Chromium Code Reviews| OLD | NEW |
|---|---|
| 1 // Copyright (c) 2012 The Chromium Authors. All rights reserved. | 1 // Copyright (c) 2012 The Chromium Authors. All rights reserved. |
| 2 // Use of this source code is governed by a BSD-style license that can be | 2 // Use of this source code is governed by a BSD-style license that can be |
| 3 // found in the LICENSE file. | 3 // found in the LICENSE file. |
| 4 | 4 |
| 5 #include "net/disk_cache/memory/mem_entry_impl.h" | 5 #include "net/disk_cache/memory/mem_entry_impl.h" |
| 6 | 6 |
| 7 #include <algorithm> | |
| 7 #include <utility> | 8 #include <utility> |
| 8 | 9 |
| 9 #include "base/bind.h" | 10 #include "base/bind.h" |
| 10 #include "base/logging.h" | 11 #include "base/logging.h" |
| 11 #include "base/strings/stringprintf.h" | 12 #include "base/strings/stringprintf.h" |
| 12 #include "base/values.h" | 13 #include "base/values.h" |
| 13 #include "net/base/io_buffer.h" | 14 #include "net/base/io_buffer.h" |
| 14 #include "net/base/net_errors.h" | 15 #include "net/base/net_errors.h" |
| 15 #include "net/disk_cache/memory/mem_backend_impl.h" | 16 #include "net/disk_cache/memory/mem_backend_impl.h" |
| 16 #include "net/disk_cache/net_log_parameters.h" | 17 #include "net/disk_cache/net_log_parameters.h" |
| 17 | 18 |
| 18 using base::Time; | 19 using base::Time; |
| 19 | 20 |
| 21 namespace disk_cache { | |
| 22 | |
| 20 namespace { | 23 namespace { |
| 21 | 24 |
| 22 const int kSparseData = 1; | 25 const int kSparseData = 1; |
| 23 | 26 |
| 24 // Maximum size of a sparse entry is 2 to the power of this number. | 27 // Maximum size of a sparse entry is 2 to the power of this number. |
| 25 const int kMaxSparseEntryBits = 12; | 28 const int kMaxSparseEntryBits = 12; |
| 26 | 29 |
| 27 // Sparse entry has maximum size of 4KB. | 30 // Sparse entry has maximum size of 4KB. |
| 28 const int kMaxSparseEntrySize = 1 << kMaxSparseEntryBits; | 31 const int kMaxSparseEntrySize = 1 << kMaxSparseEntryBits; |
| 29 | 32 |
| 30 // Convert global offset to child index. | 33 // Convert global offset to child index. |
| 31 inline int ToChildIndex(int64_t offset) { | 34 int ToChildIndex(int64_t offset) { |
| 32 return static_cast<int>(offset >> kMaxSparseEntryBits); | 35 return static_cast<int>(offset >> kMaxSparseEntryBits); |
| 33 } | 36 } |
| 34 | 37 |
| 35 // Convert global offset to offset in child entry. | 38 // Convert global offset to offset in child entry. |
| 36 inline int ToChildOffset(int64_t offset) { | 39 int ToChildOffset(int64_t offset) { |
| 37 return static_cast<int>(offset & (kMaxSparseEntrySize - 1)); | 40 return static_cast<int>(offset & (kMaxSparseEntrySize - 1)); |
| 38 } | 41 } |
| 39 | 42 |
| 40 // Returns a name for a child entry given the base_name of the parent and the | 43 // Returns a name for a child entry given the base_name of the parent and the |
| 41 // child_id. This name is only used for logging purposes. | 44 // child_id. This name is only used for logging purposes. |
| 42 // If the entry is called entry_name, child entries will be named something | 45 // If the entry is called entry_name, child entries will be named something |
| 43 // like Range_entry_name:YYY where YYY is the number of the particular child. | 46 // like Range_entry_name:YYY where YYY is the number of the particular child. |
| 44 std::string GenerateChildName(const std::string& base_name, int child_id) { | 47 std::string GenerateChildName(const std::string& base_name, int child_id) { |
| 45 return base::StringPrintf("Range_%s:%i", base_name.c_str(), child_id); | 48 return base::StringPrintf("Range_%s:%i", base_name.c_str(), child_id); |
| 46 } | 49 } |
| 47 | 50 |
| 48 // Returns NetLog parameters for the creation of a child MemEntryImpl. Separate | 51 // Returns NetLog parameters for the creation of a MemEntryImpl. A separate |
| 49 // function needed because child entries don't suppport GetKey(). | 52 // function is needed because child entries don't store their key(). |
| 50 scoped_ptr<base::Value> NetLogChildEntryCreationCallback( | 53 scoped_ptr<base::Value> NetLogEntryCreationCallback( |
| 51 const disk_cache::MemEntryImpl* parent, | 54 const MemEntryImpl* entry, |
| 52 int child_id, | |
| 53 net::NetLogCaptureMode /* capture_mode */) { | 55 net::NetLogCaptureMode /* capture_mode */) { |
| 54 scoped_ptr<base::DictionaryValue> dict(new base::DictionaryValue()); | 56 scoped_ptr<base::DictionaryValue> dict(new base::DictionaryValue()); |
| 55 dict->SetString("key", GenerateChildName(parent->GetKey(), child_id)); | 57 std::string key; |
| 58 switch (entry->type()) { | |
| 59 case MemEntryImpl::PARENT_ENTRY: | |
| 60 key = entry->key(); | |
| 61 break; | |
| 62 case MemEntryImpl::CHILD_ENTRY: | |
| 63 key = GenerateChildName(entry->parent()->key(), entry->child_id()); | |
| 64 break; | |
| 65 } | |
| 66 dict->SetString("key", key); | |
| 56 dict->SetBoolean("created", true); | 67 dict->SetBoolean("created", true); |
| 57 return std::move(dict); | 68 return std::move(dict); |
| 58 } | 69 } |
| 59 | 70 |
| 60 } // namespace | 71 } // namespace |
| 61 | 72 |
| 62 namespace disk_cache { | 73 MemEntryImpl::MemEntryImpl(MemBackendImpl* backend, |
| 63 | 74 const std::string& key, |
| 64 MemEntryImpl::MemEntryImpl(MemBackendImpl* backend) { | 75 net::NetLog* net_log) |
| 65 doomed_ = false; | 76 : MemEntryImpl(backend, |
| 66 backend_ = backend; | 77 key, |
| 67 ref_count_ = 0; | 78 0, // child_id |
| 68 parent_ = NULL; | 79 nullptr, // parent |
| 69 child_id_ = 0; | 80 net_log) { |
| 70 child_first_pos_ = 0; | 81 Open(); |
| 71 next_ = NULL; | 82 backend_->ModifyStorageSize(GetStorageSize()); |
| 72 prev_ = NULL; | |
| 73 for (int i = 0; i < NUM_STREAMS; i++) | |
| 74 data_size_[i] = 0; | |
| 75 } | 83 } |
| 76 | 84 |
| 77 // ------------------------------------------------------------------------ | 85 MemEntryImpl::MemEntryImpl(MemBackendImpl* backend, |
| 78 | 86 int child_id, |
| 79 bool MemEntryImpl::CreateEntry(const std::string& key, net::NetLog* net_log) { | 87 MemEntryImpl* parent, |
| 80 key_ = key; | 88 net::NetLog* net_log) |
| 81 Time current = Time::Now(); | 89 : MemEntryImpl(backend, |
| 82 last_modified_ = current; | 90 std::string(), // key |
| 83 last_used_ = current; | 91 child_id, |
| 84 | 92 parent, |
| 85 net_log_ = net::BoundNetLog::Make(net_log, | 93 net_log) { |
| 86 net::NetLog::SOURCE_MEMORY_CACHE_ENTRY); | 94 (*parent_->children_)[child_id] = this; |
| 87 // Must be called after |key_| is set, so GetKey() works. | |
| 88 net_log_.BeginEvent( | |
| 89 net::NetLog::TYPE_DISK_CACHE_MEM_ENTRY_IMPL, | |
| 90 CreateNetLogEntryCreationCallback(this, true)); | |
| 91 | |
| 92 Open(); | |
| 93 backend_->ModifyStorageSize(0, static_cast<int32_t>(key.size())); | |
| 94 return true; | |
| 95 } | |
| 96 | |
| 97 void MemEntryImpl::InternalDoom() { | |
| 98 net_log_.AddEvent(net::NetLog::TYPE_ENTRY_DOOM); | |
| 99 doomed_ = true; | |
| 100 if (!ref_count_) { | |
| 101 if (type() == kParentEntry) { | |
| 102 // If this is a parent entry, we need to doom all the child entries. | |
| 103 if (children_.get()) { | |
| 104 EntryMap children; | |
| 105 children.swap(*children_); | |
| 106 for (EntryMap::iterator i = children.begin(); | |
| 107 i != children.end(); ++i) { | |
| 108 // Since a pointer to this object is also saved in the map, avoid | |
| 109 // dooming it. | |
| 110 if (i->second != this) | |
| 111 i->second->Doom(); | |
| 112 } | |
| 113 DCHECK(children_->empty()); | |
| 114 } | |
| 115 } else { | |
| 116 // If this is a child entry, detach it from the parent. | |
| 117 parent_->DetachChild(child_id_); | |
| 118 } | |
| 119 delete this; | |
| 120 } | |
| 121 } | 95 } |
| 122 | 96 |
| 123 void MemEntryImpl::Open() { | 97 void MemEntryImpl::Open() { |
| 124 // Only a parent entry can be opened. | 98 // Only a parent entry can be opened. |
| 125 // TODO(hclam): make sure it's correct to not apply the concept of ref | 99 DCHECK_EQ(PARENT_ENTRY, type()); |
| 126 // counting to child entry. | 100 ++ref_count_; |
| 127 DCHECK(type() == kParentEntry); | 101 DCHECK_GE(ref_count_, 1); |
| 128 ref_count_++; | |
| 129 DCHECK_GE(ref_count_, 0); | |
| 130 DCHECK(!doomed_); | 102 DCHECK(!doomed_); |
| 131 } | 103 } |
| 132 | 104 |
| 133 bool MemEntryImpl::InUse() { | 105 bool MemEntryImpl::InUse() const { |
| 134 if (type() == kParentEntry) { | 106 if (type() == PARENT_ENTRY) { |
| 135 return ref_count_ > 0; | 107 return ref_count_ > 0; |
| 136 } else { | 108 } else { |
| 137 // A child entry is always not in use. The consequence is that a child entry | 109 // TODO(gavinp): Can't this just be a DCHECK? How would ref_count_ not be |
| 138 // can always be evicted while the associated parent entry is currently in | 110 // zero? |
| 139 // used (i.e. opened). | 111 |
| 112 // A child entry is never in use. Thus one can always be evicted, even while | |
| 113 // its parent entry is open and in use. | |
| 140 return false; | 114 return false; |
| 141 } | 115 } |
| 142 } | 116 } |
| 143 | 117 |
| 144 // ------------------------------------------------------------------------ | 118 int MemEntryImpl::GetStorageSize() const { |
| 119 int storage_size = static_cast<int32_t>(key_.size()); | |
| 120 for (const auto& i : data_) | |
| 121 storage_size += i.size(); | |
| 122 return storage_size; | |
| 123 } | |
| 124 | |
| 125 void MemEntryImpl::UpdateStateOnUse(EntryModified modified_enum) { | |
| 126 if (!doomed_) | |
| 127 backend_->OnEntryUpdated(this); | |
| 128 | |
| 129 last_used_ = Time::Now(); | |
| 130 if (modified_enum == ENTRY_WAS_MODIFIED) | |
| 131 last_modified_ = last_used_; | |
| 132 } | |
| 145 | 133 |
| 146 void MemEntryImpl::Doom() { | 134 void MemEntryImpl::Doom() { |
| 147 if (doomed_) | 135 if (!doomed_) { |
| 148 return; | 136 doomed_ = true; |
| 149 if (type() == kParentEntry) { | 137 backend_->OnEntryDoomed(this); |
| 150 // Perform internal doom from the backend if this is a parent entry. | 138 net_log_.AddEvent(net::NetLog::TYPE_ENTRY_DOOM); |
| 151 backend_->InternalDoomEntry(this); | |
| 152 } else { | |
| 153 // Manually detach from the backend and perform internal doom. | |
| 154 backend_->RemoveFromRankingList(this); | |
| 155 InternalDoom(); | |
| 156 } | 139 } |
| 140 if (!ref_count_) | |
| 141 delete this; | |
| 157 } | 142 } |
| 158 | 143 |
| 159 void MemEntryImpl::Close() { | 144 void MemEntryImpl::Close() { |
| 160 // Only a parent entry can be closed. | 145 DCHECK_EQ(PARENT_ENTRY, type()); |
| 161 DCHECK(type() == kParentEntry); | 146 --ref_count_; |
| 162 ref_count_--; | |
| 163 DCHECK_GE(ref_count_, 0); | 147 DCHECK_GE(ref_count_, 0); |
| 164 if (!ref_count_ && doomed_) | 148 if (!ref_count_ && doomed_) |
| 165 InternalDoom(); | 149 delete this; |
| 166 } | 150 } |
| 167 | 151 |
| 168 std::string MemEntryImpl::GetKey() const { | 152 std::string MemEntryImpl::GetKey() const { |
| 169 // A child entry doesn't have key so this method should not be called. | 153 // A child entry doesn't have key so this method should not be called. |
| 170 DCHECK(type() == kParentEntry); | 154 DCHECK_EQ(PARENT_ENTRY, type()); |
| 171 return key_; | 155 return key_; |
| 172 } | 156 } |
| 173 | 157 |
| 174 Time MemEntryImpl::GetLastUsed() const { | 158 Time MemEntryImpl::GetLastUsed() const { |
| 175 return last_used_; | 159 return last_used_; |
| 176 } | 160 } |
| 177 | 161 |
| 178 Time MemEntryImpl::GetLastModified() const { | 162 Time MemEntryImpl::GetLastModified() const { |
| 179 return last_modified_; | 163 return last_modified_; |
| 180 } | 164 } |
| 181 | 165 |
| 182 int32_t MemEntryImpl::GetDataSize(int index) const { | 166 int32_t MemEntryImpl::GetDataSize(int index) const { |
| 183 if (index < 0 || index >= NUM_STREAMS) | 167 if (index < 0 || index >= kNumStreams) |
| 184 return 0; | 168 return 0; |
| 185 return data_size_[index]; | 169 return data_[index].size(); |
| 186 } | 170 } |
| 187 | 171 |
| 188 int MemEntryImpl::ReadData(int index, int offset, IOBuffer* buf, int buf_len, | 172 int MemEntryImpl::ReadData(int index, int offset, IOBuffer* buf, int buf_len, |
| 189 const CompletionCallback& callback) { | 173 const CompletionCallback& callback) { |
| 190 if (net_log_.IsCapturing()) { | 174 if (net_log_.IsCapturing()) { |
| 191 net_log_.BeginEvent( | 175 net_log_.BeginEvent( |
| 192 net::NetLog::TYPE_ENTRY_READ_DATA, | 176 net::NetLog::TYPE_ENTRY_READ_DATA, |
| 193 CreateNetLogReadWriteDataCallback(index, offset, buf_len, false)); | 177 CreateNetLogReadWriteDataCallback(index, offset, buf_len, false)); |
| 194 } | 178 } |
| 195 | 179 |
| (...skipping 57 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
| 253 | 237 |
| 254 int MemEntryImpl::GetAvailableRange(int64_t offset, | 238 int MemEntryImpl::GetAvailableRange(int64_t offset, |
| 255 int len, | 239 int len, |
| 256 int64_t* start, | 240 int64_t* start, |
| 257 const CompletionCallback& callback) { | 241 const CompletionCallback& callback) { |
| 258 if (net_log_.IsCapturing()) { | 242 if (net_log_.IsCapturing()) { |
| 259 net_log_.BeginEvent( | 243 net_log_.BeginEvent( |
| 260 net::NetLog::TYPE_SPARSE_GET_RANGE, | 244 net::NetLog::TYPE_SPARSE_GET_RANGE, |
| 261 CreateNetLogSparseOperationCallback(offset, len)); | 245 CreateNetLogSparseOperationCallback(offset, len)); |
| 262 } | 246 } |
| 263 int result = GetAvailableRange(offset, len, start); | 247 int result = InternalGetAvailableRange(offset, len, start); |
| 264 if (net_log_.IsCapturing()) { | 248 if (net_log_.IsCapturing()) { |
| 265 net_log_.EndEvent( | 249 net_log_.EndEvent( |
| 266 net::NetLog::TYPE_SPARSE_GET_RANGE, | 250 net::NetLog::TYPE_SPARSE_GET_RANGE, |
| 267 CreateNetLogGetAvailableRangeResultCallback(*start, result)); | 251 CreateNetLogGetAvailableRangeResultCallback(*start, result)); |
| 268 } | 252 } |
| 269 return result; | 253 return result; |
| 270 } | 254 } |
| 271 | 255 |
| 272 bool MemEntryImpl::CouldBeSparse() const { | 256 bool MemEntryImpl::CouldBeSparse() const { |
| 273 DCHECK_EQ(kParentEntry, type()); | 257 DCHECK_EQ(PARENT_ENTRY, type()); |
| 274 return (children_.get() != NULL); | 258 return (children_.get() != nullptr); |
| 275 } | 259 } |
| 276 | 260 |
| 277 int MemEntryImpl::ReadyForSparseIO(const CompletionCallback& callback) { | 261 int MemEntryImpl::ReadyForSparseIO(const CompletionCallback& callback) { |
| 278 return net::OK; | 262 return net::OK; |
| 279 } | 263 } |
| 280 | 264 |
| 281 // ------------------------------------------------------------------------ | 265 // ------------------------------------------------------------------------ |
| 282 | 266 |
| 267 MemEntryImpl::MemEntryImpl(MemBackendImpl* backend, | |
| 268 const ::std::string& key, | |
| 269 int child_id, | |
| 270 MemEntryImpl* parent, | |
| 271 net::NetLog* net_log) | |
| 272 : key_(key), | |
| 273 ref_count_(0), | |
| 274 child_id_(child_id), | |
| 275 child_first_pos_(0), | |
| 276 parent_(parent), | |
| 277 last_modified_(Time::Now()), | |
| 278 last_used_(last_modified_), | |
| 279 backend_(backend), | |
| 280 doomed_(false) { | |
| 281 backend_->OnEntryInserted(this); | |
| 282 net_log_ = | |
| 283 net::BoundNetLog::Make(net_log, net::NetLog::SOURCE_MEMORY_CACHE_ENTRY); | |
| 284 net_log_.BeginEvent(net::NetLog::TYPE_DISK_CACHE_MEM_ENTRY_IMPL, | |
| 285 base::Bind(&NetLogEntryCreationCallback, this)); | |
| 286 } | |
| 287 | |
| 283 MemEntryImpl::~MemEntryImpl() { | 288 MemEntryImpl::~MemEntryImpl() { |
| 284 for (int i = 0; i < NUM_STREAMS; i++) | 289 backend_->ModifyStorageSize(-GetStorageSize()); |
| 285 backend_->ModifyStorageSize(data_size_[i], 0); | 290 |
| 286 backend_->ModifyStorageSize(static_cast<int32_t>(key_.size()), 0); | 291 if (type() == PARENT_ENTRY) { |
| 292 if (children_) { | |
| 293 EntryMap children; | |
| 294 children_->swap(children); | |
| 295 | |
| 296 for (auto& it : children) { | |
| 297 // Since |this| is stored in the map, it should be guarded against | |
| 298 // double dooming, which will result in double destruction. | |
| 299 if (it.second != this) | |
| 300 it.second->Doom(); | |
|
mmenke
2016/02/19 19:08:32
So the problem was the child calling backend_->Mod
gavinp
2016/02/19 19:18:01
No child should report a zero size. Nor is that ve
mmenke
2016/02/19 19:20:43
Oh! For some reason I read it (twice) as "== 0",
| |
| 301 } | |
| 302 } | |
| 303 } else { | |
| 304 parent_->children_->erase(child_id_); | |
| 305 } | |
| 287 net_log_.EndEvent(net::NetLog::TYPE_DISK_CACHE_MEM_ENTRY_IMPL); | 306 net_log_.EndEvent(net::NetLog::TYPE_DISK_CACHE_MEM_ENTRY_IMPL); |
| 288 } | 307 } |
| 289 | 308 |
| 290 int MemEntryImpl::InternalReadData(int index, int offset, IOBuffer* buf, | 309 int MemEntryImpl::InternalReadData(int index, int offset, IOBuffer* buf, |
| 291 int buf_len) { | 310 int buf_len) { |
| 292 DCHECK(type() == kParentEntry || index == kSparseData); | 311 DCHECK(type() == PARENT_ENTRY || index == kSparseData); |
| 293 | 312 |
| 294 if (index < 0 || index >= NUM_STREAMS) | 313 if (index < 0 || index >= kNumStreams || buf_len < 0) |
| 295 return net::ERR_INVALID_ARGUMENT; | 314 return net::ERR_INVALID_ARGUMENT; |
| 296 | 315 |
| 297 int entry_size = GetDataSize(index); | 316 int entry_size = data_[index].size(); |
| 298 if (offset >= entry_size || offset < 0 || !buf_len) | 317 if (offset >= entry_size || offset < 0 || !buf_len) |
| 299 return 0; | 318 return 0; |
| 300 | 319 |
| 301 if (buf_len < 0) | |
| 302 return net::ERR_INVALID_ARGUMENT; | |
| 303 | |
| 304 if (offset + buf_len > entry_size) | 320 if (offset + buf_len > entry_size) |
| 305 buf_len = entry_size - offset; | 321 buf_len = entry_size - offset; |
| 306 | 322 |
| 307 UpdateRank(false); | 323 UpdateStateOnUse(ENTRY_WAS_NOT_MODIFIED); |
| 308 | 324 std::copy(data_[index].begin() + offset, |
| 309 memcpy(buf->data(), &(data_[index])[offset], buf_len); | 325 data_[index].begin() + offset + buf_len, buf->data()); |
| 310 return buf_len; | 326 return buf_len; |
| 311 } | 327 } |
| 312 | 328 |
| 313 int MemEntryImpl::InternalWriteData(int index, int offset, IOBuffer* buf, | 329 int MemEntryImpl::InternalWriteData(int index, int offset, IOBuffer* buf, |
| 314 int buf_len, bool truncate) { | 330 int buf_len, bool truncate) { |
| 315 DCHECK(type() == kParentEntry || index == kSparseData); | 331 DCHECK(type() == PARENT_ENTRY || index == kSparseData); |
| 316 | 332 |
| 317 if (index < 0 || index >= NUM_STREAMS) | 333 if (index < 0 || index >= kNumStreams) |
| 318 return net::ERR_INVALID_ARGUMENT; | 334 return net::ERR_INVALID_ARGUMENT; |
| 319 | 335 |
| 320 if (offset < 0 || buf_len < 0) | 336 if (offset < 0 || buf_len < 0) |
| 321 return net::ERR_INVALID_ARGUMENT; | 337 return net::ERR_INVALID_ARGUMENT; |
| 322 | 338 |
| 323 int max_file_size = backend_->MaxFileSize(); | 339 int max_file_size = backend_->MaxFileSize(); |
| 324 | 340 |
| 325 // offset of buf_len could be negative numbers. | 341 // offset of buf_len could be negative numbers. |
| 326 if (offset > max_file_size || buf_len > max_file_size || | 342 if (offset > max_file_size || buf_len > max_file_size || |
| 327 offset + buf_len > max_file_size) { | 343 offset + buf_len > max_file_size) { |
| 328 return net::ERR_FAILED; | 344 return net::ERR_FAILED; |
| 329 } | 345 } |
| 330 | 346 |
| 331 // Read the size at this point. | 347 int old_data_size = data_[index].size(); |
| 332 int entry_size = GetDataSize(index); | 348 if (truncate || old_data_size < offset + buf_len) { |
| 349 data_[index].resize(offset + buf_len); | |
| 333 | 350 |
| 334 PrepareTarget(index, offset, buf_len); | 351 // Zero fill any hole. |
| 352 if (old_data_size < offset) { | |
| 353 std::fill(data_[index].begin() + old_data_size, | |
| 354 data_[index].begin() + offset, 0); | |
| 355 } | |
| 335 | 356 |
| 336 if (entry_size < offset + buf_len) { | 357 backend_->ModifyStorageSize(data_[index].size() - old_data_size); |
|
mmenke
2016/02/19 19:36:53
Hrm...Wait...So if we're a child entry, we are not
| |
| 337 backend_->ModifyStorageSize(entry_size, offset + buf_len); | |
| 338 data_size_[index] = offset + buf_len; | |
| 339 } else if (truncate) { | |
| 340 if (entry_size > offset + buf_len) { | |
| 341 backend_->ModifyStorageSize(entry_size, offset + buf_len); | |
| 342 data_size_[index] = offset + buf_len; | |
| 343 } | |
| 344 } | 358 } |
| 345 | 359 |
| 346 UpdateRank(true); | 360 UpdateStateOnUse(ENTRY_WAS_MODIFIED); |
| 347 | 361 |
| 348 if (!buf_len) | 362 if (!buf_len) |
| 349 return 0; | 363 return 0; |
| 350 | 364 |
| 351 memcpy(&(data_[index])[offset], buf->data(), buf_len); | 365 std::copy(buf->data(), buf->data() + buf_len, data_[index].begin() + offset); |
| 352 return buf_len; | 366 return buf_len; |
| 353 } | 367 } |
| 354 | 368 |
| 355 int MemEntryImpl::InternalReadSparseData(int64_t offset, | 369 int MemEntryImpl::InternalReadSparseData(int64_t offset, |
| 356 IOBuffer* buf, | 370 IOBuffer* buf, |
| 357 int buf_len) { | 371 int buf_len) { |
| 358 DCHECK(type() == kParentEntry); | 372 DCHECK_EQ(PARENT_ENTRY, type()); |
| 359 | 373 |
| 360 if (!InitSparseInfo()) | 374 if (!InitSparseInfo()) |
| 361 return net::ERR_CACHE_OPERATION_NOT_SUPPORTED; | 375 return net::ERR_CACHE_OPERATION_NOT_SUPPORTED; |
| 362 | 376 |
| 363 if (offset < 0 || buf_len < 0) | 377 if (offset < 0 || buf_len < 0) |
| 364 return net::ERR_INVALID_ARGUMENT; | 378 return net::ERR_INVALID_ARGUMENT; |
| 365 | 379 |
| 366 // We will keep using this buffer and adjust the offset in this buffer. | 380 // We will keep using this buffer and adjust the offset in this buffer. |
| 367 scoped_refptr<net::DrainableIOBuffer> io_buf( | 381 scoped_refptr<net::DrainableIOBuffer> io_buf( |
| 368 new net::DrainableIOBuffer(buf, buf_len)); | 382 new net::DrainableIOBuffer(buf, buf_len)); |
| 369 | 383 |
| 370 // Iterate until we have read enough. | 384 // Iterate until we have read enough. |
| 371 while (io_buf->BytesRemaining()) { | 385 while (io_buf->BytesRemaining()) { |
| 372 MemEntryImpl* child = OpenChild(offset + io_buf->BytesConsumed(), false); | 386 MemEntryImpl* child = GetChild(offset + io_buf->BytesConsumed(), false); |
| 373 | 387 |
| 374 // No child present for that offset. | 388 // No child present for that offset. |
| 375 if (!child) | 389 if (!child) |
| 376 break; | 390 break; |
| 377 | 391 |
| 378 // We then need to prepare the child offset and len. | 392 // We then need to prepare the child offset and len. |
| 379 int child_offset = ToChildOffset(offset + io_buf->BytesConsumed()); | 393 int child_offset = ToChildOffset(offset + io_buf->BytesConsumed()); |
| 380 | 394 |
| 381 // If we are trying to read from a position that the child entry has no data | 395 // If we are trying to read from a position that the child entry has no data |
| 382 // we should stop. | 396 // we should stop. |
| 383 if (child_offset < child->child_first_pos_) | 397 if (child_offset < child->child_first_pos_) |
| 384 break; | 398 break; |
| 385 if (net_log_.IsCapturing()) { | 399 if (net_log_.IsCapturing()) { |
| 386 net_log_.BeginEvent( | 400 net_log_.BeginEvent( |
| 387 net::NetLog::TYPE_SPARSE_READ_CHILD_DATA, | 401 net::NetLog::TYPE_SPARSE_READ_CHILD_DATA, |
| 388 CreateNetLogSparseReadWriteCallback(child->net_log().source(), | 402 CreateNetLogSparseReadWriteCallback(child->net_log_.source(), |
| 389 io_buf->BytesRemaining())); | 403 io_buf->BytesRemaining())); |
| 390 } | 404 } |
| 391 int ret = child->ReadData(kSparseData, child_offset, io_buf.get(), | 405 int ret = child->ReadData(kSparseData, child_offset, io_buf.get(), |
| 392 io_buf->BytesRemaining(), CompletionCallback()); | 406 io_buf->BytesRemaining(), CompletionCallback()); |
| 393 if (net_log_.IsCapturing()) { | 407 if (net_log_.IsCapturing()) { |
| 394 net_log_.EndEventWithNetErrorCode( | 408 net_log_.EndEventWithNetErrorCode( |
| 395 net::NetLog::TYPE_SPARSE_READ_CHILD_DATA, ret); | 409 net::NetLog::TYPE_SPARSE_READ_CHILD_DATA, ret); |
| 396 } | 410 } |
| 397 | 411 |
| 398 // If we encounter an error in one entry, return immediately. | 412 // If we encounter an error in one entry, return immediately. |
| 399 if (ret < 0) | 413 if (ret < 0) |
| 400 return ret; | 414 return ret; |
| 401 else if (ret == 0) | 415 else if (ret == 0) |
| 402 break; | 416 break; |
| 403 | 417 |
| 404 // Increment the counter by number of bytes read in the child entry. | 418 // Increment the counter by number of bytes read in the child entry. |
| 405 io_buf->DidConsume(ret); | 419 io_buf->DidConsume(ret); |
| 406 } | 420 } |
| 407 | 421 |
| 408 UpdateRank(false); | 422 UpdateStateOnUse(ENTRY_WAS_NOT_MODIFIED); |
| 409 | |
| 410 return io_buf->BytesConsumed(); | 423 return io_buf->BytesConsumed(); |
| 411 } | 424 } |
| 412 | 425 |
| 413 int MemEntryImpl::InternalWriteSparseData(int64_t offset, | 426 int MemEntryImpl::InternalWriteSparseData(int64_t offset, |
| 414 IOBuffer* buf, | 427 IOBuffer* buf, |
| 415 int buf_len) { | 428 int buf_len) { |
| 416 DCHECK(type() == kParentEntry); | 429 DCHECK_EQ(PARENT_ENTRY, type()); |
| 417 | 430 |
| 418 if (!InitSparseInfo()) | 431 if (!InitSparseInfo()) |
| 419 return net::ERR_CACHE_OPERATION_NOT_SUPPORTED; | 432 return net::ERR_CACHE_OPERATION_NOT_SUPPORTED; |
| 420 | 433 |
| 421 if (offset < 0 || buf_len < 0) | 434 if (offset < 0 || buf_len < 0) |
| 422 return net::ERR_INVALID_ARGUMENT; | 435 return net::ERR_INVALID_ARGUMENT; |
| 423 | 436 |
| 424 scoped_refptr<net::DrainableIOBuffer> io_buf( | 437 scoped_refptr<net::DrainableIOBuffer> io_buf( |
| 425 new net::DrainableIOBuffer(buf, buf_len)); | 438 new net::DrainableIOBuffer(buf, buf_len)); |
| 426 | 439 |
| 427 // This loop walks through child entries continuously starting from |offset| | 440 // This loop walks through child entries continuously starting from |offset| |
| 428 // and writes blocks of data (of maximum size kMaxSparseEntrySize) into each | 441 // and writes blocks of data (of maximum size kMaxSparseEntrySize) into each |
| 429 // child entry until all |buf_len| bytes are written. The write operation can | 442 // child entry until all |buf_len| bytes are written. The write operation can |
| 430 // start in the middle of an entry. | 443 // start in the middle of an entry. |
| 431 while (io_buf->BytesRemaining()) { | 444 while (io_buf->BytesRemaining()) { |
| 432 MemEntryImpl* child = OpenChild(offset + io_buf->BytesConsumed(), true); | 445 MemEntryImpl* child = GetChild(offset + io_buf->BytesConsumed(), true); |
| 433 int child_offset = ToChildOffset(offset + io_buf->BytesConsumed()); | 446 int child_offset = ToChildOffset(offset + io_buf->BytesConsumed()); |
| 434 | 447 |
| 435 // Find the right amount to write, this evaluates the remaining bytes to | 448 // Find the right amount to write, this evaluates the remaining bytes to |
| 436 // write and remaining capacity of this child entry. | 449 // write and remaining capacity of this child entry. |
| 437 int write_len = std::min(static_cast<int>(io_buf->BytesRemaining()), | 450 int write_len = std::min(static_cast<int>(io_buf->BytesRemaining()), |
| 438 kMaxSparseEntrySize - child_offset); | 451 kMaxSparseEntrySize - child_offset); |
| 439 | 452 |
| 440 // Keep a record of the last byte position (exclusive) in the child. | 453 // Keep a record of the last byte position (exclusive) in the child. |
| 441 int data_size = child->GetDataSize(kSparseData); | 454 int data_size = child->GetDataSize(kSparseData); |
| 442 | 455 |
| 443 if (net_log_.IsCapturing()) { | 456 if (net_log_.IsCapturing()) { |
| 444 net_log_.BeginEvent( | 457 net_log_.BeginEvent(net::NetLog::TYPE_SPARSE_WRITE_CHILD_DATA, |
| 445 net::NetLog::TYPE_SPARSE_WRITE_CHILD_DATA, | 458 CreateNetLogSparseReadWriteCallback( |
| 446 CreateNetLogSparseReadWriteCallback(child->net_log().source(), | 459 child->net_log_.source(), write_len)); |
| 447 write_len)); | |
| 448 } | 460 } |
| 449 | 461 |
| 450 // Always writes to the child entry. This operation may overwrite data | 462 // Always writes to the child entry. This operation may overwrite data |
| 451 // previously written. | 463 // previously written. |
| 452 // TODO(hclam): if there is data in the entry and this write is not | 464 // TODO(hclam): if there is data in the entry and this write is not |
| 453 // continuous we may want to discard this write. | 465 // continuous we may want to discard this write. |
| 454 int ret = child->WriteData(kSparseData, child_offset, io_buf.get(), | 466 int ret = child->WriteData(kSparseData, child_offset, io_buf.get(), |
| 455 write_len, CompletionCallback(), true); | 467 write_len, CompletionCallback(), true); |
| 456 if (net_log_.IsCapturing()) { | 468 if (net_log_.IsCapturing()) { |
| 457 net_log_.EndEventWithNetErrorCode( | 469 net_log_.EndEventWithNetErrorCode( |
| 458 net::NetLog::TYPE_SPARSE_WRITE_CHILD_DATA, ret); | 470 net::NetLog::TYPE_SPARSE_WRITE_CHILD_DATA, ret); |
| 459 } | 471 } |
| 460 if (ret < 0) | 472 if (ret < 0) |
| 461 return ret; | 473 return ret; |
| 462 else if (ret == 0) | 474 else if (ret == 0) |
| 463 break; | 475 break; |
| 464 | 476 |
| 465 // Keep a record of the first byte position in the child if the write was | 477 // Keep a record of the first byte position in the child if the write was |
| 466 // not aligned nor continuous. This is to enable witting to the middle | 478 // not aligned nor continuous. This is to enable witting to the middle |
| 467 // of an entry and still keep track of data off the aligned edge. | 479 // of an entry and still keep track of data off the aligned edge. |
| 468 if (data_size != child_offset) | 480 if (data_size != child_offset) |
| 469 child->child_first_pos_ = child_offset; | 481 child->child_first_pos_ = child_offset; |
| 470 | 482 |
| 471 // Adjust the offset in the IO buffer. | 483 // Adjust the offset in the IO buffer. |
| 472 io_buf->DidConsume(ret); | 484 io_buf->DidConsume(ret); |
| 473 } | 485 } |
| 474 | 486 |
| 475 UpdateRank(true); | 487 UpdateStateOnUse(ENTRY_WAS_MODIFIED); |
| 476 | |
| 477 return io_buf->BytesConsumed(); | 488 return io_buf->BytesConsumed(); |
| 478 } | 489 } |
| 479 | 490 |
| 480 int MemEntryImpl::GetAvailableRange(int64_t offset, int len, int64_t* start) { | 491 int MemEntryImpl::InternalGetAvailableRange(int64_t offset, |
| 481 DCHECK(type() == kParentEntry); | 492 int len, |
| 493 int64_t* start) { | |
| 494 DCHECK_EQ(PARENT_ENTRY, type()); | |
| 482 DCHECK(start); | 495 DCHECK(start); |
| 483 | 496 |
| 484 if (!InitSparseInfo()) | 497 if (!InitSparseInfo()) |
| 485 return net::ERR_CACHE_OPERATION_NOT_SUPPORTED; | 498 return net::ERR_CACHE_OPERATION_NOT_SUPPORTED; |
| 486 | 499 |
| 487 if (offset < 0 || len < 0 || !start) | 500 if (offset < 0 || len < 0 || !start) |
| 488 return net::ERR_INVALID_ARGUMENT; | 501 return net::ERR_INVALID_ARGUMENT; |
| 489 | 502 |
| 490 MemEntryImpl* current_child = NULL; | 503 MemEntryImpl* current_child = nullptr; |
| 491 | 504 |
| 492 // Find the first child and record the number of empty bytes. | 505 // Find the first child and record the number of empty bytes. |
| 493 int empty = FindNextChild(offset, len, ¤t_child); | 506 int empty = FindNextChild(offset, len, ¤t_child); |
| 494 if (current_child && empty < len) { | 507 if (current_child && empty < len) { |
| 495 *start = offset + empty; | 508 *start = offset + empty; |
| 496 len -= empty; | 509 len -= empty; |
| 497 | 510 |
| 498 // Counts the number of continuous bytes. | 511 // Counts the number of continuous bytes. |
| 499 int continuous = 0; | 512 int continuous = 0; |
| 500 | 513 |
| (...skipping 13 matching lines...) Expand all Loading... | |
| 514 // If the next child is discontinuous, break the loop. | 527 // If the next child is discontinuous, break the loop. |
| 515 if (FindNextChild(*start + continuous, len, ¤t_child)) | 528 if (FindNextChild(*start + continuous, len, ¤t_child)) |
| 516 break; | 529 break; |
| 517 } | 530 } |
| 518 return continuous; | 531 return continuous; |
| 519 } | 532 } |
| 520 *start = offset; | 533 *start = offset; |
| 521 return 0; | 534 return 0; |
| 522 } | 535 } |
| 523 | 536 |
| 524 void MemEntryImpl::PrepareTarget(int index, int offset, int buf_len) { | 537 bool MemEntryImpl::InitSparseInfo() { |
| 525 int entry_size = GetDataSize(index); | 538 DCHECK_EQ(PARENT_ENTRY, type()); |
| 526 | 539 |
| 527 if (entry_size >= offset + buf_len) | 540 if (!children_) { |
| 528 return; // Not growing the stored data. | |
| 529 | |
| 530 if (static_cast<int>(data_[index].size()) < offset + buf_len) | |
| 531 data_[index].resize(offset + buf_len); | |
| 532 | |
| 533 if (offset <= entry_size) | |
| 534 return; // There is no "hole" on the stored data. | |
| 535 | |
| 536 // Cleanup the hole not written by the user. The point is to avoid returning | |
| 537 // random stuff later on. | |
| 538 memset(&(data_[index])[entry_size], 0, offset - entry_size); | |
| 539 } | |
| 540 | |
| 541 void MemEntryImpl::UpdateRank(bool modified) { | |
| 542 Time current = Time::Now(); | |
| 543 last_used_ = current; | |
| 544 | |
| 545 if (modified) | |
| 546 last_modified_ = current; | |
| 547 | |
| 548 if (!doomed_) | |
| 549 backend_->UpdateRank(this); | |
| 550 } | |
| 551 | |
| 552 bool MemEntryImpl::InitSparseInfo() { | |
| 553 DCHECK(type() == kParentEntry); | |
| 554 | |
| 555 if (!children_.get()) { | |
| 556 // If we already have some data in sparse stream but we are being | 541 // If we already have some data in sparse stream but we are being |
| 557 // initialized as a sparse entry, we should fail. | 542 // initialized as a sparse entry, we should fail. |
| 558 if (GetDataSize(kSparseData)) | 543 if (GetDataSize(kSparseData)) |
| 559 return false; | 544 return false; |
| 560 children_.reset(new EntryMap()); | 545 children_.reset(new EntryMap()); |
| 561 | 546 |
| 562 // The parent entry stores data for the first block, so save this object to | 547 // The parent entry stores data for the first block, so save this object to |
| 563 // index 0. | 548 // index 0. |
| 564 (*children_)[0] = this; | 549 (*children_)[0] = this; |
| 565 } | 550 } |
| 566 return true; | 551 return true; |
| 567 } | 552 } |
| 568 | 553 |
| 569 bool MemEntryImpl::InitChildEntry(MemEntryImpl* parent, int child_id, | 554 MemEntryImpl* MemEntryImpl::GetChild(int64_t offset, bool create) { |
| 570 net::NetLog* net_log) { | 555 DCHECK_EQ(PARENT_ENTRY, type()); |
| 571 DCHECK(!parent_); | |
| 572 DCHECK(!child_id_); | |
| 573 | |
| 574 net_log_ = net::BoundNetLog::Make(net_log, | |
| 575 net::NetLog::SOURCE_MEMORY_CACHE_ENTRY); | |
| 576 net_log_.BeginEvent( | |
| 577 net::NetLog::TYPE_DISK_CACHE_MEM_ENTRY_IMPL, | |
| 578 base::Bind(&NetLogChildEntryCreationCallback, parent, child_id_)); | |
| 579 | |
| 580 parent_ = parent; | |
| 581 child_id_ = child_id; | |
| 582 Time current = Time::Now(); | |
| 583 last_modified_ = current; | |
| 584 last_used_ = current; | |
| 585 // Insert this to the backend's ranking list. | |
| 586 backend_->InsertIntoRankingList(this); | |
| 587 return true; | |
| 588 } | |
| 589 | |
| 590 MemEntryImpl* MemEntryImpl::OpenChild(int64_t offset, bool create) { | |
| 591 DCHECK(type() == kParentEntry); | |
| 592 int index = ToChildIndex(offset); | 556 int index = ToChildIndex(offset); |
| 593 EntryMap::iterator i = children_->find(index); | 557 EntryMap::iterator i = children_->find(index); |
| 594 if (i != children_->end()) { | 558 if (i != children_->end()) |
| 595 return i->second; | 559 return i->second; |
| 596 } else if (create) { | 560 if (create) |
| 597 MemEntryImpl* child = new MemEntryImpl(backend_); | 561 return new MemEntryImpl(backend_, index, this, net_log_.net_log()); |
| 598 child->InitChildEntry(this, index, net_log_.net_log()); | 562 return nullptr; |
| 599 (*children_)[index] = child; | |
| 600 return child; | |
| 601 } | |
| 602 return NULL; | |
| 603 } | 563 } |
| 604 | 564 |
| 605 int MemEntryImpl::FindNextChild(int64_t offset, int len, MemEntryImpl** child) { | 565 int MemEntryImpl::FindNextChild(int64_t offset, int len, MemEntryImpl** child) { |
| 606 DCHECK(child); | 566 DCHECK(child); |
| 607 *child = NULL; | 567 *child = nullptr; |
| 608 int scanned_len = 0; | 568 int scanned_len = 0; |
| 609 | 569 |
| 610 // This loop tries to find the first existing child. | 570 // This loop tries to find the first existing child. |
| 611 while (scanned_len < len) { | 571 while (scanned_len < len) { |
| 612 // This points to the current offset in the child. | 572 // This points to the current offset in the child. |
| 613 int current_child_offset = ToChildOffset(offset + scanned_len); | 573 int current_child_offset = ToChildOffset(offset + scanned_len); |
| 614 MemEntryImpl* current_child = OpenChild(offset + scanned_len, false); | 574 MemEntryImpl* current_child = GetChild(offset + scanned_len, false); |
| 615 if (current_child) { | 575 if (current_child) { |
| 616 int child_first_pos = current_child->child_first_pos_; | 576 int child_first_pos = current_child->child_first_pos_; |
| 617 | 577 |
| 618 // This points to the first byte that we should be reading from, we need | 578 // This points to the first byte that we should be reading from, we need |
| 619 // to take care of the filled region and the current offset in the child. | 579 // to take care of the filled region and the current offset in the child. |
| 620 int first_pos = std::max(current_child_offset, child_first_pos); | 580 int first_pos = std::max(current_child_offset, child_first_pos); |
| 621 | 581 |
| 622 // If the first byte position we should read from doesn't exceed the | 582 // If the first byte position we should read from doesn't exceed the |
| 623 // filled region, we have found the first child. | 583 // filled region, we have found the first child. |
| 624 if (first_pos < current_child->GetDataSize(kSparseData)) { | 584 if (first_pos < current_child->GetDataSize(kSparseData)) { |
| 625 *child = current_child; | 585 *child = current_child; |
| 626 | 586 |
| 627 // We need to advance the scanned length. | 587 // We need to advance the scanned length. |
| 628 scanned_len += first_pos - current_child_offset; | 588 scanned_len += first_pos - current_child_offset; |
| 629 break; | 589 break; |
| 630 } | 590 } |
| 631 } | 591 } |
| 632 scanned_len += kMaxSparseEntrySize - current_child_offset; | 592 scanned_len += kMaxSparseEntrySize - current_child_offset; |
| 633 } | 593 } |
| 634 return scanned_len; | 594 return scanned_len; |
| 635 } | 595 } |
| 636 | 596 |
| 637 void MemEntryImpl::DetachChild(int child_id) { | |
| 638 children_->erase(child_id); | |
| 639 } | |
| 640 | |
| 641 } // namespace disk_cache | 597 } // namespace disk_cache |
| OLD | NEW |