperand& opnd) |
| 728 |
| 729 #define S_FORM(name) \ |
| 730 void name(Register b2, Disp d2); \ |
| 731 void name(const MemOperand& opnd) |
| 732 |
| 733 #define SIY_FORM(name) \ |
| 734 void name(const Operand& i2, Register b1, Disp d1); \ |
| 735 void name(const MemOperand& opnd, const Operand& i) |
| 736 |
| 737 #define SS1_FORM(name) \ |
| 738 void name(Register b1, Disp d1, Register b3, Disp d2, Length length); \ |
| 739 void name(const MemOperand& opnd1, const MemOperand& opnd2, Length length) |
| 740 |
| 741 #define SS2_FORM(name) \ |
| 742 void name(const MemOperand& opnd1, const MemOperand& opnd2, Length length1, \ |
| 743 Length length2); \ |
| 744 void name(Register b1, Disp d1, Register b2, Disp d2, Length l1, Length l2) |
| 745 |
| 746 #define SS3_FORM(name) \ |
| 747 void name(const MemOperand& opnd1, const MemOperand& opnd2, Length length); \ |
| 748 void name(const Operand& i3, Register b1, Disp d1, Register b2, Disp d2, \ |
| 749 Length l1) |
| 750 |
| 751 #define SS4_FORM(name) \ |
| 752 void name(const MemOperand& opnd1, const MemOperand& opnd2); \ |
| 753 void name(Register r1, Register r3, Register b1, Disp d1, Register b2, \ |
| 754 Disp d2) |
| 755 |
| 756 #define SS5_FORM(name) \ |
| 757 void name(const MemOperand& opnd1, const MemOperand& opnd2); \ |
| 758 void name(Register r1, Register r3, Register b3, Disp d2, Register b4, \ |
| 759 Disp d4) |
| 760 |
| 761 #define SSE_FORM(name) \ |
| 762 void name(Register b1, Disp d1, Register b2, Disp d2); \ |
| 763 void name(const MemOperand& opnd1, const MemOperand& opnd2) |
| 764 |
| 765 #define SSF_FORM(name) \ |
| 766 void name(Register r3, Register b1, Disp d1, Register b2, Disp d2); \ |
| 767 void name(Register r3, const MemOperand& opnd1, const MemOperand& opnd2) |
| 768 |
| 769 // S390 instruction sets |
| 770 RX_FORM(bc); |
| 771 RR_FORM(bctr); |
| 772 RX_FORM(cd); |
| 773 RRE_FORM(cdr); |
| 774 RXE_FORM(cdb); |
| 775 RXE_FORM(ceb); |
| 776 RRE_FORM(cefbr); |
| 777 RXE_FORM(ddb); |
| 778 RRE_FORM(ddbr); |
| 779 SS1_FORM(ed); |
| 780 RRE_FORM(epair); |
| 781 RX_FORM(ex); |
| 782 RRF2_FORM(fidbr); |
| 783 RRE_FORM(flogr); |
| 784 RX_FORM(ic_z); |
| 785 RXY_FORM(icy); |
| 786 RIL1_FORM(iihf); |
| 787 RI1_FORM(iihh); |
| 788 RI1_FORM(iihl); |
| 789 RIL1_FORM(iilf); |
| 790 RI1_FORM(iilh); |
| 791 RI1_FORM(iill); |
| 792 RRE_FORM(lcgr); |
| 793 RR_FORM(lcr); |
| 794 RX_FORM(le_z); |
| 795 RXY_FORM(ley); |
| 796 RIL1_FORM(llihf); |
| 797 RIL1_FORM(llilf); |
| 798 RRE_FORM(lngr); |
| 799 RR_FORM(lnr); |
| 800 RSY1_FORM(loc); |
| 801 RXY_FORM(lrv); |
| 802 RXY_FORM(lrvh); |
| 803 RXE_FORM(mdb); |
| 804 RRE_FORM(mdbr); |
| 805 SS4_FORM(mvck); |
| 806 SSF_FORM(mvcos); |
| 807 SS4_FORM(mvcs); |
| 808 SS1_FORM(mvn); |
| 809 SS1_FORM(nc); |
| 810 SI_FORM(ni); |
| 811 RIL1_FORM(nihf); |
| 812 RIL1_FORM(nilf); |
| 813 RI1_FORM(nilh); |
| 814 RI1_FORM(nill); |
| 815 RIL1_FORM(oihf); |
| 816 RIL1_FORM(oilf); |
| 817 RI1_FORM(oill); |
| 818 RRE_FORM(popcnt); |
| 819 RXE_FORM(sdb); |
| 820 RRE_FORM(sdbr); |
| 821 RIL1_FORM(slfi); |
| 822 RXY_FORM(slgf); |
| 823 RIL1_FORM(slgfi); |
| 824 RS1_FORM(srdl); |
| 825 RX_FORM(ste); |
| 826 RXY_FORM(stey); |
| 827 RXY_FORM(strv); |
| 828 RI1_FORM(tmll); |
| 829 SS1_FORM(tr); |
| 830 S_FORM(ts); |
| 831 RIL1_FORM(xihf); |
| 832 RIL1_FORM(xilf); |
| 833 |
| 834 // Load Address Instructions |
| 835 void la(Register r, const MemOperand& opnd); |
| 836 void lay(Register r, const MemOperand& opnd); |
| 837 void larl(Register r1, const Operand& opnd); |
| 838 void larl(Register r, Label* l); |
| 839 |
| 840 // Load Instructions |
| 841 void lb(Register r, const MemOperand& src); |
| 842 void lbr(Register r1, Register r2); |
| 843 void lgb(Register r, const MemOperand& src); |
| 844 void lgbr(Register r1, Register r2); |
| 845 void lh(Register r, const MemOperand& src); |
| 846 void lhy(Register r, const MemOperand& src); |
| 847 void lhr(Register r1, Register r2); |
| 848 void lgh(Register r, const MemOperand& src); |
| 849 void lghr(Register r1, Register r2); |
| 850 void l(Register r, const MemOperand& src); |
| 851 void ly(Register r, const MemOperand& src); |
| 852 void lr(Register r1, Register r2); |
| 853 void lg(Register r, const MemOperand& src); |
| 854 void lgr(Register r1, Register r2); |
| 855 void lgf(Register r, const MemOperand& src); |
| 856 void lgfr(Register r1, Register r2); |
| 857 void lhi(Register r, const Operand& imm); |
| 858 void lghi(Register r, const Operand& imm); |
| 859 |
| 860 // Load And Test Instructions |
| 861 void lt_z(Register r, const MemOperand& src); |
| 862 void ltg(Register r, const MemOperand& src); |
| 863 void ltr(Register r1, Register r2); |
| 864 void ltgr(Register r1, Register r2); |
| 865 void ltgfr(Register r1, Register r2); |
| 866 |
| 867 // Load Logical Instructions |
| 868 void llc(Register r, const MemOperand& src); |
| 869 void llgc(Register r, const MemOperand& src); |
| 870 void llgf(Register r, const MemOperand& src); |
| 871 void llgfr(Register r1, Register r2); |
| 872 void llh(Register r, const MemOperand& src); |
| 873 void llgh(Register r, const MemOperand& src); |
| 874 void llhr(Register r1, Register r2); |
| 875 void llghr(Register r1, Register r2); |
| 876 |
| 877 // Load Multiple Instructions |
| 878 void lm(Register r1, Register r2, const MemOperand& src); |
| 879 void lmy(Register r1, Register r2, const MemOperand& src); |
| 880 void lmg(Register r1, Register r2, const MemOperand& src); |
| 881 |
| 882 // Store Instructions |
| 883 void st(Register r, const MemOperand& src); |
| 884 void stc(Register r, const MemOperand& src); |
| 885 void stcy(Register r, const MemOperand& src); |
| 886 void stg(Register r, const MemOperand& src); |
| 887 void sth(Register r, const MemOperand& src); |
| 888 void sthy(Register r, const MemOperand& src); |
| 889 void sty(Register r, const MemOperand& src); |
| 890 |
| 891 // Store Multiple Instructions |
| 892 void stm(Register r1, Register r2, const MemOperand& src); |
| 893 void stmy(Register r1, Register r2, const MemOperand& src); |
| 894 void stmg(Register r1, Register r2, const MemOperand& src); |
| 895 |
| 896 // Compare Instructions |
| 897 void c(Register r, const MemOperand& opnd); |
| 898 void cy(Register r, const MemOperand& opnd); |
| 899 void cr_z(Register r1, Register r2); |
| 900 void cg(Register r, const MemOperand& opnd); |
| 901 void cgr(Register r1, Register r2); |
| 902 void ch(Register r, const MemOperand& opnd); |
| 903 void chy(Register r, const MemOperand& opnd); |
| 904 void chi(Register r, const Operand& opnd); |
| 905 void cghi(Register r, const Operand& opnd); |
| 906 void cfi(Register r, const Operand& opnd); |
| 907 void cgfi(Register r, const Operand& opnd); |
| 908 |
| 909 // Compare Logical Instructions |
| 910 void cl(Register r, const MemOperand& opnd); |
| 911 void cly(Register r, const MemOperand& opnd); |
| 912 void clr(Register r1, Register r2); |
| 913 void clg(Register r, const MemOperand& opnd); |
| 914 void clgr(Register r1, Register r2); |
| 915 void clfi(Register r, const Operand& opnd); |
| 916 void clgfi(Register r, const Operand& opnd); |
| 917 void cli(const MemOperand& mem, const Operand& imm); |
| 918 void cliy(const MemOperand& mem, const Operand& imm); |
| 919 void clc(const MemOperand& opnd1, const MemOperand& opnd2, Length length); |
| 920 |
| 921 // Test Under Mask Instructions |
| 922 void tm(const MemOperand& mem, const Operand& imm); |
| 923 void tmy(const MemOperand& mem, const Operand& imm); |
| 924 |
| 925 // Rotate Instructions |
| 926 void rll(Register r1, Register r3, Register opnd); |
| 927 void rll(Register r1, Register r3, const Operand& opnd); |
| 928 void rll(Register r1, Register r3, Register r2, const Operand& opnd); |
| 929 void rllg(Register r1, Register r3, const Operand& opnd); |
| 930 void rllg(Register r1, Register r3, const Register opnd); |
| 931 void rllg(Register r1, Register r3, Register r2, const Operand& opnd); |
| 932 |
| 933 // Shift Instructions (32) |
| 934 void sll(Register r1, Register opnd); |
| 935 void sll(Register r1, const Operand& opnd); |
| 936 void sllk(Register r1, Register r3, Register opnd); |
| 937 void sllk(Register r1, Register r3, const Operand& opnd); |
| 938 void srl(Register r1, Register opnd); |
| 939 void srl(Register r1, const Operand& opnd); |
| 940 void srlk(Register r1, Register r3, Register opnd); |
| 941 void srlk(Register r1, Register r3, const Operand& opnd); |
| 942 void sra(Register r1, Register opnd); |
| 943 void sra(Register r1, const Operand& opnd); |
| 944 void srak(Register r1, Register r3, Register opnd); |
| 945 void srak(Register r1, Register r3, const Operand& opnd); |
| 946 void sla(Register r1, Register opnd); |
| 947 void sla(Register r1, const Operand& opnd); |
| 948 void slak(Register r1, Register r3, Register opnd); |
| 949 void slak(Register r1, Register r3, const Operand& opnd); |
| 950 |
| 951 // Shift Instructions (64) |
| 952 void sllg(Register r1, Register r3, const Operand& opnd); |
| 953 void sllg(Register r1, Register r3, const Register opnd); |
| 954 void srlg(Register r1, Register r3, const Operand& opnd); |
| 955 void srlg(Register r1, Register r3, const Register opnd); |
| 956 void srag(Register r1, Register r3, const Operand& opnd); |
| 957 void srag(Register r1, Register r3, const Register opnd); |
| 958 void srda(Register r1, const Operand& opnd); |
| 959 void srdl(Register r1, const Operand& opnd); |
| 960 void slag(Register r1, Register r3, const Operand& opnd); |
| 961 void slag(Register r1, Register r3, const Register opnd); |
| 962 |
| 963 // Rotate and Insert Selected Bits |
| 964 void risbg(Register dst, Register src, const Operand& startBit, |
| 965 const Operand& endBit, const Operand& shiftAmt, |
| 966 bool zeroBits = true); |
| 967 void risbgn(Register dst, Register src, const Operand& startBit, |
| 968 const Operand& endBit, const Operand& shiftAmt, |
| 969 bool zeroBits = true); |
| 970 |
| 971 // Move Character (Mem to Mem) |
| 972 void mvc(const MemOperand& opnd1, const MemOperand& opnd2, uint32_t length); |
| 973 |
| 974 // Branch Instructions |
| 975 void basr(Register r1, Register r2); |
| 976 void bcr(Condition m, Register target); |
| 977 void bct(Register r, const MemOperand& opnd); |
| 978 void bctg(Register r, const MemOperand& opnd); |
| 979 void bras(Register r, const Operand& opnd); |
| 980 void brasl(Register r, const Operand& opnd); |
| 981 void brc(Condition c, const Operand& opnd); |
| 982 void brcl(Condition m, const Operand& opnd, bool isCodeTarget = false); |
| 983 void brct(Register r1, const Operand& opnd); |
| 984 void brctg(Register r1, const Operand& opnd); |
| 985 |
| 986 // 32-bit Add Instructions |
| 987 void a(Register r1, const MemOperand& opnd); |
| 988 void ay(Register r1, const MemOperand& opnd); |
| 989 void afi(Register r1, const Operand& opnd); |
| 990 void ah(Register r1, const MemOperand& opnd); |
| 991 void ahy(Register r1, const MemOperand& opnd); |
| 992 void ahi(Register r1, const Operand& opnd); |
| 993 void ahik(Register r1, Register r3, const Operand& opnd); |
| 994 void ar(Register r1, Register r2); |
| 995 void ark(Register r1, Register r2, Register r3); |
| 996 void asi(const MemOperand&, const Operand&); |
| 997 |
| 998 // 64-bit Add Instructions |
| 999 void ag(Register r1, const MemOperand& opnd); |
| 1000 void agf(Register r1, const MemOperand& opnd); |
| 1001 void agfi(Register r1, const Operand& opnd); |
| 1002 void agfr(Register r1, Register r2); |
| 1003 void aghi(Register r1, const Operand& opnd); |
| 1004 void aghik(Register r1, Register r3, const Operand& opnd); |
| 1005 void agr(Register r1, Register r2); |
| 1006 void agrk(Register r1, Register r2, Register r3); |
| 1007 void agsi(const MemOperand&, const Operand&); |
| 1008 |
| 1009 // 32-bit Add Logical Instructions |
| 1010 void al_z(Register r1, const MemOperand& opnd); |
| 1011 void aly(Register r1, const MemOperand& opnd); |
| 1012 void alfi(Register r1, const Operand& opnd); |
| 1013 void alr(Register r1, Register r2); |
| 1014 void alrk(Register r1, Register r2, Register r3); |
| 1015 |
| 1016 // 64-bit Add Logical Instructions |
| 1017 void alg(Register r1, const MemOperand& opnd); |
| 1018 void algfi(Register r1, const Operand& opnd); |
| 1019 void algr(Register r1, Register r2); |
| 1020 void algrk(Register r1, Register r2, Register r3); |
| 1021 |
| 1022 // 32-bit Subtract Instructions |
| 1023 void s(Register r1, const MemOperand& opnd); |
| 1024 void sy(Register r1, const MemOperand& opnd); |
| 1025 void sh(Register r1, const MemOperand& opnd); |
| 1026 void shy(Register r1, const MemOperand& opnd); |
| 1027 void sr(Register r1, Register r2); |
| 1028 void srk(Register r1, Register r2, Register r3); |
| 1029 |
| 1030 // 64-bit Subtract Instructions |
| 1031 void sg(Register r1, const MemOperand& opnd); |
| 1032 void sgf(Register r1, const MemOperand& opnd); |
| 1033 void sgr(Register r1, Register r2); |
| 1034 void sgfr(Register r1, Register r2); |
| 1035 void sgrk(Register r1, Register r2, Register r3); |
| 1036 |
| 1037 // 32-bit Subtract Logical Instructions |
| 1038 void sl(Register r1, const MemOperand& opnd); |
| 1039 void sly(Register r1, const MemOperand& opnd); |
| 1040 void slr(Register r1, Register r2); |
| 1041 void slrk(Register r1, Register r2, Register r3); |
| 1042 |
| 1043 // 64-bit Subtract Logical Instructions |
| 1044 void slg(Register r1, const MemOperand& opnd); |
| 1045 void slgr(Register r1, Register r2); |
| 1046 void slgrk(Register r1, Register r2, Register r3); |
| 1047 |
| 1048 // 32-bit Multiply Instructions |
| 1049 void m(Register r1, const MemOperand& opnd); |
| 1050 void mr_z(Register r1, Register r2); |
| 1051 void ml(Register r1, const MemOperand& opnd); |
| 1052 void mlr(Register r1, Register r2); |
| 1053 void ms(Register r1, const MemOperand& opnd); |
| 1054 void msy(Register r1, const MemOperand& opnd); |
| 1055 void msfi(Register r1, const Operand& opnd); |
| 1056 void msr(Register r1, Register r2); |
| 1057 void mh(Register r1, const MemOperand& opnd); |
| 1058 void mhy(Register r1, const MemOperand& opnd); |
| 1059 void mhi(Register r1, const Operand& opnd); |
| 1060 |
| 1061 // 64-bit Multiply Instructions |
| 1062 void mlg(Register r1, const MemOperand& opnd); |
| 1063 void mlgr(Register r1, Register r2); |
| 1064 void mghi(Register r1, const Operand& opnd); |
| 1065 void msgfi(Register r1, const Operand& opnd); |
| 1066 void msg(Register r1, const MemOperand& opnd); |
| 1067 void msgr(Register r1, Register r2); |
| 1068 |
| 1069 // 32-bit Divide Instructions |
| 1070 void d(Register r1, const MemOperand& opnd); |
| 1071 void dr(Register r1, Register r2); |
| 1072 void dl(Register r1, const MemOperand& opnd); |
| 1073 void dlr(Register r1, Register r2); |
| 1074 |
| 1075 // 64-bit Divide Instructions |
| 1076 void dlgr(Register r1, Register r2); |
| 1077 void dsgr(Register r1, Register r2); |
| 1078 |
| 1079 // Bitwise Instructions (AND / OR / XOR) |
| 1080 void n(Register r1, const MemOperand& opnd); |
| 1081 void ny(Register r1, const MemOperand& opnd); |
| 1082 void nr(Register r1, Register r2); |
| 1083 void nrk(Register r1, Register r2, Register r3); |
| 1084 void ng(Register r1, const MemOperand& opnd); |
| 1085 void ngr(Register r1, Register r2); |
| 1086 void ngrk(Register r1, Register r2, Register r3); |
| 1087 void o(Register r1, const MemOperand& opnd); |
| 1088 void oy(Register r1, const MemOperand& opnd); |
| 1089 void or_z(Register r1, Register r2); |
| 1090 void ork(Register r1, Register r2, Register r3); |
| 1091 void og(Register r1, const MemOperand& opnd); |
| 1092 void ogr(Register r1, Register r2); |
| 1093 void ogrk(Register r1, Register r2, Register r3); |
| 1094 void x(Register r1, const MemOperand& opnd); |
| 1095 void xy(Register r1, const MemOperand& opnd); |
| 1096 void xr(Register r1, Register r2); |
| 1097 void xrk(Register r1, Register r2, Register r3); |
| 1098 void xg(Register r1, const MemOperand& opnd); |
| 1099 void xgr(Register r1, Register r2); |
| 1100 void xgrk(Register r1, Register r2, Register r3); |
| 1101 void xc(const MemOperand& opnd1, const MemOperand& opnd2, Length length); |
| 1102 |
| 1103 // Bitwise GPR <-> FPR Conversion Instructions |
| 1104 void lgdr(Register r1, DoubleRegister f2); |
| 1105 void ldgr(DoubleRegister f1, Register r2); |
| 1106 |
| 1107 // Floating Point Load / Store Instructions |
| 1108 void ld(DoubleRegister r1, const MemOperand& opnd); |
| 1109 void ldy(DoubleRegister r1, const MemOperand& opnd); |
| 1110 void le_z(DoubleRegister r1, const MemOperand& opnd); |
| 1111 void ley(DoubleRegister r1, const MemOperand& opnd); |
| 1112 void ldr(DoubleRegister r1, DoubleRegister r2); |
| 1113 void ltdbr(DoubleRegister r1, DoubleRegister r2); |
| 1114 void ltebr(DoubleRegister r1, DoubleRegister r2); |
| 1115 void std(DoubleRegister r1, const MemOperand& opnd); |
| 1116 void stdy(DoubleRegister r1, const MemOperand& opnd); |
| 1117 void ste(DoubleRegister r1, const MemOperand& opnd); |
| 1118 void stey(DoubleRegister r1, const MemOperand& opnd); |
| 1119 |
| 1120 // Floating Point Load Rounded/Positive Instructions |
| 1121 void ledbr(DoubleRegister r1, DoubleRegister r2); |
| 1122 void ldebr(DoubleRegister r1, DoubleRegister r2); |
| 1123 void lpebr(DoubleRegister r1, DoubleRegister r2); |
| 1124 void lpdbr(DoubleRegister r1, DoubleRegister r2); |
| 1125 |
| 1126 // Floating <-> Fixed Point Conversion Instructions |
| 1127 void cdlfbr(Condition m3, Condition m4, DoubleRegister fltReg, |
| 1128 Register fixReg); |
| 1129 void cdlgbr(Condition m3, Condition m4, DoubleRegister fltReg, |
| 1130 Register fixReg); |
| 1131 void celgbr(Condition m3, Condition m4, DoubleRegister fltReg, |
| 1132 Register fixReg); |
| 1133 void celfbr(Condition m3, Condition m4, DoubleRegister fltReg, |
| 1134 Register fixReg); |
| 1135 void clfdbr(Condition m3, Condition m4, Register fixReg, |
| 1136 DoubleRegister fltReg); |
| 1137 void clfebr(Condition m3, Condition m4, Register fixReg, |
| 1138 DoubleRegister fltReg); |
| 1139 void clgdbr(Condition m3, Condition m4, Register fixReg, |
| 1140 DoubleRegister fltReg); |
| 1141 void clgebr(Condition m3, Condition m4, Register fixReg, |
| 1142 DoubleRegister fltReg); |
| 1143 void cfdbr(Condition m, Register fixReg, DoubleRegister fltReg); |
| 1144 void cdfbr(DoubleRegister fltReg, Register fixReg); |
| 1145 void cgebr(Condition m, Register fixReg, DoubleRegister fltReg); |
| 1146 void cgdbr(Condition m, Register fixReg, DoubleRegister fltReg); |
| 1147 void cegbr(DoubleRegister fltReg, Register fixReg); |
| 1148 void cdgbr(DoubleRegister fltReg, Register fixReg); |
| 1149 void cfebr(Condition m3, Register fixReg, DoubleRegister fltReg); |
| 1150 void cefbr(DoubleRegister fltReg, Register fixReg); |
| 1151 |
| 1152 // Floating Point Compare Instructions |
| 1153 void cebr(DoubleRegister r1, DoubleRegister r2); |
| 1154 void cdb(DoubleRegister r1, const MemOperand& opnd); |
| 1155 void cdbr(DoubleRegister r1, DoubleRegister r2); |
| 1156 |
| 1157 // Floating Point Arithmetic Instructions |
| 1158 void aebr(DoubleRegister r1, DoubleRegister r2); |
| 1159 void adb(DoubleRegister r1, const MemOperand& opnd); |
| 1160 void adbr(DoubleRegister r1, DoubleRegister r2); |
| 1161 void lzdr(DoubleRegister r1); |
| 1162 void sebr(DoubleRegister r1, DoubleRegister r2); |
| 1163 void sdb(DoubleRegister r1, const MemOperand& opnd); |
| 1164 void sdbr(DoubleRegister r1, DoubleRegister r2); |
| 1165 void meebr(DoubleRegister r1, DoubleRegister r2); |
| 1166 void mdb(DoubleRegister r1, const MemOperand& opnd); |
| 1167 void mdbr(DoubleRegister r1, DoubleRegister r2); |
| 1168 void debr(DoubleRegister r1, DoubleRegister r2); |
| 1169 void ddb(DoubleRegister r1, const MemOperand& opnd); |
| 1170 void ddbr(DoubleRegister r1, DoubleRegister r2); |
| 1171 void madbr(DoubleRegister r1, DoubleRegister r2, DoubleRegister r3); |
| 1172 void msdbr(DoubleRegister r1, DoubleRegister r2, DoubleRegister r3); |
| 1173 void sqebr(DoubleRegister r1, DoubleRegister r2); |
| 1174 void sqdb(DoubleRegister r1, const MemOperand& opnd); |
| 1175 void sqdbr(DoubleRegister r1, DoubleRegister r2); |
| 1176 void lcdbr(DoubleRegister r1, DoubleRegister r2); |
| 1177 void ldeb(DoubleRegister r1, const MemOperand& opnd); |
| 1178 |
| 1179 enum FIDBRA_MASK3 { |
| 1180 FIDBRA_CURRENT_ROUNDING_MODE = 0, |
| 1181 FIDBRA_ROUND_TO_NEAREST_AWAY_FROM_0 = 1, |
| 1182 // ... |
| 1183 FIDBRA_ROUND_TOWARD_0 = 5, |
| 1184 FIDBRA_ROUND_TOWARD_POS_INF = 6, |
| 1185 FIDBRA_ROUND_TOWARD_NEG_INF = 7 |
| 1186 }; |
| 1187 void fiebra(DoubleRegister d1, DoubleRegister d2, FIDBRA_MASK3 m3); |
| 1188 void fidbra(DoubleRegister d1, DoubleRegister d2, FIDBRA_MASK3 m3); |
| 1189 |
| 1190 // Move integer |
| 1191 void mvhi(const MemOperand& opnd1, const Operand& i2); |
| 1192 void mvghi(const MemOperand& opnd1, const Operand& i2); |
| 1193 |
| 1194 // Exception-generating instructions and debugging support |
| 1195 void stop(const char* msg, Condition cond = al, |
| 1196 int32_t code = kDefaultStopCode, CRegister cr = cr7); |
| 1197 |
| 1198 void bkpt(uint32_t imm16); // v5 and above |
| 1199 |
| 1200 // Different nop operations are used by the code generator to detect certain |
| 1201 // states of the generated code. |
| 1202 enum NopMarkerTypes { |
| 1203 NON_MARKING_NOP = 0, |
| 1204 GROUP_ENDING_NOP, |
| 1205 DEBUG_BREAK_NOP, |
| 1206 // IC markers. |
| 1207 PROPERTY_ACCESS_INLINED, |
| 1208 PROPERTY_ACCESS_INLINED_CONTEXT, |
| 1209 PROPERTY_ACCESS_INLINED_CONTEXT_DONT_DELETE, |
| 1210 // Helper values. |
| 1211 LAST_CODE_MARKER, |
| 1212 FIRST_IC_MARKER = PROPERTY_ACCESS_INLINED |
| 1213 }; |
| 1214 |
| 1215 void nop(int type = 0); // 0 is the default non-marking type. |
| 1216 |
| 1217 // Check the code size generated from label to here. |
| 1218 int SizeOfCodeGeneratedSince(Label* label) { |
| 1219 return pc_offset() - label->pos(); |
| 1220 } |
| 1221 |
| 1222 // Debugging |
| 1223 |
| 1224 // Mark generator continuation. |
| 1225 void RecordGeneratorContinuation(); |
| 1226 |
| 1227 // Mark address of a debug break slot. |
| 1228 void RecordDebugBreakSlot(RelocInfo::Mode mode); |
| 1229 |
| 1230 // Record the AST id of the CallIC being compiled, so that it can be placed |
| 1231 // in the relocation information. |
| 1232 void SetRecordedAstId(TypeFeedbackId ast_id) { recorded_ast_id_ = ast_id; } |
| 1233 |
| 1234 TypeFeedbackId RecordedAstId() { |
| 1235 // roohack - another issue??? DCHECK(!recorded_ast_id_.IsNone()); |
| 1236 return recorded_ast_id_; |
| 1237 } |
| 1238 |
| 1239 void ClearRecordedAstId() { recorded_ast_id_ = TypeFeedbackId::None(); } |
| 1240 |
| 1241 // Record a comment relocation entry that can be used by a disassembler. |
| 1242 // Use --code-comments to enable. |
| 1243 void RecordComment(const char* msg); |
| 1244 |
| 1245 // Record a deoptimization reason that can be used by a log or cpu profiler. |
| 1246 // Use --trace-deopt to enable. |
| 1247 void RecordDeoptReason(const int reason, int raw_position); |
| 1248 |
| 1249 // Writes a single byte or word of data in the code stream. Used |
| 1250 // for inline tables, e.g., jump-tables. |
| 1251 void db(uint8_t data); |
| 1252 void dd(uint32_t data); |
| 1253 void dq(uint64_t data); |
| 1254 void dp(uintptr_t data); |
| 1255 |
| 1256 PositionsRecorder* positions_recorder() { return &positions_recorder_; } |
| 1257 |
| 1258 void PatchConstantPoolAccessInstruction(int pc_offset, int offset, |
| 1259 ConstantPoolEntry::Access access, |
| 1260 ConstantPoolEntry::Type type) { |
| 1261 // No embedded constant pool support. |
| 1262 UNREACHABLE(); |
| 1263 } |
| 1264 |
| 1265 // Read/patch instructions |
| 1266 SixByteInstr instr_at(int pos) { |
| 1267 return Instruction::InstructionBits(buffer_ + pos); |
| 1268 } |
| 1269 template <typename T> |
| 1270 void instr_at_put(int pos, T instr) { |
| 1271 Instruction::SetInstructionBits<T>(buffer_ + pos, instr); |
| 1272 } |
| 1273 |
| 1274 // Decodes instruction at pos, and returns its length |
| 1275 int32_t instr_length_at(int pos) { |
| 1276 return Instruction::InstructionLength(buffer_ + pos); |
| 1277 } |
| 1278 |
| 1279 static SixByteInstr instr_at(byte* pc) { |
| 1280 return Instruction::InstructionBits(pc); |
| 1281 } |
| 1282 |
| 1283 static Condition GetCondition(Instr instr); |
| 1284 |
| 1285 static bool IsBranch(Instr instr); |
| 1286 #if V8_TARGET_ARCH_S390X |
| 1287 static bool Is64BitLoadIntoIP(SixByteInstr instr1, SixByteInstr instr2); |
| 1288 #else |
| 1289 static bool Is32BitLoadIntoIP(SixByteInstr instr); |
| 1290 #endif |
| 1291 |
| 1292 static bool IsCmpRegister(Instr instr); |
| 1293 static bool IsCmpImmediate(Instr instr); |
| 1294 static bool IsNop(SixByteInstr instr, int type = NON_MARKING_NOP); |
| 1295 |
| 1296 // The code currently calls CheckBuffer() too often. This has the side |
| 1297 // effect of randomly growing the buffer in the middle of multi-instruction |
| 1298 // sequences. |
| 1299 // |
| 1300 // This function allows outside callers to check and grow the buffer |
| 1301 void EnsureSpaceFor(int space_needed); |
| 1302 |
| 1303 void EmitRelocations(); |
| 1304 void emit_label_addr(Label* label); |
| 1305 |
| 1306 public: |
| 1307 byte* buffer_pos() const { return buffer_; } |
| 1308 |
| 1309 protected: |
| 1310 // Relocation for a type-recording IC has the AST id added to it. This |
| 1311 // member variable is a way to pass the information from the call site to |
| 1312 // the relocation info. |
| 1313 TypeFeedbackId recorded_ast_id_; |
| 1314 |
| 1315 int buffer_space() const { return reloc_info_writer.pos() - pc_; } |
| 1316 |
| 1317 // Decode instruction(s) at pos and return backchain to previous |
| 1318 // label reference or kEndOfChain. |
| 1319 int target_at(int pos); |
| 1320 |
| 1321 // Patch instruction(s) at pos to target target_pos (e.g. branch) |
| 1322 void target_at_put(int pos, int target_pos, bool* is_branch = nullptr); |
| 1323 |
| 1324 // Record reloc info for current pc_ |
| 1325 void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0); |
| 1326 |
| 1327 private: |
| 1328 // Code generation |
| 1329 // The relocation writer's position is at least kGap bytes below the end of |
| 1330 // the generated instructions. This is so that multi-instruction sequences do |
| 1331 // not have to check for overflow. The same is true for writes of large |
| 1332 // relocation info entries. |
| 1333 static const int kGap = 32; |
| 1334 |
| 1335 // Relocation info generation |
| 1336 // Each relocation is encoded as a variable size value |
| 1337 static const int kMaxRelocSize = RelocInfoWriter::kMaxSize; |
| 1338 RelocInfoWriter reloc_info_writer; |
| 1339 std::vector<DeferredRelocInfo> relocations_; |
| 1340 |
| 1341 // The bound position, before this we cannot do instruction elimination. |
| 1342 int last_bound_pos_; |
| 1343 |
| 1344 // Code emission |
| 1345 inline void CheckBuffer(); |
| 1346 void GrowBuffer(int needed = 0); |
| 1347 inline void TrackBranch(); |
| 1348 inline void UntrackBranch(); |
| 1349 |
| 1350 inline int32_t emit_code_target( |
| 1351 Handle<Code> target, RelocInfo::Mode rmode, |
| 1352 TypeFeedbackId ast_id = TypeFeedbackId::None()); |
| 1353 |
| 1354 // Helpers to emit binary encoding of 2/4/6 byte instructions. |
| 1355 inline void emit2bytes(uint16_t x); |
| 1356 inline void emit4bytes(uint32_t x); |
| 1357 inline void emit6bytes(uint64_t x); |
| 1358 |
| 1359 // Helpers to emit binary encoding for various instruction formats. |
| 1360 |
| 1361 inline void rr_form(Opcode op, Register r1, Register r2); |
| 1362 inline void rr_form(Opcode op, DoubleRegister r1, DoubleRegister r2); |
| 1363 inline void rr_form(Opcode op, Condition m1, Register r2); |
| 1364 inline void rr2_form(uint8_t op, Condition m1, Register r2); |
| 1365 |
| 1366 inline void rx_form(Opcode op, Register r1, Register x2, Register b2, |
| 1367 Disp d2); |
| 1368 inline void rx_form(Opcode op, DoubleRegister r1, Register x2, Register b2, |
| 1369 Disp d2); |
| 1370 |
| 1371 inline void ri_form(Opcode op, Register r1, const Operand& i2); |
| 1372 inline void ri_form(Opcode op, Condition m1, const Operand& i2); |
| 1373 |
| 1374 inline void rie_form(Opcode op, Register r1, Register r3, const Operand& i2); |
| 1375 inline void rie_f_form(Opcode op, Register r1, Register r2, const Operand& i3, |
| 1376 const Operand& i4, const Operand& i5); |
| 1377 |
| 1378 inline void ril_form(Opcode op, Register r1, const Operand& i2); |
| 1379 inline void ril_form(Opcode op, Condition m1, const Operand& i2); |
| 1380 |
| 1381 inline void ris_form(Opcode op, Register r1, Condition m3, Register b4, |
| 1382 Disp d4, const Operand& i2); |
| 1383 |
| 1384 inline void rrd_form(Opcode op, Register r1, Register r3, Register r2); |
| 1385 |
| 1386 inline void rre_form(Opcode op, Register r1, Register r2); |
| 1387 inline void rre_form(Opcode op, DoubleRegister r1, DoubleRegister r2); |
| 1388 |
| 1389 inline void rrf1_form(Opcode op, Register r1, Register r2, Register r3); |
| 1390 inline void rrf1_form(uint32_t x); |
| 1391 inline void rrf2_form(uint32_t x); |
| 1392 inline void rrf3_form(uint32_t x); |
| 1393 inline void rrfe_form(Opcode op, Condition m3, Condition m4, Register r1, |
| 1394 Register r2); |
| 1395 |
| 1396 inline void rrs_form(Opcode op, Register r1, Register r2, Register b4, |
| 1397 Disp d4, Condition m3); |
| 1398 |
| 1399 inline void rs_form(Opcode op, Register r1, Condition m3, Register b2, |
| 1400 const Disp d2); |
| 1401 inline void rs_form(Opcode op, Register r1, Register r3, Register b2, |
| 1402 const Disp d2); |
| 1403 |
| 1404 inline void rsi_form(Opcode op, Register r1, Register r3, const Operand& i2); |
| 1405 inline void rsl_form(Opcode op, Length l1, Register b2, Disp d2); |
| 1406 |
| 1407 inline void rsy_form(Opcode op, Register r1, Register r3, Register b2, |
| 1408 const Disp d2); |
| 1409 inline void rsy_form(Opcode op, Register r1, Condition m3, Register b2, |
| 1410 const Disp d2); |
| 1411 |
| 1412 inline void rxe_form(Opcode op, Register r1, Register x2, Register b2, |
| 1413 Disp d2); |
| 1414 |
| 1415 inline void rxf_form(Opcode op, Register r1, Register r3, Register b2, |
| 1416 Register x2, Disp d2); |
| 1417 |
| 1418 inline void rxy_form(Opcode op, Register r1, Register x2, Register b2, |
| 1419 Disp d2); |
| 1420 inline void rxy_form(Opcode op, DoubleRegister r1, Register x2, Register b2, |
| 1421 Disp d2); |
| 1422 |
| 1423 inline void s_form(Opcode op, Register b1, Disp d2); |
| 1424 |
| 1425 inline void si_form(Opcode op, const Operand& i2, Register b1, Disp d1); |
| 1426 inline void siy_form(Opcode op, const Operand& i2, Register b1, Disp d1); |
| 1427 |
| 1428 inline void sil_form(Opcode op, Register b1, Disp d1, const Operand& i2); |
| 1429 |
| 1430 inline void ss_form(Opcode op, Length l, Register b1, Disp d1, Register b2, |
| 1431 Disp d2); |
| 1432 inline void ss_form(Opcode op, Length l1, Length l2, Register b1, Disp d1, |
| 1433 Register b2, Disp d2); |
| 1434 inline void ss_form(Opcode op, Length l1, const Operand& i3, Register b1, |
| 1435 Disp d1, Register b2, Disp d2); |
| 1436 inline void ss_form(Opcode op, Register r1, Register r2, Register b1, Disp d1, |
| 1437 Register b2, Disp d2); |
| 1438 inline void sse_form(Opcode op, Register b1, Disp d1, Register b2, Disp d2); |
| 1439 inline void ssf_form(Opcode op, Register r3, Register b1, Disp d1, |
| 1440 Register b2, Disp d2); |
| 1441 |
| 1442 // Labels |
| 1443 void print(Label* L); |
| 1444 int max_reach_from(int pos); |
| 1445 void bind_to(Label* L, int pos); |
| 1446 void next(Label* L); |
| 1447 |
| 1448 friend class RegExpMacroAssemblerS390; |
| 1449 friend class RelocInfo; |
| 1450 friend class CodePatcher; |
| 1451 |
| 1452 List<Handle<Code> > code_targets_; |
| 1453 |
| 1454 PositionsRecorder positions_recorder_; |
| 1455 friend class PositionsRecorder; |
| 1456 friend class EnsureSpace; |
| 1457 }; |
| 1458 |
| 1459 class EnsureSpace BASE_EMBEDDED { |
| 1460 public: |
| 1461 explicit EnsureSpace(Assembler* assembler) { assembler->CheckBuffer(); } |
| 1462 }; |
| 1463 |
| 1464 } // namespace internal |
| 1465 } // namespace v8 |
| 1466 |
| 1467 #endif // V8_S390_ASSEMBLER_S390_H_ |
OLD | NEW |