Index: fusl/src/math/log10l.c |
diff --git a/fusl/src/math/log10l.c b/fusl/src/math/log10l.c |
index 63dcc286d6211d455f291dc9fff2704792a2d236..30b40418d17e13e6ffb4ef92c707ff22dbde1722 100644 |
--- a/fusl/src/math/log10l.c |
+++ b/fusl/src/math/log10l.c |
@@ -60,9 +60,8 @@ |
#include "libm.h" |
#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024 |
-long double log10l(long double x) |
-{ |
- return log10(x); |
+long double log10l(long double x) { |
+ return log10(x); |
} |
#elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384 |
/* Coefficients for log(1+x) = x - x**2/2 + x**3 P(x)/Q(x) |
@@ -70,23 +69,17 @@ long double log10l(long double x) |
* Theoretical peak relative error = 6.2e-22 |
*/ |
static const long double P[] = { |
- 4.9962495940332550844739E-1L, |
- 1.0767376367209449010438E1L, |
- 7.7671073698359539859595E1L, |
- 2.5620629828144409632571E2L, |
- 4.2401812743503691187826E2L, |
- 3.4258224542413922935104E2L, |
- 1.0747524399916215149070E2L, |
+ 4.9962495940332550844739E-1L, 1.0767376367209449010438E1L, |
+ 7.7671073698359539859595E1L, 2.5620629828144409632571E2L, |
+ 4.2401812743503691187826E2L, 3.4258224542413922935104E2L, |
+ 1.0747524399916215149070E2L, |
}; |
static const long double Q[] = { |
-/* 1.0000000000000000000000E0,*/ |
- 2.3479774160285863271658E1L, |
- 1.9444210022760132894510E2L, |
- 7.7952888181207260646090E2L, |
- 1.6911722418503949084863E3L, |
- 2.0307734695595183428202E3L, |
- 1.2695660352705325274404E3L, |
- 3.2242573199748645407652E2L, |
+ /* 1.0000000000000000000000E0,*/ |
+ 2.3479774160285863271658E1L, 1.9444210022760132894510E2L, |
+ 7.7952888181207260646090E2L, 1.6911722418503949084863E3L, |
+ 2.0307734695595183428202E3L, 1.2695660352705325274404E3L, |
+ 3.2242573199748645407652E2L, |
}; |
/* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2), |
@@ -95,16 +88,13 @@ static const long double Q[] = { |
* Theoretical peak relative error = 6.16e-22 |
*/ |
static const long double R[4] = { |
- 1.9757429581415468984296E-3L, |
--7.1990767473014147232598E-1L, |
- 1.0777257190312272158094E1L, |
--3.5717684488096787370998E1L, |
+ 1.9757429581415468984296E-3L, -7.1990767473014147232598E-1L, |
+ 1.0777257190312272158094E1L, -3.5717684488096787370998E1L, |
}; |
static const long double S[4] = { |
-/* 1.00000000000000000000E0L,*/ |
--2.6201045551331104417768E1L, |
- 1.9361891836232102174846E2L, |
--4.2861221385716144629696E2L, |
+ /* 1.00000000000000000000E0L,*/ |
+ -2.6201045551331104417768E1L, 1.9361891836232102174846E2L, |
+ -4.2861221385716144629696E2L, |
}; |
/* log10(2) */ |
#define L102A 0.3125L |
@@ -115,77 +105,75 @@ static const long double S[4] = { |
#define SQRTH 0.70710678118654752440L |
-long double log10l(long double x) |
-{ |
- long double y, z; |
- int e; |
+long double log10l(long double x) { |
+ long double y, z; |
+ int e; |
- if (isnan(x)) |
- return x; |
- if(x <= 0.0) { |
- if(x == 0.0) |
- return -1.0 / (x*x); |
- return (x - x) / 0.0; |
- } |
- if (x == INFINITY) |
- return INFINITY; |
- /* separate mantissa from exponent */ |
- /* Note, frexp is used so that denormal numbers |
- * will be handled properly. |
- */ |
- x = frexpl(x, &e); |
+ if (isnan(x)) |
+ return x; |
+ if (x <= 0.0) { |
+ if (x == 0.0) |
+ return -1.0 / (x * x); |
+ return (x - x) / 0.0; |
+ } |
+ if (x == INFINITY) |
+ return INFINITY; |
+ /* separate mantissa from exponent */ |
+ /* Note, frexp is used so that denormal numbers |
+ * will be handled properly. |
+ */ |
+ x = frexpl(x, &e); |
- /* logarithm using log(x) = z + z**3 P(z)/Q(z), |
- * where z = 2(x-1)/x+1) |
- */ |
- if (e > 2 || e < -2) { |
- if (x < SQRTH) { /* 2(2x-1)/(2x+1) */ |
- e -= 1; |
- z = x - 0.5; |
- y = 0.5 * z + 0.5; |
- } else { /* 2 (x-1)/(x+1) */ |
- z = x - 0.5; |
- z -= 0.5; |
- y = 0.5 * x + 0.5; |
- } |
- x = z / y; |
- z = x*x; |
- y = x * (z * __polevll(z, R, 3) / __p1evll(z, S, 3)); |
- goto done; |
- } |
+ /* logarithm using log(x) = z + z**3 P(z)/Q(z), |
+ * where z = 2(x-1)/x+1) |
+ */ |
+ if (e > 2 || e < -2) { |
+ if (x < SQRTH) { /* 2(2x-1)/(2x+1) */ |
+ e -= 1; |
+ z = x - 0.5; |
+ y = 0.5 * z + 0.5; |
+ } else { /* 2 (x-1)/(x+1) */ |
+ z = x - 0.5; |
+ z -= 0.5; |
+ y = 0.5 * x + 0.5; |
+ } |
+ x = z / y; |
+ z = x * x; |
+ y = x * (z * __polevll(z, R, 3) / __p1evll(z, S, 3)); |
+ goto done; |
+ } |
- /* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */ |
- if (x < SQRTH) { |
- e -= 1; |
- x = 2.0*x - 1.0; |
- } else { |
- x = x - 1.0; |
- } |
- z = x*x; |
- y = x * (z * __polevll(x, P, 6) / __p1evll(x, Q, 7)); |
- y = y - 0.5*z; |
+ /* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */ |
+ if (x < SQRTH) { |
+ e -= 1; |
+ x = 2.0 * x - 1.0; |
+ } else { |
+ x = x - 1.0; |
+ } |
+ z = x * x; |
+ y = x * (z * __polevll(x, P, 6) / __p1evll(x, Q, 7)); |
+ y = y - 0.5 * z; |
done: |
- /* Multiply log of fraction by log10(e) |
- * and base 2 exponent by log10(2). |
- * |
- * ***CAUTION*** |
- * |
- * This sequence of operations is critical and it may |
- * be horribly defeated by some compiler optimizers. |
- */ |
- z = y * (L10EB); |
- z += x * (L10EB); |
- z += e * (L102B); |
- z += y * (L10EA); |
- z += x * (L10EA); |
- z += e * (L102A); |
- return z; |
+ /* Multiply log of fraction by log10(e) |
+ * and base 2 exponent by log10(2). |
+ * |
+ * ***CAUTION*** |
+ * |
+ * This sequence of operations is critical and it may |
+ * be horribly defeated by some compiler optimizers. |
+ */ |
+ z = y * (L10EB); |
+ z += x * (L10EB); |
+ z += e * (L102B); |
+ z += y * (L10EA); |
+ z += x * (L10EA); |
+ z += e * (L102A); |
+ return z; |
} |
#elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384 |
// TODO: broken implementation to make things compile |
-long double log10l(long double x) |
-{ |
- return log10(x); |
+long double log10l(long double x) { |
+ return log10(x); |
} |
#endif |