OLD | NEW |
(Empty) | |
| 1 // Copyright 2015 the V8 project authors. All rights reserved. |
| 2 // Use of this source code is governed by a BSD-style license that can be |
| 3 // found in the LICENSE file. |
| 4 |
| 5 #ifndef V8_HEAP_SLOTS_BUFFER_H_ |
| 6 #define V8_HEAP_SLOTS_BUFFER_H_ |
| 7 |
| 8 #include "src/objects.h" |
| 9 |
| 10 namespace v8 { |
| 11 namespace internal { |
| 12 |
| 13 // Forward declarations. |
| 14 class SlotsBuffer; |
| 15 |
| 16 |
| 17 // SlotsBufferAllocator manages the allocation and deallocation of slots buffer |
| 18 // chunks and links them together. Slots buffer chunks are always created by the |
| 19 // SlotsBufferAllocator. |
| 20 class SlotsBufferAllocator { |
| 21 public: |
| 22 SlotsBuffer* AllocateBuffer(SlotsBuffer* next_buffer); |
| 23 void DeallocateBuffer(SlotsBuffer* buffer); |
| 24 |
| 25 void DeallocateChain(SlotsBuffer** buffer_address); |
| 26 }; |
| 27 |
| 28 |
| 29 // SlotsBuffer records a sequence of slots that has to be updated |
| 30 // after live objects were relocated from evacuation candidates. |
| 31 // All slots are either untyped or typed: |
| 32 // - Untyped slots are expected to contain a tagged object pointer. |
| 33 // They are recorded by an address. |
| 34 // - Typed slots are expected to contain an encoded pointer to a heap |
| 35 // object where the way of encoding depends on the type of the slot. |
| 36 // They are recorded as a pair (SlotType, slot address). |
| 37 // We assume that zero-page is never mapped this allows us to distinguish |
| 38 // untyped slots from typed slots during iteration by a simple comparison: |
| 39 // if element of slots buffer is less than NUMBER_OF_SLOT_TYPES then it |
| 40 // is the first element of typed slot's pair. |
| 41 class SlotsBuffer { |
| 42 public: |
| 43 typedef Object** ObjectSlot; |
| 44 |
| 45 explicit SlotsBuffer(SlotsBuffer* next_buffer) |
| 46 : idx_(0), chain_length_(1), next_(next_buffer) { |
| 47 if (next_ != NULL) { |
| 48 chain_length_ = next_->chain_length_ + 1; |
| 49 } |
| 50 } |
| 51 |
| 52 ~SlotsBuffer() {} |
| 53 |
| 54 void Add(ObjectSlot slot) { |
| 55 DCHECK(0 <= idx_ && idx_ < kNumberOfElements); |
| 56 #ifdef DEBUG |
| 57 if (slot >= reinterpret_cast<ObjectSlot>(NUMBER_OF_SLOT_TYPES)) { |
| 58 DCHECK_NOT_NULL(*slot); |
| 59 } |
| 60 #endif |
| 61 slots_[idx_++] = slot; |
| 62 } |
| 63 |
| 64 ObjectSlot Get(intptr_t i) { |
| 65 DCHECK(i >= 0 && i < kNumberOfElements); |
| 66 return slots_[i]; |
| 67 } |
| 68 |
| 69 size_t Size() { |
| 70 DCHECK(idx_ <= kNumberOfElements); |
| 71 return idx_; |
| 72 } |
| 73 |
| 74 enum SlotType { |
| 75 EMBEDDED_OBJECT_SLOT, |
| 76 OBJECT_SLOT, |
| 77 RELOCATED_CODE_OBJECT, |
| 78 CELL_TARGET_SLOT, |
| 79 CODE_TARGET_SLOT, |
| 80 CODE_ENTRY_SLOT, |
| 81 DEBUG_TARGET_SLOT, |
| 82 NUMBER_OF_SLOT_TYPES |
| 83 }; |
| 84 |
| 85 static const char* SlotTypeToString(SlotType type) { |
| 86 switch (type) { |
| 87 case EMBEDDED_OBJECT_SLOT: |
| 88 return "EMBEDDED_OBJECT_SLOT"; |
| 89 case OBJECT_SLOT: |
| 90 return "OBJECT_SLOT"; |
| 91 case RELOCATED_CODE_OBJECT: |
| 92 return "RELOCATED_CODE_OBJECT"; |
| 93 case CELL_TARGET_SLOT: |
| 94 return "CELL_TARGET_SLOT"; |
| 95 case CODE_TARGET_SLOT: |
| 96 return "CODE_TARGET_SLOT"; |
| 97 case CODE_ENTRY_SLOT: |
| 98 return "CODE_ENTRY_SLOT"; |
| 99 case DEBUG_TARGET_SLOT: |
| 100 return "DEBUG_TARGET_SLOT"; |
| 101 case NUMBER_OF_SLOT_TYPES: |
| 102 return "NUMBER_OF_SLOT_TYPES"; |
| 103 } |
| 104 return "UNKNOWN SlotType"; |
| 105 } |
| 106 |
| 107 SlotsBuffer* next() { return next_; } |
| 108 |
| 109 static int SizeOfChain(SlotsBuffer* buffer) { |
| 110 if (buffer == NULL) return 0; |
| 111 return static_cast<int>(buffer->idx_ + |
| 112 (buffer->chain_length_ - 1) * kNumberOfElements); |
| 113 } |
| 114 |
| 115 inline bool IsFull() { return idx_ == kNumberOfElements; } |
| 116 |
| 117 inline bool HasSpaceForTypedSlot() { return idx_ < kNumberOfElements - 1; } |
| 118 |
| 119 enum AdditionMode { FAIL_ON_OVERFLOW, IGNORE_OVERFLOW }; |
| 120 |
| 121 static bool ChainLengthThresholdReached(SlotsBuffer* buffer) { |
| 122 return buffer != NULL && buffer->chain_length_ >= kChainLengthThreshold; |
| 123 } |
| 124 |
| 125 INLINE(static bool AddTo(SlotsBufferAllocator* allocator, |
| 126 SlotsBuffer** buffer_address, ObjectSlot slot, |
| 127 AdditionMode mode)) { |
| 128 SlotsBuffer* buffer = *buffer_address; |
| 129 if (buffer == NULL || buffer->IsFull()) { |
| 130 if (mode == FAIL_ON_OVERFLOW && ChainLengthThresholdReached(buffer)) { |
| 131 allocator->DeallocateChain(buffer_address); |
| 132 return false; |
| 133 } |
| 134 buffer = allocator->AllocateBuffer(buffer); |
| 135 *buffer_address = buffer; |
| 136 } |
| 137 buffer->Add(slot); |
| 138 return true; |
| 139 } |
| 140 |
| 141 static bool IsTypedSlot(ObjectSlot slot); |
| 142 |
| 143 static bool AddTo(SlotsBufferAllocator* allocator, |
| 144 SlotsBuffer** buffer_address, SlotType type, Address addr, |
| 145 AdditionMode mode); |
| 146 |
| 147 // Eliminates all stale entries from the slots buffer, i.e., slots that |
| 148 // are not part of live objects anymore. This method must be called after |
| 149 // marking, when the whole transitive closure is known and must be called |
| 150 // before sweeping when mark bits are still intact. |
| 151 static void RemoveInvalidSlots(Heap* heap, SlotsBuffer* buffer); |
| 152 |
| 153 // Eliminate all slots that are within the given address range. |
| 154 static void RemoveObjectSlots(Heap* heap, SlotsBuffer* buffer, |
| 155 Address start_slot, Address end_slot); |
| 156 |
| 157 // Ensures that there are no invalid slots in the chain of slots buffers. |
| 158 static void VerifySlots(Heap* heap, SlotsBuffer* buffer); |
| 159 |
| 160 static const int kNumberOfElements = 1021; |
| 161 |
| 162 private: |
| 163 static const int kChainLengthThreshold = 15; |
| 164 |
| 165 intptr_t idx_; |
| 166 intptr_t chain_length_; |
| 167 SlotsBuffer* next_; |
| 168 ObjectSlot slots_[kNumberOfElements]; |
| 169 }; |
| 170 |
| 171 |
| 172 } // namespace internal |
| 173 } // namespace v8 |
| 174 |
| 175 #endif // V8_HEAP_SLOTS_BUFFER_H_ |
OLD | NEW |