OLD | NEW |
---|---|
1 /* | 1 /* |
2 * Copyright 2016 Google Inc. | 2 * Copyright 2016 Google Inc. |
3 * | 3 * |
4 * Use of this source code is governed by a BSD-style license that can be | 4 * Use of this source code is governed by a BSD-style license that can be |
5 * found in the LICENSE file. | 5 * found in the LICENSE file. |
6 */ | 6 */ |
7 | 7 |
8 #include "SkLinearBitmapPipeline.h" | 8 #include "SkLinearBitmapPipeline.h" |
9 #include "SkPM4f.h" | 9 #include "SkPM4f.h" |
10 | 10 |
11 #include <algorithm> | 11 #include <algorithm> |
12 #include <cmath> | 12 #include <cmath> |
13 #include <limits> | 13 #include <limits> |
14 #include "SkColor.h" | 14 #include "SkColor.h" |
15 #include "SkSize.h" | 15 #include "SkSize.h" |
16 #include <tuple> | |
16 | 17 |
17 // Tweak ABI of functions that pass Sk4f by value to pass them via registers. | 18 // Tweak ABI of functions that pass Sk4f by value to pass them via registers. |
18 #if defined(_MSC_VER) && SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2 | 19 #if defined(_MSC_VER) && SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2 |
19 #define VECTORCALL __vectorcall | 20 #define VECTORCALL __vectorcall |
20 #elif defined(SK_CPU_ARM32) && defined(SK_ARM_HAS_NEON) | 21 #elif defined(SK_CPU_ARM32) && defined(SK_ARM_HAS_NEON) |
21 #define VECTORCALL __attribute__((pcs("aapcs-vfp"))) | 22 #define VECTORCALL __attribute__((pcs("aapcs-vfp"))) |
22 #else | 23 #else |
23 #define VECTORCALL | 24 #define VECTORCALL |
24 #endif | 25 #endif |
26 | |
27 namespace { | |
28 struct X { | |
29 explicit X(SkScalar val) : fVal{val} { } | |
30 explicit X(SkPoint pt) : fVal{pt.fX} { } | |
31 explicit X(SkSize s) : fVal{s.fWidth} { } | |
32 explicit X(SkISize s) : fVal(s.fWidth) { } | |
33 operator SkScalar () const {return fVal;} | |
34 private: | |
35 SkScalar fVal; | |
36 }; | |
37 | |
38 struct Y { | |
39 explicit Y(SkScalar val) : fVal{val} { } | |
40 explicit Y(SkPoint pt) : fVal{pt.fY} { } | |
41 explicit Y(SkSize s) : fVal{s.fHeight} { } | |
42 explicit Y(SkISize s) : fVal(s.fHeight) { } | |
43 operator SkScalar () const {return fVal;} | |
44 private: | |
45 SkScalar fVal; | |
46 }; | |
47 | |
48 // The Span class enables efficient processing horizontal spans of pixels. | |
49 // * start - the point where to start the span. | |
50 // * length - the number of pixels to traverse in source space. | |
51 // * count - the number of pixels to produce in destination space. | |
52 // Both start and length are mapped through the inversion matrix to produce valu es in source | |
53 // space. After the matrix operation, the tilers may break the spans up into sma ller spans. | |
54 // The tilers can produce spans that seem nonsensical. | |
55 // * The clamp tiler can create spans with length of 0. This indicates to copy a n edge pixel out | |
56 // to the edge of the destination scan. | |
57 // * The mirror tiler can produce spans with negative length. This indicates tha t the source | |
58 // should be traversed in the opposite direction to the destination pixels. | |
59 class Span { | |
60 public: | |
61 Span(SkPoint start, SkScalar length, int count) | |
62 : fStart(start) | |
63 , fLength(length) | |
64 , fCount{count} { | |
65 SkASSERT(std::isfinite(length)); | |
66 } | |
67 | |
68 operator std::tuple<SkPoint&, SkScalar&, int&>() { | |
69 return std::tie(fStart, fLength, fCount); | |
70 } | |
71 | |
72 bool isEmpty() const { return 0 == fCount; } | |
73 SkScalar length() const { return fLength; } | |
74 SkScalar startX() const { return X(fStart); } | |
75 SkScalar endX() const { return startX() + length(); } | |
76 void clear() { | |
77 fCount = 0; | |
78 } | |
79 | |
80 bool completelyWithin(SkScalar xMin, SkScalar xMax) const { | |
81 SkScalar sMin, sMax; | |
82 std::tie(sMin, sMax) = std::minmax(startX(), endX()); | |
83 return xMin <= sMin && sMax <= xMax; | |
84 } | |
85 | |
86 void offset(SkScalar offsetX) { | |
87 fStart.offset(offsetX, 0.0f); | |
88 } | |
89 | |
90 Span breakAt(SkScalar breakX, SkScalar dx) { | |
91 SkASSERT(std::isfinite(breakX)); | |
92 SkASSERT(std::isfinite(dx)); | |
93 SkASSERT(dx != 0.0f); | |
94 | |
95 if (this->isEmpty()) { | |
96 return Span{{0.0, 0.0}, 0.0f, 0}; | |
97 } | |
98 | |
99 int dxSteps = SkScalarFloorToInt((breakX - this->startX()) / dx); | |
100 if (dxSteps < 0) { | |
101 // The span is wholly after breakX. | |
102 return Span{{0.0, 0.0}, 0.0f, 0}; | |
103 } else if (dxSteps > fCount) { | |
104 // The span is wholly before breakX. | |
105 Span answer = *this; | |
106 this->clear(); | |
107 return answer; | |
108 } | |
109 | |
110 // Calculate the values for the span to cleave off. | |
111 SkPoint newStart = fStart; | |
112 SkScalar newLength = dxSteps * dx; | |
113 int newCount = dxSteps + 1; | |
114 SkASSERT(newCount > 0); | |
115 | |
116 // Update this span to reflect the break. | |
117 SkScalar lengthToStart = newLength + dx; | |
118 fLength -= lengthToStart; | |
119 fCount -= newCount; | |
120 fStart = {this->startX() + lengthToStart, Y(fStart)}; | |
121 | |
122 return Span{newStart, newLength, newCount}; | |
123 } | |
124 | |
125 void clampToSinglePixel(SkPoint pixel) { | |
126 fStart = pixel; | |
127 fLength = 0.0f; | |
128 } | |
129 | |
130 template <typename Next> | |
131 void spanNextStage(Next* next) { | |
mtklein_C
2016/02/26 23:07:40
Let's consider refactoring to remove this. Seems
herb_g
2016/02/29 15:40:53
Done.
| |
132 SkASSERT(next != nullptr); | |
133 SkASSERT(fCount > 0); | |
134 next->pointSpan(*this); | |
135 } | |
136 | |
137 private: | |
138 SkPoint fStart; | |
139 SkScalar fLength; | |
140 int fCount; | |
141 }; | |
142 } // namespace | |
25 | 143 |
26 class SkLinearBitmapPipeline::PointProcessorInterface { | 144 class SkLinearBitmapPipeline::PointProcessorInterface { |
27 public: | 145 public: |
28 virtual ~PointProcessorInterface() { } | 146 virtual ~PointProcessorInterface() { } |
29 virtual void VECTORCALL pointListFew(int n, Sk4f xs, Sk4f ys) = 0; | 147 virtual void VECTORCALL pointListFew(int n, Sk4s xs, Sk4s ys) = 0; |
30 virtual void VECTORCALL pointList4(Sk4f xs, Sk4f ys) = 0; | 148 virtual void VECTORCALL pointList4(Sk4s xs, Sk4s ys) = 0; |
31 | 149 virtual void pointSpan(Span span) = 0; |
32 // The pointSpan method efficiently process horizontal spans of pixels. | |
33 // * start - the point where to start the span. | |
34 // * length - the number of pixels to traverse in source space. | |
35 // * count - the number of pixels to produce in destination space. | |
36 // Both start and length are mapped through the inversion matrix to produce values in source | |
37 // space. After the matrix operation, the tilers may break the spans up into smaller spans. | |
38 // The tilers can produce spans that seem nonsensical. | |
39 // * The clamp tiler can create spans with length of 0. This indicates to co py an edge pixel out | |
40 // to the edge of the destination scan. | |
41 // * The mirror tiler can produce spans with negative length. This indicates that the source | |
42 // should be traversed in the opposite direction to the destination pixels . | |
43 virtual void pointSpan(SkPoint start, SkScalar length, int count) = 0; | |
44 }; | 150 }; |
45 | 151 |
46 class SkLinearBitmapPipeline::BilerpProcessorInterface | 152 class SkLinearBitmapPipeline::BilerpProcessorInterface |
47 : public SkLinearBitmapPipeline::PointProcessorInterface { | 153 : public SkLinearBitmapPipeline::PointProcessorInterface { |
48 public: | 154 public: |
49 // The x's and y's are setup in the following order: | 155 // The x's and y's are setup in the following order: |
50 // +--------+--------+ | 156 // +--------+--------+ |
51 // | | | | 157 // | | | |
52 // | px00 | px10 | | 158 // | px00 | px10 | |
53 // | 0 | 1 | | 159 // | 0 | 1 | |
54 // +--------+--------+ | 160 // +--------+--------+ |
55 // | | | | 161 // | | | |
56 // | px01 | px11 | | 162 // | px01 | px11 | |
57 // | 2 | 3 | | 163 // | 2 | 3 | |
58 // +--------+--------+ | 164 // +--------+--------+ |
59 // These pixels coordinates are arranged in the following order in xs and ys : | 165 // These pixels coordinates are arranged in the following order in xs and ys : |
60 // px00 px10 px01 px11 | 166 // px00 px10 px01 px11 |
61 virtual void VECTORCALL bilerpList(Sk4f xs, Sk4f ys) = 0; | 167 virtual void VECTORCALL bilerpList(Sk4s xs, Sk4s ys) = 0; |
62 }; | 168 }; |
63 | 169 |
64 class SkLinearBitmapPipeline::PixelPlacerInterface { | 170 class SkLinearBitmapPipeline::PixelPlacerInterface { |
65 public: | 171 public: |
66 virtual ~PixelPlacerInterface() { } | 172 virtual ~PixelPlacerInterface() { } |
67 virtual void setDestination(SkPM4f* dst) = 0; | 173 virtual void setDestination(SkPM4f* dst) = 0; |
68 virtual void VECTORCALL placePixel(Sk4f pixel0) = 0; | 174 virtual void VECTORCALL placePixel(Sk4f pixel0) = 0; |
69 virtual void VECTORCALL place4Pixels(Sk4f p0, Sk4f p1, Sk4f p2, Sk4f p3) = 0 ; | 175 virtual void VECTORCALL place4Pixels(Sk4f p0, Sk4f p1, Sk4f p2, Sk4f p3) = 0 ; |
70 }; | 176 }; |
71 | 177 |
72 namespace { | 178 namespace { |
73 | |
74 struct X { | |
75 explicit X(SkScalar val) : fVal{val} { } | |
76 explicit X(SkPoint pt) : fVal{pt.fX} { } | |
77 explicit X(SkSize s) : fVal{s.fWidth} { } | |
78 explicit X(SkISize s) : fVal(s.fWidth) { } | |
79 operator float () const {return fVal;} | |
80 private: | |
81 float fVal; | |
82 }; | |
83 | |
84 struct Y { | |
85 explicit Y(SkScalar val) : fVal{val} { } | |
86 explicit Y(SkPoint pt) : fVal{pt.fY} { } | |
87 explicit Y(SkSize s) : fVal{s.fHeight} { } | |
88 explicit Y(SkISize s) : fVal(s.fHeight) { } | |
89 operator float () const {return fVal;} | |
90 private: | |
91 float fVal; | |
92 }; | |
93 | |
94 template <typename Stage> | 179 template <typename Stage> |
95 void span_fallback(SkPoint start, SkScalar length, int count, Stage* stage) { | 180 void span_fallback(Span span, Stage* stage) { |
96 // If count == 1 use PointListFew instead. | 181 SkPoint start; |
97 SkASSERT(count > 1); | 182 SkScalar length; |
98 | 183 int count; |
99 float dx = length / (count - 1); | 184 std::tie(start, length, count) = span; |
100 Sk4f Xs = Sk4f(X(start)) + Sk4f{0.0f, 1.0f, 2.0f, 3.0f} * Sk4f{dx}; | 185 Sk4f xs{X(start)}; |
101 Sk4f Ys{Y(start)}; | 186 Sk4f ys{Y(start)}; |
102 Sk4f fourDx = {4.0f * dx}; | 187 Sk4s fourDx; |
188 if (count > 1) { | |
189 SkScalar dx = length / (count - 1); | |
190 xs = xs + Sk4f{0.0f, 1.0f, 2.0f, 3.0f} * dx; | |
191 // Only used if count is >= 4. | |
192 fourDx = Sk4f{4.0f * dx}; | |
193 } | |
103 | 194 |
104 while (count >= 4) { | 195 while (count >= 4) { |
105 stage->pointList4(Xs, Ys); | 196 stage->pointList4(xs, ys); |
106 Xs = Xs + fourDx; | 197 xs = xs + fourDx; |
107 count -= 4; | 198 count -= 4; |
108 } | 199 } |
109 if (count > 0) { | 200 if (count > 0) { |
110 stage->pointListFew(count, Xs, Ys); | 201 stage->pointListFew(count, xs, ys); |
111 } | 202 } |
112 } | 203 } |
113 | 204 |
114 // PointProcessor uses a strategy to help complete the work of the different sta ges. The strategy | 205 // PointProcessor uses a strategy to help complete the work of the different sta ges. The strategy |
115 // must implement the following methods: | 206 // must implement the following methods: |
116 // * processPoints(xs, ys) - must mutate the xs and ys for the stage. | 207 // * processPoints(xs, ys) - must mutate the xs and ys for the stage. |
117 // * maybeProcessSpan(start, length, count) - This represents a horizontal serie s of pixels | 208 // * maybeProcessSpan(span, next) - This represents a horizontal series of pixel s |
118 // to work over. | 209 // to work over. |
119 // start - is the starting pixel. This is in destination space before the matr ix stage, and in | 210 // span - encapsulation of span. |
120 // source space after the matrix stage. | |
121 // length - is this distance between the first pixel center and the last pixel center. Like start, | |
122 // this is in destination space before the matrix stage, and in source space after. | |
123 // count - the number of pixels in source space to produce. | |
124 // next - a pointer to the next stage. | 211 // next - a pointer to the next stage. |
125 // maybeProcessSpan - returns false if it can not process the span and needs t o fallback to | 212 // maybeProcessSpan - returns false if it can not process the span and needs t o fallback to |
126 // point lists for processing. | 213 // point lists for processing. |
127 template<typename Strategy, typename Next> | 214 template<typename Strategy, typename Next> |
128 class PointProcessor final : public SkLinearBitmapPipeline::PointProcessorInterf ace { | 215 class PointProcessor final : public SkLinearBitmapPipeline::PointProcessorInterf ace { |
129 public: | 216 public: |
130 template <typename... Args> | 217 template <typename... Args> |
131 PointProcessor(Next* next, Args&&... args) | 218 PointProcessor(Next* next, Args&&... args) |
132 : fNext{next} | 219 : fNext{next} |
133 , fStrategy{std::forward<Args>(args)...}{ } | 220 , fStrategy{std::forward<Args>(args)...}{ } |
134 | 221 |
135 void VECTORCALL pointListFew(int n, Sk4f xs, Sk4f ys) override { | 222 void VECTORCALL pointListFew(int n, Sk4s xs, Sk4s ys) override { |
136 fStrategy.processPoints(&xs, &ys); | 223 fStrategy.processPoints(&xs, &ys); |
137 fNext->pointListFew(n, xs, ys); | 224 fNext->pointListFew(n, xs, ys); |
138 } | 225 } |
139 | 226 |
140 void VECTORCALL pointList4(Sk4f xs, Sk4f ys) override { | 227 void VECTORCALL pointList4(Sk4s xs, Sk4s ys) override { |
141 fStrategy.processPoints(&xs, &ys); | 228 fStrategy.processPoints(&xs, &ys); |
142 fNext->pointList4(xs, ys); | 229 fNext->pointList4(xs, ys); |
143 } | 230 } |
144 | 231 |
145 void pointSpan(SkPoint start, SkScalar length, int count) override { | 232 void pointSpan(Span span) override { |
146 if (!fStrategy.maybeProcessSpan(start, length, count, fNext)) { | 233 if (!fStrategy.maybeProcessSpan(span, fNext)) { |
147 span_fallback(start, length, count, this); | 234 span_fallback(span, this); |
148 } | 235 } |
149 } | 236 } |
150 | 237 |
151 private: | 238 private: |
152 Next* const fNext; | 239 Next* const fNext; |
153 Strategy fStrategy; | 240 Strategy fStrategy; |
154 }; | 241 }; |
155 | 242 |
156 // See PointProcessor for responsibilities of Strategy. | 243 // See PointProcessor for responsibilities of Strategy. |
157 template<typename Strategy, typename Next> | 244 template<typename Strategy, typename Next> |
158 class BilerpProcessor final : public SkLinearBitmapPipeline::BilerpProcessorInte rface { | 245 class BilerpProcessor final : public SkLinearBitmapPipeline::BilerpProcessorInte rface { |
159 public: | 246 public: |
160 template <typename... Args> | 247 template <typename... Args> |
161 BilerpProcessor(Next* next, Args&&... args) | 248 BilerpProcessor(Next* next, Args&&... args) |
162 : fNext{next} | 249 : fNext{next} |
163 , fStrategy{std::forward<Args>(args)...}{ } | 250 , fStrategy{std::forward<Args>(args)...}{ } |
164 | 251 |
165 void VECTORCALL pointListFew(int n, Sk4f xs, Sk4f ys) override { | 252 void VECTORCALL pointListFew(int n, Sk4s xs, Sk4s ys) override { |
166 fStrategy.processPoints(&xs, &ys); | 253 fStrategy.processPoints(&xs, &ys); |
167 fNext->pointListFew(n, xs, ys); | 254 fNext->pointListFew(n, xs, ys); |
168 } | 255 } |
169 | 256 |
170 void VECTORCALL pointList4(Sk4f xs, Sk4f ys) override { | 257 void VECTORCALL pointList4(Sk4s xs, Sk4s ys) override { |
171 fStrategy.processPoints(&xs, &ys); | 258 fStrategy.processPoints(&xs, &ys); |
172 fNext->pointList4(xs, ys); | 259 fNext->pointList4(xs, ys); |
173 } | 260 } |
174 | 261 |
175 void VECTORCALL bilerpList(Sk4f xs, Sk4f ys) override { | 262 void VECTORCALL bilerpList(Sk4s xs, Sk4s ys) override { |
176 fStrategy.processPoints(&xs, &ys); | 263 fStrategy.processPoints(&xs, &ys); |
177 fNext->bilerpList(xs, ys); | 264 fNext->bilerpList(xs, ys); |
178 } | 265 } |
179 | 266 |
180 void pointSpan(SkPoint start, SkScalar length, int count) override { | 267 void pointSpan(Span span) override { |
181 if (!fStrategy.maybeProcessSpan(start, length, count, fNext)) { | 268 if (!fStrategy.maybeProcessSpan(span, fNext)) { |
182 span_fallback(start, length, count, this); | 269 span_fallback(span, this); |
183 } | 270 } |
184 } | 271 } |
185 | 272 |
186 private: | 273 private: |
187 Next* const fNext; | 274 Next* const fNext; |
188 Strategy fStrategy; | 275 Strategy fStrategy; |
189 }; | 276 }; |
190 | 277 |
191 class SkippedStage final : public SkLinearBitmapPipeline::BilerpProcessorInterfa ce { | 278 class SkippedStage final : public SkLinearBitmapPipeline::BilerpProcessorInterfa ce { |
192 void VECTORCALL pointListFew(int n, Sk4f xs, Sk4f ys) override { | 279 void VECTORCALL pointListFew(int n, Sk4s xs, Sk4s ys) override { |
193 SkFAIL("Skipped stage."); | 280 SkFAIL("Skipped stage."); |
194 } | 281 } |
195 void VECTORCALL pointList4(Sk4f xs, Sk4f ys) override { | 282 void VECTORCALL pointList4(Sk4s xs, Sk4s ys) override { |
196 SkFAIL("Skipped stage."); | 283 SkFAIL("Skipped stage."); |
197 } | 284 } |
198 void VECTORCALL bilerpList(Sk4f xs, Sk4f ys) override { | 285 void VECTORCALL bilerpList(Sk4s xs, Sk4s ys) override { |
199 SkFAIL("Skipped stage."); | 286 SkFAIL("Skipped stage."); |
200 } | 287 } |
201 void pointSpan(SkPoint start, SkScalar length, int count) override { | 288 void pointSpan(Span span) override { |
202 SkFAIL("Skipped stage."); | 289 SkFAIL("Skipped stage."); |
203 } | 290 } |
204 }; | 291 }; |
205 | 292 |
206 class TranslateMatrixStrategy { | 293 class TranslateMatrixStrategy { |
207 public: | 294 public: |
208 TranslateMatrixStrategy(SkVector offset) | 295 TranslateMatrixStrategy(SkVector offset) |
209 : fXOffset{X(offset)} | 296 : fXOffset{X(offset)} |
210 , fYOffset{Y(offset)} { } | 297 , fYOffset{Y(offset)} { } |
211 | 298 |
212 void processPoints(Sk4f* xs, Sk4f* ys) { | 299 void processPoints(Sk4s* xs, Sk4s* ys) { |
213 *xs = *xs + fXOffset; | 300 *xs = *xs + fXOffset; |
214 *ys = *ys + fYOffset; | 301 *ys = *ys + fYOffset; |
215 } | 302 } |
216 | 303 |
217 template <typename Next> | 304 template <typename Next> |
218 bool maybeProcessSpan(SkPoint start, SkScalar length, int count, Next* next) { | 305 bool maybeProcessSpan(Span span, Next* next) { |
219 next->pointSpan(start + SkPoint{fXOffset[0], fYOffset[0]}, length, count ); | 306 SkPoint start; SkScalar length; int count; |
307 std::tie(start, length, count) = span; | |
308 next->pointSpan(Span{start + SkPoint{fXOffset[0], fYOffset[0]}, length, count}); | |
220 return true; | 309 return true; |
221 } | 310 } |
222 | 311 |
223 private: | 312 private: |
224 const Sk4f fXOffset, fYOffset; | 313 const Sk4s fXOffset, fYOffset; |
225 }; | 314 }; |
226 template <typename Next = SkLinearBitmapPipeline::PointProcessorInterface> | 315 template <typename Next = SkLinearBitmapPipeline::PointProcessorInterface> |
227 using TranslateMatrix = PointProcessor<TranslateMatrixStrategy, Next>; | 316 using TranslateMatrix = PointProcessor<TranslateMatrixStrategy, Next>; |
228 | 317 |
229 class ScaleMatrixStrategy { | 318 class ScaleMatrixStrategy { |
230 public: | 319 public: |
231 ScaleMatrixStrategy(SkVector offset, SkVector scale) | 320 ScaleMatrixStrategy(SkVector offset, SkVector scale) |
232 : fXOffset{X(offset)}, fYOffset{Y(offset)} | 321 : fXOffset{X(offset)}, fYOffset{Y(offset)} |
233 , fXScale{X(scale)}, fYScale{Y(scale)} { } | 322 , fXScale{X(scale)}, fYScale{Y(scale)} { } |
234 void processPoints(Sk4f* xs, Sk4f* ys) { | 323 void processPoints(Sk4s* xs, Sk4s* ys) { |
235 *xs = *xs * fXScale + fXOffset; | 324 *xs = *xs * fXScale + fXOffset; |
236 *ys = *ys * fYScale + fYOffset; | 325 *ys = *ys * fYScale + fYOffset; |
237 } | 326 } |
238 | 327 |
239 template <typename Next> | 328 template <typename Next> |
240 bool maybeProcessSpan(SkPoint start, SkScalar length, int count, Next* next) { | 329 bool maybeProcessSpan(Span span, Next* next) { |
330 SkPoint start; SkScalar length; int count; | |
331 std::tie(start, length, count) = span; | |
241 SkPoint newStart = | 332 SkPoint newStart = |
242 SkPoint{X(start) * fXScale[0] + fXOffset[0], Y(start) * fYScale[0] + fYOffset[0]}; | 333 SkPoint{X(start) * fXScale[0] + fXOffset[0], Y(start) * fYScale[0] + fYOffset[0]}; |
243 SkScalar newLength = length * fXScale[0]; | 334 SkScalar newLength = length * fXScale[0]; |
244 next->pointSpan(newStart, newLength, count); | 335 next->pointSpan(Span{newStart, newLength, count}); |
245 return true; | 336 return true; |
246 } | 337 } |
247 | 338 |
248 private: | 339 private: |
249 const Sk4f fXOffset, fYOffset; | 340 const Sk4s fXOffset, fYOffset; |
250 const Sk4f fXScale, fYScale; | 341 const Sk4s fXScale, fYScale; |
251 }; | 342 }; |
252 template <typename Next = SkLinearBitmapPipeline::PointProcessorInterface> | 343 template <typename Next = SkLinearBitmapPipeline::PointProcessorInterface> |
253 using ScaleMatrix = PointProcessor<ScaleMatrixStrategy, Next>; | 344 using ScaleMatrix = PointProcessor<ScaleMatrixStrategy, Next>; |
254 | 345 |
255 class AffineMatrixStrategy { | 346 class AffineMatrixStrategy { |
256 public: | 347 public: |
257 AffineMatrixStrategy(SkVector offset, SkVector scale, SkVector skew) | 348 AffineMatrixStrategy(SkVector offset, SkVector scale, SkVector skew) |
258 : fXOffset{X(offset)}, fYOffset{Y(offset)} | 349 : fXOffset{X(offset)}, fYOffset{Y(offset)} |
259 , fXScale{X(scale)}, fYScale{Y(scale)} | 350 , fXScale{X(scale)}, fYScale{Y(scale)} |
260 , fXSkew{X(skew)}, fYSkew{Y(skew)} { } | 351 , fXSkew{X(skew)}, fYSkew{Y(skew)} { } |
261 void processPoints(Sk4f* xs, Sk4f* ys) { | 352 void processPoints(Sk4s* xs, Sk4s* ys) { |
262 Sk4f newXs = fXScale * *xs + fXSkew * *ys + fXOffset; | 353 Sk4s newXs = fXScale * *xs + fXSkew * *ys + fXOffset; |
263 Sk4f newYs = fYSkew * *xs + fYScale * *ys + fYOffset; | 354 Sk4s newYs = fYSkew * *xs + fYScale * *ys + fYOffset; |
264 | 355 |
265 *xs = newXs; | 356 *xs = newXs; |
266 *ys = newYs; | 357 *ys = newYs; |
267 } | 358 } |
268 | 359 |
269 template <typename Next> | 360 template <typename Next> |
270 bool maybeProcessSpan(SkPoint start, SkScalar length, int count, Next* next) { | 361 bool maybeProcessSpan(Span span, Next* next) { |
271 return false; | 362 return false; |
272 } | 363 } |
273 | 364 |
274 private: | 365 private: |
275 const Sk4f fXOffset, fYOffset; | 366 const Sk4s fXOffset, fYOffset; |
276 const Sk4f fXScale, fYScale; | 367 const Sk4s fXScale, fYScale; |
277 const Sk4f fXSkew, fYSkew; | 368 const Sk4s fXSkew, fYSkew; |
278 }; | 369 }; |
279 template <typename Next = SkLinearBitmapPipeline::PointProcessorInterface> | 370 template <typename Next = SkLinearBitmapPipeline::PointProcessorInterface> |
280 using AffineMatrix = PointProcessor<AffineMatrixStrategy, Next>; | 371 using AffineMatrix = PointProcessor<AffineMatrixStrategy, Next>; |
281 | 372 |
282 static SkLinearBitmapPipeline::PointProcessorInterface* choose_matrix( | 373 static SkLinearBitmapPipeline::PointProcessorInterface* choose_matrix( |
283 SkLinearBitmapPipeline::PointProcessorInterface* next, | 374 SkLinearBitmapPipeline::PointProcessorInterface* next, |
284 const SkMatrix& inverse, | 375 const SkMatrix& inverse, |
285 SkLinearBitmapPipeline::MatrixStage* matrixProc) { | 376 SkLinearBitmapPipeline::MatrixStage* matrixProc) { |
286 if (inverse.hasPerspective()) { | 377 if (inverse.hasPerspective()) { |
287 SkFAIL("Not implemented."); | 378 SkFAIL("Not implemented."); |
(...skipping 17 matching lines...) Expand all Loading... | |
305 return next; | 396 return next; |
306 } | 397 } |
307 return matrixProc->get(); | 398 return matrixProc->get(); |
308 } | 399 } |
309 | 400 |
310 template <typename Next = SkLinearBitmapPipeline::BilerpProcessorInterface> | 401 template <typename Next = SkLinearBitmapPipeline::BilerpProcessorInterface> |
311 class ExpandBilerp final : public SkLinearBitmapPipeline::PointProcessorInterfac e { | 402 class ExpandBilerp final : public SkLinearBitmapPipeline::PointProcessorInterfac e { |
312 public: | 403 public: |
313 ExpandBilerp(Next* next) : fNext{next} { } | 404 ExpandBilerp(Next* next) : fNext{next} { } |
314 | 405 |
315 void VECTORCALL pointListFew(int n, Sk4f xs, Sk4f ys) override { | 406 void VECTORCALL pointListFew(int n, Sk4s xs, Sk4s ys) override { |
316 SkASSERT(0 < n && n < 4); | 407 SkASSERT(0 < n && n < 4); |
317 // px00 px10 px01 px11 | 408 // px00 px10 px01 px11 |
318 const Sk4f kXOffsets{-0.5f, 0.5f, -0.5f, 0.5f}, | 409 const Sk4s kXOffsets{-0.5f, 0.5f, -0.5f, 0.5f}, |
319 kYOffsets{-0.5f, -0.5f, 0.5f, 0.5f}; | 410 kYOffsets{-0.5f, -0.5f, 0.5f, 0.5f}; |
320 if (n >= 1) fNext->bilerpList(Sk4f{xs[0]} + kXOffsets, Sk4f{ys[0]} + kYO ffsets); | 411 if (n >= 1) fNext->bilerpList(Sk4s{xs[0]} + kXOffsets, Sk4s{ys[0]} + kYO ffsets); |
321 if (n >= 2) fNext->bilerpList(Sk4f{xs[1]} + kXOffsets, Sk4f{ys[1]} + kYO ffsets); | 412 if (n >= 2) fNext->bilerpList(Sk4s{xs[1]} + kXOffsets, Sk4s{ys[1]} + kYO ffsets); |
322 if (n >= 3) fNext->bilerpList(Sk4f{xs[2]} + kXOffsets, Sk4f{ys[2]} + kYO ffsets); | 413 if (n >= 3) fNext->bilerpList(Sk4s{xs[2]} + kXOffsets, Sk4s{ys[2]} + kYO ffsets); |
323 } | 414 } |
324 | 415 |
325 void VECTORCALL pointList4(Sk4f xs, Sk4f ys) override { | 416 void VECTORCALL pointList4(Sk4f xs, Sk4f ys) override { |
326 // px00 px10 px01 px11 | 417 // px00 px10 px01 px11 |
327 const Sk4f kXOffsets{-0.5f, 0.5f, -0.5f, 0.5f}, | 418 const Sk4f kXOffsets{-0.5f, 0.5f, -0.5f, 0.5f}, |
328 kYOffsets{-0.5f, -0.5f, 0.5f, 0.5f}; | 419 kYOffsets{-0.5f, -0.5f, 0.5f, 0.5f}; |
329 fNext->bilerpList(Sk4f{xs[0]} + kXOffsets, Sk4f{ys[0]} + kYOffsets); | 420 fNext->bilerpList(Sk4s{xs[0]} + kXOffsets, Sk4s{ys[0]} + kYOffsets); |
330 fNext->bilerpList(Sk4f{xs[1]} + kXOffsets, Sk4f{ys[1]} + kYOffsets); | 421 fNext->bilerpList(Sk4s{xs[1]} + kXOffsets, Sk4s{ys[1]} + kYOffsets); |
331 fNext->bilerpList(Sk4f{xs[2]} + kXOffsets, Sk4f{ys[2]} + kYOffsets); | 422 fNext->bilerpList(Sk4s{xs[2]} + kXOffsets, Sk4s{ys[2]} + kYOffsets); |
332 fNext->bilerpList(Sk4f{xs[3]} + kXOffsets, Sk4f{ys[3]} + kYOffsets); | 423 fNext->bilerpList(Sk4s{xs[3]} + kXOffsets, Sk4s{ys[3]} + kYOffsets); |
333 } | 424 } |
334 | 425 |
335 void pointSpan(SkPoint start, SkScalar length, int count) override { | 426 void pointSpan(Span span) override { |
336 span_fallback(start, length, count, this); | 427 span_fallback(span, fNext); |
337 } | 428 } |
338 | 429 |
339 private: | 430 private: |
340 Next* const fNext; | 431 Next* const fNext; |
341 }; | 432 }; |
342 | 433 |
343 static SkLinearBitmapPipeline::PointProcessorInterface* choose_filter( | 434 static SkLinearBitmapPipeline::PointProcessorInterface* choose_filter( |
344 SkLinearBitmapPipeline::BilerpProcessorInterface* next, | 435 SkLinearBitmapPipeline::BilerpProcessorInterface* next, |
345 SkFilterQuality filterQuailty, | 436 SkFilterQuality filterQuailty, |
346 SkLinearBitmapPipeline::FilterStage* filterProc) { | 437 SkLinearBitmapPipeline::FilterStage* filterProc) { |
(...skipping 13 matching lines...) Expand all Loading... | |
360 , fXMax{max - 1.0f} { } | 451 , fXMax{max - 1.0f} { } |
361 ClampStrategy(Y max) | 452 ClampStrategy(Y max) |
362 : fYMin{0.0f} | 453 : fYMin{0.0f} |
363 , fYMax{max - 1.0f} { } | 454 , fYMax{max - 1.0f} { } |
364 ClampStrategy(SkSize max) | 455 ClampStrategy(SkSize max) |
365 : fXMin{0.0f} | 456 : fXMin{0.0f} |
366 , fYMin{0.0f} | 457 , fYMin{0.0f} |
367 , fXMax{X(max) - 1.0f} | 458 , fXMax{X(max) - 1.0f} |
368 , fYMax{Y(max) - 1.0f} { } | 459 , fYMax{Y(max) - 1.0f} { } |
369 | 460 |
370 void processPoints(Sk4f* xs, Sk4f* ys) { | 461 void processPoints(Sk4s* xs, Sk4s* ys) { |
371 *xs = Sk4f::Min(Sk4f::Max(*xs, fXMin), fXMax); | 462 *xs = Sk4s::Min(Sk4s::Max(*xs, fXMin), fXMax); |
372 *ys = Sk4f::Min(Sk4f::Max(*ys, fYMin), fYMax); | 463 *ys = Sk4s::Min(Sk4s::Max(*ys, fYMin), fYMax); |
373 } | 464 } |
374 | 465 |
375 template <typename Next> | 466 template <typename Next> |
376 bool maybeProcessSpan(SkPoint start, SkScalar length, int count, Next* next) { | 467 bool maybeProcessSpan(Span originalSpan, Next* next) { |
377 return false; | 468 SkPoint start; SkScalar length; int count; |
469 std::tie(start, length, count) = originalSpan; | |
470 SkScalar xMin = fXMin[0]; | |
471 SkScalar xMax = fXMax[0] + 1.0f; | |
472 SkScalar yMin = fYMin[0]; | |
473 SkScalar yMax = fYMax[0]; | |
474 SkScalar x = X(start); | |
475 SkScalar y = std::min(std::max<SkScalar>(yMin, Y(start)), yMax); | |
476 | |
477 Span span{{x, y}, length, count}; | |
478 | |
479 if (span.completelyWithin(xMin, xMax)) { | |
480 span.spanNextStage(next); | |
481 return true; | |
482 } | |
483 if (1 == count || 0.0f == length) { | |
mtklein_C
2016/02/26 23:07:40
SkASSERT(count > 0); ?
// We probably could make
herb_g
2016/02/29 15:40:54
I think the best direction here is to have spans b
| |
484 return false; | |
485 } | |
486 | |
487 SkScalar dx = length / (count - 1); | |
488 | |
489 // A B C | |
490 // +-------+-------+-------++-------+-------+-------+ +-------+----- --++------ | |
491 // | *---*|---*---|*---*--||-*---*-|---*---|*---...| |--*---*|---*- --||*---*.... | |
492 // | | | || | | | ... | | || | |
493 // | | | || | | | | | || | |
494 // +-------+-------+-------++-------+-------+-------+ +-------+----- --++------ | |
495 // ^ ^ | |
496 // | xMin xMax- 1 | xMax | |
497 // | |
498 // *---*---*---... - track of samples. * = sample | |
499 // | |
500 // +-+ || | |
501 // | | - pixels in source space. || - tile border. | |
502 // +-+ || | |
503 // | |
504 // The length from A to B is the length in source space or 4 * dx or (co unt - 1) * dx | |
505 // where dx is the distance between samples. There are 5 destination pix els | |
506 // corresponding to 5 samples specified in the A, B span. The distance f rom A to the next | |
507 // span starting at C is 5 * dx, so count * dx. | |
508 // Remember, count is the number of pixels needed for the destination an d the number of | |
509 // samples. | |
510 // Overall Strategy: | |
511 // * Under - for portions of the span < xMin, take the color at pixel {x Min, y} and use it | |
512 // to fill in the 5 pixel sampled from A to B. | |
513 // * Middle - for the portion of the span between xMin and xMax sample n ormally. | |
514 // * Over - for the portion of the span > xMax, take the color at pixel {xMax-1, y} and | |
515 // use it to fill in the rest of the destination pixels. | |
516 if (dx >= 0) { | |
517 Span leftClamped = span.breakAt(xMin, dx); | |
518 if (!leftClamped.isEmpty()) { | |
519 leftClamped.clampToSinglePixel({xMin, y}); | |
520 leftClamped.spanNextStage(next); | |
521 } | |
522 Span middle = span.breakAt(xMax, dx); | |
523 if (!middle.isEmpty()) { | |
524 middle.spanNextStage(next); | |
525 } | |
526 if (!span.isEmpty()) { | |
527 span.clampToSinglePixel({xMax - 1, y}); | |
528 span.spanNextStage(next); | |
529 } | |
530 } else { | |
531 Span rightClamped = span.breakAt(xMax, dx); | |
532 if (!rightClamped.isEmpty()) { | |
533 rightClamped.clampToSinglePixel({xMax - 1, y}); | |
534 rightClamped.spanNextStage(next); | |
535 } | |
536 Span middle = span.breakAt(xMax, dx); | |
mtklein_C
2016/02/26 23:07:40
xMin
(moar tests plz)
herb_g
2016/02/29 15:40:53
Done.
Tests to follow.
| |
537 if (!middle.isEmpty()) { | |
538 middle.spanNextStage(next); | |
539 } | |
540 if (!span.isEmpty()) { | |
541 span.clampToSinglePixel({xMin, y}); | |
542 span.spanNextStage(next); | |
543 } | |
544 } | |
545 return true; | |
378 } | 546 } |
379 | 547 |
380 private: | 548 private: |
381 const Sk4f fXMin{SK_FloatNegativeInfinity}; | 549 const Sk4s fXMin{SK_FloatNegativeInfinity}; |
382 const Sk4f fYMin{SK_FloatNegativeInfinity}; | 550 const Sk4s fYMin{SK_FloatNegativeInfinity}; |
383 const Sk4f fXMax{SK_FloatInfinity}; | 551 const Sk4s fXMax{SK_FloatInfinity}; |
384 const Sk4f fYMax{SK_FloatInfinity}; | 552 const Sk4s fYMax{SK_FloatInfinity}; |
385 }; | 553 }; |
386 template <typename Next = SkLinearBitmapPipeline::BilerpProcessorInterface> | 554 template <typename Next = SkLinearBitmapPipeline::BilerpProcessorInterface> |
387 using Clamp = BilerpProcessor<ClampStrategy, Next>; | 555 using Clamp = BilerpProcessor<ClampStrategy, Next>; |
388 | 556 |
557 static SkScalar tile_mod(SkScalar x, SkScalar base) { | |
558 return x - std::floor(x / base) * base; | |
559 } | |
560 | |
389 class RepeatStrategy { | 561 class RepeatStrategy { |
390 public: | 562 public: |
391 RepeatStrategy(X max) : fXMax{max}, fXInvMax{1.0f/max} { } | 563 RepeatStrategy(X max) : fXMax{max}, fXInvMax{1.0f/max} { } |
392 RepeatStrategy(Y max) : fYMax{max}, fYInvMax{1.0f/max} { } | 564 RepeatStrategy(Y max) : fYMax{max}, fYInvMax{1.0f/max} { } |
393 RepeatStrategy(SkSize max) | 565 RepeatStrategy(SkSize max) |
394 : fXMax{X(max)} | 566 : fXMax{X(max)} |
395 , fXInvMax{1.0f / X(max)} | 567 , fXInvMax{1.0f / X(max)} |
396 , fYMax{Y(max)} | 568 , fYMax{Y(max)} |
397 , fYInvMax{1.0f / Y(max)} { } | 569 , fYInvMax{1.0f / Y(max)} { } |
398 | 570 |
399 void processPoints(Sk4f* xs, Sk4f* ys) { | 571 void processPoints(Sk4s* xs, Sk4s* ys) { |
400 Sk4f divX = (*xs * fXInvMax).floor(); | 572 Sk4s divX = (*xs * fXInvMax).floor(); |
401 Sk4f divY = (*ys * fYInvMax).floor(); | 573 Sk4s divY = (*ys * fYInvMax).floor(); |
402 Sk4f baseX = (divX * fXMax); | 574 Sk4s baseX = (divX * fXMax); |
403 Sk4f baseY = (divY * fYMax); | 575 Sk4s baseY = (divY * fYMax); |
404 *xs = *xs - baseX; | 576 *xs = *xs - baseX; |
405 *ys = *ys - baseY; | 577 *ys = *ys - baseY; |
406 } | 578 } |
407 | 579 |
408 template <typename Next> | 580 template <typename Next> |
409 bool maybeProcessSpan(SkPoint start, SkScalar length, int count, Next* next) { | 581 bool maybeProcessSpan(Span originalSpan, Next* next) { |
410 return false; | 582 SkPoint start; SkScalar length; int count; |
583 std::tie(start, length, count) = originalSpan; | |
584 // Make x and y in range on the tile. | |
585 SkScalar x = tile_mod(X(start), fXMax[0]); | |
586 SkScalar y = tile_mod(Y(start), fYMax[0]); | |
587 SkScalar xMax = fXMax[0]; | |
588 SkScalar xMin = 0.0f; | |
589 SkScalar dx = length / (count - 1); | |
mtklein_C
2016/02/26 23:07:40
fallback for count < 2?
// Unlike in the Clamp ca
herb_g
2016/02/29 15:40:54
Done.
| |
590 | |
591 // No need trying to go fast because the steps are larger than a tile. | |
592 if (SkScalarAbs(dx) >= xMax) { | |
593 return false; | |
594 } | |
595 | |
596 // A B C D Z | |
597 // +-------+-------+-------++-------+-------+-------++ +-------+---- ---++------ | |
598 // | | *---|*---*--||-*---*-|---*---|*---*--|| |--*---*| || | |
599 // | | | || | | || ... | | || | |
600 // | | | || | | || | | || | |
601 // +-------+-------+-------++-------+-------+-------++ +-------+---- ---++------ | |
602 // ^^ ^^ ^^ | |
603 // xMax || xMin xMax || xMin xM ax || xMin | |
604 // | |
605 // *---*---*---... - track of samples. * = sample | |
606 // | |
607 // +-+ || | |
608 // | | - pixels in source space. || - tile border. | |
609 // +-+ || | |
610 // | |
611 // | |
612 // The given span starts at A and continues on through several tiles to sample point Z. | |
613 // The idea is to break this into several spans one on each tile the ent ire span | |
614 // intersects. The A to B span only covers a partial tile and has a coun t of 3 and the | |
615 // distance from A to B is (count - 1) * dx or 2 * dx. The distance from A to the start of | |
616 // the next span is count * dx or 3 * dx. Span C to D covers an entire t ile has a count | |
617 // of 5 and a length of 4 * dx. Remember, count is the number of pixels needed for the | |
618 // destination and the number of samples. | |
619 // | |
620 // Overall Strategy: | |
621 // While the span hangs over the edge of the tile, draw the span coverin g the tile then | |
622 // slide the span over to the next tile. | |
623 | |
624 // The guard could have been count > 0, but then a bunch of math would b e done in the | |
625 // common case. | |
626 | |
627 Span span{{x, y}, length, count}; | |
628 if (dx > 0) { | |
629 while (!span.isEmpty() && span.endX() > xMax) { | |
630 Span toDraw = span.breakAt(xMax, dx); | |
631 toDraw.spanNextStage(next); | |
632 span.offset(-xMax); | |
633 } | |
634 } else { | |
635 while (!span.isEmpty() && span.endX() < xMin) { | |
636 Span toDraw = span.breakAt(xMin, dx); | |
637 toDraw.spanNextStage(next); | |
638 span.offset(xMax); | |
639 } | |
640 } | |
641 | |
642 // All on a single tile. | |
643 if (!span.isEmpty()) { | |
644 span.spanNextStage(next); | |
645 } | |
646 | |
647 return true; | |
411 } | 648 } |
412 | 649 |
413 private: | 650 private: |
414 const Sk4f fXMax{0.0f}; | 651 const Sk4s fXMax{0.0f}; |
415 const Sk4f fXInvMax{0.0f}; | 652 const Sk4s fXInvMax{0.0f}; |
416 const Sk4f fYMax{0.0f}; | 653 const Sk4s fYMax{0.0f}; |
417 const Sk4f fYInvMax{0.0f}; | 654 const Sk4s fYInvMax{0.0f}; |
418 }; | 655 }; |
419 | 656 |
420 template <typename Next = SkLinearBitmapPipeline::BilerpProcessorInterface> | 657 template <typename Next = SkLinearBitmapPipeline::BilerpProcessorInterface> |
421 using Repeat = BilerpProcessor<RepeatStrategy, Next>; | 658 using Repeat = BilerpProcessor<RepeatStrategy, Next>; |
422 | 659 |
423 static SkLinearBitmapPipeline::BilerpProcessorInterface* choose_tiler( | 660 static SkLinearBitmapPipeline::BilerpProcessorInterface* choose_tiler( |
424 SkLinearBitmapPipeline::BilerpProcessorInterface* next, | 661 SkLinearBitmapPipeline::BilerpProcessorInterface* next, |
425 SkSize dimensions, | 662 SkSize dimensions, |
426 SkShader::TileMode xMode, | 663 SkShader::TileMode xMode, |
427 SkShader::TileMode yMode, | 664 SkShader::TileMode yMode, |
(...skipping 34 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
462 case SkShader::kMirror_TileMode: | 699 case SkShader::kMirror_TileMode: |
463 SkFAIL("Not implemented."); | 700 SkFAIL("Not implemented."); |
464 break; | 701 break; |
465 } | 702 } |
466 } | 703 } |
467 return tileProcXOrBoth->get(); | 704 return tileProcXOrBoth->get(); |
468 } | 705 } |
469 | 706 |
470 class sRGBFast { | 707 class sRGBFast { |
471 public: | 708 public: |
472 static Sk4f VECTORCALL sRGBToLinear(Sk4f pixel) { | 709 static Sk4s VECTORCALL sRGBToLinear(Sk4s pixel) { |
473 Sk4f l = pixel * pixel; | 710 Sk4s l = pixel * pixel; |
474 return Sk4f{l[0], l[1], l[2], pixel[3]}; | 711 return Sk4s{l[0], l[1], l[2], pixel[3]}; |
475 } | 712 } |
476 }; | 713 }; |
477 | 714 |
478 template <SkColorProfileType colorProfile> | 715 template <SkColorProfileType colorProfile> |
479 class Passthrough8888 { | 716 class Passthrough8888 { |
480 public: | 717 public: |
481 Passthrough8888(int width, const uint32_t* src) | 718 Passthrough8888(int width, const uint32_t* src) |
482 : fSrc{src}, fWidth{width}{ } | 719 : fSrc{src}, fWidth{width}{ } |
483 | 720 |
484 void VECTORCALL getFewPixels(int n, Sk4f xs, Sk4f ys, Sk4f* px0, Sk4f* px1, Sk4f* px2) { | 721 void VECTORCALL getFewPixels(int n, Sk4s xs, Sk4s ys, Sk4f* px0, Sk4f* px1, Sk4f* px2) { |
485 Sk4i XIs = SkNx_cast<int, float>(xs); | 722 Sk4i XIs = SkNx_cast<int, SkScalar>(xs); |
486 Sk4i YIs = SkNx_cast<int, float>(ys); | 723 Sk4i YIs = SkNx_cast<int, SkScalar>(ys); |
487 Sk4i bufferLoc = YIs * fWidth + XIs; | 724 Sk4i bufferLoc = YIs * fWidth + XIs; |
488 switch (n) { | 725 switch (n) { |
489 case 3: | 726 case 3: |
490 *px2 = getPixel(fSrc, bufferLoc[2]); | 727 *px2 = getPixel(fSrc, bufferLoc[2]); |
491 case 2: | 728 case 2: |
492 *px1 = getPixel(fSrc, bufferLoc[1]); | 729 *px1 = getPixel(fSrc, bufferLoc[1]); |
493 case 1: | 730 case 1: |
494 *px0 = getPixel(fSrc, bufferLoc[0]); | 731 *px0 = getPixel(fSrc, bufferLoc[0]); |
495 default: | 732 default: |
496 break; | 733 break; |
497 } | 734 } |
498 } | 735 } |
499 | 736 |
500 void VECTORCALL get4Pixels(Sk4f xs, Sk4f ys, Sk4f* px0, Sk4f* px1, Sk4f* px2 , Sk4f* px3) { | 737 void VECTORCALL get4Pixels(Sk4s xs, Sk4s ys, Sk4f* px0, Sk4f* px1, Sk4f* px2 , Sk4f* px3) { |
501 Sk4i XIs = SkNx_cast<int, float>(xs); | 738 Sk4i XIs = SkNx_cast<int, SkScalar>(xs); |
502 Sk4i YIs = SkNx_cast<int, float>(ys); | 739 Sk4i YIs = SkNx_cast<int, SkScalar>(ys); |
503 Sk4i bufferLoc = YIs * fWidth + XIs; | 740 Sk4i bufferLoc = YIs * fWidth + XIs; |
504 *px0 = getPixel(fSrc, bufferLoc[0]); | 741 *px0 = getPixel(fSrc, bufferLoc[0]); |
505 *px1 = getPixel(fSrc, bufferLoc[1]); | 742 *px1 = getPixel(fSrc, bufferLoc[1]); |
506 *px2 = getPixel(fSrc, bufferLoc[2]); | 743 *px2 = getPixel(fSrc, bufferLoc[2]); |
507 *px3 = getPixel(fSrc, bufferLoc[3]); | 744 *px3 = getPixel(fSrc, bufferLoc[3]); |
508 } | 745 } |
509 | 746 |
510 const uint32_t* row(int y) { return fSrc + y * fWidth[0]; } | 747 const uint32_t* row(int y) { return fSrc + y * fWidth[0]; } |
511 | 748 |
512 private: | 749 private: |
(...skipping 23 matching lines...) Expand all Loading... | |
536 // +--------+--------+ | 773 // +--------+--------+ |
537 // | 774 // |
538 // | 775 // |
539 // Given a pixelxy each is multiplied by a different factor derived from the fra ctional part of x | 776 // Given a pixelxy each is multiplied by a different factor derived from the fra ctional part of x |
540 // and y: | 777 // and y: |
541 // * px00 -> (1 - x)(1 - y) = 1 - x - y + xy | 778 // * px00 -> (1 - x)(1 - y) = 1 - x - y + xy |
542 // * px10 -> x(1 - y) = x - xy | 779 // * px10 -> x(1 - y) = x - xy |
543 // * px01 -> (1 - x)y = y - xy | 780 // * px01 -> (1 - x)y = y - xy |
544 // * px11 -> xy | 781 // * px11 -> xy |
545 // So x * y is calculated first and then used to calculate all the other factors . | 782 // So x * y is calculated first and then used to calculate all the other factors . |
546 static Sk4f VECTORCALL bilerp4(Sk4f xs, Sk4f ys, Sk4f px00, Sk4f px10, | 783 static Sk4s VECTORCALL bilerp4(Sk4s xs, Sk4s ys, Sk4f px00, Sk4f px10, |
547 Sk4f px01, Sk4f px11) { | 784 Sk4f px01, Sk4f px11) { |
548 // Calculate fractional xs and ys. | 785 // Calculate fractional xs and ys. |
549 Sk4f fxs = xs - xs.floor(); | 786 Sk4s fxs = xs - xs.floor(); |
550 Sk4f fys = ys - ys.floor(); | 787 Sk4s fys = ys - ys.floor(); |
551 Sk4f fxys{fxs * fys}; | 788 Sk4s fxys{fxs * fys}; |
552 Sk4f sum = px11 * fxys; | 789 Sk4f sum = px11 * fxys; |
553 sum = sum + px01 * (fys - fxys); | 790 sum = sum + px01 * (fys - fxys); |
554 sum = sum + px10 * (fxs - fxys); | 791 sum = sum + px10 * (fxs - fxys); |
555 sum = sum + px00 * (Sk4f{1.0f} - fxs - fys + fxys); | 792 sum = sum + px00 * (Sk4f{1.0f} - fxs - fys + fxys); |
556 return sum; | 793 return sum; |
557 } | 794 } |
558 | 795 |
559 template <typename SourceStrategy> | 796 template <typename SourceStrategy> |
560 class Sampler final : public SkLinearBitmapPipeline::BilerpProcessorInterface { | 797 class Sampler final : public SkLinearBitmapPipeline::BilerpProcessorInterface { |
561 public: | 798 public: |
562 template <typename... Args> | 799 template <typename... Args> |
563 Sampler(SkLinearBitmapPipeline::PixelPlacerInterface* next, Args&&... args) | 800 Sampler(SkLinearBitmapPipeline::PixelPlacerInterface* next, Args&&... args) |
564 : fNext{next} | 801 : fNext{next} |
565 , fStrategy{std::forward<Args>(args)...} { } | 802 , fStrategy{std::forward<Args>(args)...} { } |
566 | 803 |
567 void VECTORCALL pointListFew(int n, Sk4f xs, Sk4f ys) override { | 804 void VECTORCALL pointListFew(int n, Sk4s xs, Sk4s ys) override { |
568 SkASSERT(0 < n && n < 4); | 805 SkASSERT(0 < n && n < 4); |
569 Sk4f px0, px1, px2; | 806 Sk4f px0, px1, px2; |
570 fStrategy.getFewPixels(n, xs, ys, &px0, &px1, &px2); | 807 fStrategy.getFewPixels(n, xs, ys, &px0, &px1, &px2); |
571 if (n >= 1) fNext->placePixel(px0); | 808 if (n >= 1) fNext->placePixel(px0); |
572 if (n >= 2) fNext->placePixel(px1); | 809 if (n >= 2) fNext->placePixel(px1); |
573 if (n >= 3) fNext->placePixel(px2); | 810 if (n >= 3) fNext->placePixel(px2); |
574 } | 811 } |
575 | 812 |
576 void VECTORCALL pointList4(Sk4f xs, Sk4f ys) override { | 813 void VECTORCALL pointList4(Sk4s xs, Sk4s ys) override { |
577 Sk4f px0, px1, px2, px3; | 814 Sk4f px0, px1, px2, px3; |
578 fStrategy.get4Pixels(xs, ys, &px0, &px1, &px2, &px3); | 815 fStrategy.get4Pixels(xs, ys, &px0, &px1, &px2, &px3); |
579 fNext->place4Pixels(px0, px1, px2, px3); | 816 fNext->place4Pixels(px0, px1, px2, px3); |
580 } | 817 } |
581 | 818 |
582 void VECTORCALL bilerpList(Sk4f xs, Sk4f ys) override { | 819 void VECTORCALL bilerpList(Sk4s xs, Sk4s ys) override { |
583 Sk4f px00, px10, px01, px11; | 820 Sk4f px00, px10, px01, px11; |
584 fStrategy.get4Pixels(xs, ys, &px00, &px10, &px01, &px11); | 821 fStrategy.get4Pixels(xs, ys, &px00, &px10, &px01, &px11); |
585 Sk4f pixel = bilerp4(xs, ys, px00, px10, px01, px11); | 822 Sk4f pixel = bilerp4(xs, ys, px00, px10, px01, px11); |
586 fNext->placePixel(pixel); | 823 fNext->placePixel(pixel); |
587 } | 824 } |
588 | 825 |
589 void pointSpan(SkPoint start, SkScalar length, int count) override { | 826 void pointSpan(Span span) override { |
590 span_fallback(start, length, count, this); | 827 span_fallback(span, this); |
591 } | 828 } |
592 | 829 |
593 private: | 830 private: |
594 SkLinearBitmapPipeline::PixelPlacerInterface* const fNext; | 831 SkLinearBitmapPipeline::PixelPlacerInterface* const fNext; |
595 SourceStrategy fStrategy; | 832 SourceStrategy fStrategy; |
596 }; | 833 }; |
597 | 834 |
598 static SkLinearBitmapPipeline::BilerpProcessorInterface* choose_pixel_sampler( | 835 static SkLinearBitmapPipeline::BilerpProcessorInterface* choose_pixel_sampler( |
599 SkLinearBitmapPipeline::PixelPlacerInterface* next, | 836 SkLinearBitmapPipeline::PixelPlacerInterface* next, |
600 const SkPixmap& srcPixmap, | 837 const SkPixmap& srcPixmap, |
(...skipping 89 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
690 auto samplerStage = choose_pixel_sampler(placementStage, srcPixmap, &fSamp leStage); | 927 auto samplerStage = choose_pixel_sampler(placementStage, srcPixmap, &fSamp leStage); |
691 auto tilerStage = choose_tiler(samplerStage, size, xTile, yTile, &fTileX OrBothStage, | 928 auto tilerStage = choose_tiler(samplerStage, size, xTile, yTile, &fTileX OrBothStage, |
692 &fTileYStage); | 929 &fTileYStage); |
693 auto filterStage = choose_filter(tilerStage, filterQuality, &fFilterStage ); | 930 auto filterStage = choose_filter(tilerStage, filterQuality, &fFilterStage ); |
694 fFirstStage = choose_matrix(filterStage, inverse, &fMatrixStage); | 931 fFirstStage = choose_matrix(filterStage, inverse, &fMatrixStage); |
695 } | 932 } |
696 | 933 |
697 void SkLinearBitmapPipeline::shadeSpan4f(int x, int y, SkPM4f* dst, int count) { | 934 void SkLinearBitmapPipeline::shadeSpan4f(int x, int y, SkPM4f* dst, int count) { |
698 SkASSERT(count > 0); | 935 SkASSERT(count > 0); |
699 fPixelStage->setDestination(dst); | 936 fPixelStage->setDestination(dst); |
700 // Adjust points by 0.5, 0.5 to sample from the center of the pixels. | 937 // The count and length arguments start out in a precise relation in order t o keep the |
701 if (count == 1) { | 938 // math correct through the different stages. Count is the number of pixel t o produce. |
702 fFirstStage->pointListFew(1, Sk4f{x + 0.5f}, Sk4f{y + 0.5f}); | 939 // Since the code samples at pixel centers, length is the distance from the center of the |
703 } else { | 940 // first pixel to the center of the last pixel. This implies that length is count-1. |
704 // The count and length arguments start out in a precise relation in ord er to keep the | 941 fFirstStage->pointSpan(Span{SkPoint{x + 0.5f, y + 0.5f}, count - 1.0f, count }); |
705 // math correct through the different stages. Count is the number of pix el to produce. | |
706 // Since the code samples at pixel centers, length is the distance from the center of the | |
707 // first pixel to the center of the last pixel. This implies that length is count-1. | |
708 fFirstStage->pointSpan(SkPoint{x + 0.5f, y + 0.5f}, count - 1, count); | |
709 } | |
710 } | 942 } |
OLD | NEW |