| Index: fusl/src/math/log2l.c
|
| diff --git a/fusl/src/math/log2l.c b/fusl/src/math/log2l.c
|
| index 722b451a026ae2ccd1b70381c4a87b7936ddb3c2..5041251b60004cac752c564c9c392cb6ea28d4f2 100644
|
| --- a/fusl/src/math/log2l.c
|
| +++ b/fusl/src/math/log2l.c
|
| @@ -55,9 +55,8 @@
|
| #include "libm.h"
|
|
|
| #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
|
| -long double log2l(long double x)
|
| -{
|
| - return log2(x);
|
| +long double log2l(long double x) {
|
| + return log2(x);
|
| }
|
| #elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
|
| /* Coefficients for ln(1+x) = x - x**2/2 + x**3 P(x)/Q(x)
|
| @@ -65,23 +64,17 @@ long double log2l(long double x)
|
| * Theoretical peak relative error = 6.2e-22
|
| */
|
| static const long double P[] = {
|
| - 4.9962495940332550844739E-1L,
|
| - 1.0767376367209449010438E1L,
|
| - 7.7671073698359539859595E1L,
|
| - 2.5620629828144409632571E2L,
|
| - 4.2401812743503691187826E2L,
|
| - 3.4258224542413922935104E2L,
|
| - 1.0747524399916215149070E2L,
|
| + 4.9962495940332550844739E-1L, 1.0767376367209449010438E1L,
|
| + 7.7671073698359539859595E1L, 2.5620629828144409632571E2L,
|
| + 4.2401812743503691187826E2L, 3.4258224542413922935104E2L,
|
| + 1.0747524399916215149070E2L,
|
| };
|
| static const long double Q[] = {
|
| -/* 1.0000000000000000000000E0,*/
|
| - 2.3479774160285863271658E1L,
|
| - 1.9444210022760132894510E2L,
|
| - 7.7952888181207260646090E2L,
|
| - 1.6911722418503949084863E3L,
|
| - 2.0307734695595183428202E3L,
|
| - 1.2695660352705325274404E3L,
|
| - 3.2242573199748645407652E2L,
|
| + /* 1.0000000000000000000000E0,*/
|
| + 2.3479774160285863271658E1L, 1.9444210022760132894510E2L,
|
| + 7.7952888181207260646090E2L, 1.6911722418503949084863E3L,
|
| + 2.0307734695595183428202E3L, 1.2695660352705325274404E3L,
|
| + 3.2242573199748645407652E2L,
|
| };
|
|
|
| /* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2),
|
| @@ -90,93 +83,88 @@ static const long double Q[] = {
|
| * Theoretical peak relative error = 6.16e-22
|
| */
|
| static const long double R[4] = {
|
| - 1.9757429581415468984296E-3L,
|
| --7.1990767473014147232598E-1L,
|
| - 1.0777257190312272158094E1L,
|
| --3.5717684488096787370998E1L,
|
| + 1.9757429581415468984296E-3L, -7.1990767473014147232598E-1L,
|
| + 1.0777257190312272158094E1L, -3.5717684488096787370998E1L,
|
| };
|
| static const long double S[4] = {
|
| -/* 1.00000000000000000000E0L,*/
|
| --2.6201045551331104417768E1L,
|
| - 1.9361891836232102174846E2L,
|
| --4.2861221385716144629696E2L,
|
| + /* 1.00000000000000000000E0L,*/
|
| + -2.6201045551331104417768E1L, 1.9361891836232102174846E2L,
|
| + -4.2861221385716144629696E2L,
|
| };
|
| /* log2(e) - 1 */
|
| #define LOG2EA 4.4269504088896340735992e-1L
|
|
|
| #define SQRTH 0.70710678118654752440L
|
|
|
| -long double log2l(long double x)
|
| -{
|
| - long double y, z;
|
| - int e;
|
| +long double log2l(long double x) {
|
| + long double y, z;
|
| + int e;
|
|
|
| - if (isnan(x))
|
| - return x;
|
| - if (x == INFINITY)
|
| - return x;
|
| - if (x <= 0.0) {
|
| - if (x == 0.0)
|
| - return -1/(x*x); /* -inf with divbyzero */
|
| - return 0/0.0f; /* nan with invalid */
|
| - }
|
| + if (isnan(x))
|
| + return x;
|
| + if (x == INFINITY)
|
| + return x;
|
| + if (x <= 0.0) {
|
| + if (x == 0.0)
|
| + return -1 / (x * x); /* -inf with divbyzero */
|
| + return 0 / 0.0f; /* nan with invalid */
|
| + }
|
|
|
| - /* separate mantissa from exponent */
|
| - /* Note, frexp is used so that denormal numbers
|
| - * will be handled properly.
|
| - */
|
| - x = frexpl(x, &e);
|
| + /* separate mantissa from exponent */
|
| + /* Note, frexp is used so that denormal numbers
|
| + * will be handled properly.
|
| + */
|
| + x = frexpl(x, &e);
|
|
|
| - /* logarithm using log(x) = z + z**3 P(z)/Q(z),
|
| - * where z = 2(x-1)/x+1)
|
| - */
|
| - if (e > 2 || e < -2) {
|
| - if (x < SQRTH) { /* 2(2x-1)/(2x+1) */
|
| - e -= 1;
|
| - z = x - 0.5;
|
| - y = 0.5 * z + 0.5;
|
| - } else { /* 2 (x-1)/(x+1) */
|
| - z = x - 0.5;
|
| - z -= 0.5;
|
| - y = 0.5 * x + 0.5;
|
| - }
|
| - x = z / y;
|
| - z = x*x;
|
| - y = x * (z * __polevll(z, R, 3) / __p1evll(z, S, 3));
|
| - goto done;
|
| - }
|
| + /* logarithm using log(x) = z + z**3 P(z)/Q(z),
|
| + * where z = 2(x-1)/x+1)
|
| + */
|
| + if (e > 2 || e < -2) {
|
| + if (x < SQRTH) { /* 2(2x-1)/(2x+1) */
|
| + e -= 1;
|
| + z = x - 0.5;
|
| + y = 0.5 * z + 0.5;
|
| + } else { /* 2 (x-1)/(x+1) */
|
| + z = x - 0.5;
|
| + z -= 0.5;
|
| + y = 0.5 * x + 0.5;
|
| + }
|
| + x = z / y;
|
| + z = x * x;
|
| + y = x * (z * __polevll(z, R, 3) / __p1evll(z, S, 3));
|
| + goto done;
|
| + }
|
|
|
| - /* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */
|
| - if (x < SQRTH) {
|
| - e -= 1;
|
| - x = 2.0*x - 1.0;
|
| - } else {
|
| - x = x - 1.0;
|
| - }
|
| - z = x*x;
|
| - y = x * (z * __polevll(x, P, 6) / __p1evll(x, Q, 7));
|
| - y = y - 0.5*z;
|
| + /* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */
|
| + if (x < SQRTH) {
|
| + e -= 1;
|
| + x = 2.0 * x - 1.0;
|
| + } else {
|
| + x = x - 1.0;
|
| + }
|
| + z = x * x;
|
| + y = x * (z * __polevll(x, P, 6) / __p1evll(x, Q, 7));
|
| + y = y - 0.5 * z;
|
|
|
| done:
|
| - /* Multiply log of fraction by log2(e)
|
| - * and base 2 exponent by 1
|
| - *
|
| - * ***CAUTION***
|
| - *
|
| - * This sequence of operations is critical and it may
|
| - * be horribly defeated by some compiler optimizers.
|
| - */
|
| - z = y * LOG2EA;
|
| - z += x * LOG2EA;
|
| - z += y;
|
| - z += x;
|
| - z += e;
|
| - return z;
|
| + /* Multiply log of fraction by log2(e)
|
| + * and base 2 exponent by 1
|
| + *
|
| + * ***CAUTION***
|
| + *
|
| + * This sequence of operations is critical and it may
|
| + * be horribly defeated by some compiler optimizers.
|
| + */
|
| + z = y * LOG2EA;
|
| + z += x * LOG2EA;
|
| + z += y;
|
| + z += x;
|
| + z += e;
|
| + return z;
|
| }
|
| #elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384
|
| // TODO: broken implementation to make things compile
|
| -long double log2l(long double x)
|
| -{
|
| - return log2(x);
|
| +long double log2l(long double x) {
|
| + return log2(x);
|
| }
|
| #endif
|
|
|