Index: fusl/src/math/log2l.c |
diff --git a/fusl/src/math/log2l.c b/fusl/src/math/log2l.c |
index 722b451a026ae2ccd1b70381c4a87b7936ddb3c2..5041251b60004cac752c564c9c392cb6ea28d4f2 100644 |
--- a/fusl/src/math/log2l.c |
+++ b/fusl/src/math/log2l.c |
@@ -55,9 +55,8 @@ |
#include "libm.h" |
#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024 |
-long double log2l(long double x) |
-{ |
- return log2(x); |
+long double log2l(long double x) { |
+ return log2(x); |
} |
#elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384 |
/* Coefficients for ln(1+x) = x - x**2/2 + x**3 P(x)/Q(x) |
@@ -65,23 +64,17 @@ long double log2l(long double x) |
* Theoretical peak relative error = 6.2e-22 |
*/ |
static const long double P[] = { |
- 4.9962495940332550844739E-1L, |
- 1.0767376367209449010438E1L, |
- 7.7671073698359539859595E1L, |
- 2.5620629828144409632571E2L, |
- 4.2401812743503691187826E2L, |
- 3.4258224542413922935104E2L, |
- 1.0747524399916215149070E2L, |
+ 4.9962495940332550844739E-1L, 1.0767376367209449010438E1L, |
+ 7.7671073698359539859595E1L, 2.5620629828144409632571E2L, |
+ 4.2401812743503691187826E2L, 3.4258224542413922935104E2L, |
+ 1.0747524399916215149070E2L, |
}; |
static const long double Q[] = { |
-/* 1.0000000000000000000000E0,*/ |
- 2.3479774160285863271658E1L, |
- 1.9444210022760132894510E2L, |
- 7.7952888181207260646090E2L, |
- 1.6911722418503949084863E3L, |
- 2.0307734695595183428202E3L, |
- 1.2695660352705325274404E3L, |
- 3.2242573199748645407652E2L, |
+ /* 1.0000000000000000000000E0,*/ |
+ 2.3479774160285863271658E1L, 1.9444210022760132894510E2L, |
+ 7.7952888181207260646090E2L, 1.6911722418503949084863E3L, |
+ 2.0307734695595183428202E3L, 1.2695660352705325274404E3L, |
+ 3.2242573199748645407652E2L, |
}; |
/* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2), |
@@ -90,93 +83,88 @@ static const long double Q[] = { |
* Theoretical peak relative error = 6.16e-22 |
*/ |
static const long double R[4] = { |
- 1.9757429581415468984296E-3L, |
--7.1990767473014147232598E-1L, |
- 1.0777257190312272158094E1L, |
--3.5717684488096787370998E1L, |
+ 1.9757429581415468984296E-3L, -7.1990767473014147232598E-1L, |
+ 1.0777257190312272158094E1L, -3.5717684488096787370998E1L, |
}; |
static const long double S[4] = { |
-/* 1.00000000000000000000E0L,*/ |
--2.6201045551331104417768E1L, |
- 1.9361891836232102174846E2L, |
--4.2861221385716144629696E2L, |
+ /* 1.00000000000000000000E0L,*/ |
+ -2.6201045551331104417768E1L, 1.9361891836232102174846E2L, |
+ -4.2861221385716144629696E2L, |
}; |
/* log2(e) - 1 */ |
#define LOG2EA 4.4269504088896340735992e-1L |
#define SQRTH 0.70710678118654752440L |
-long double log2l(long double x) |
-{ |
- long double y, z; |
- int e; |
+long double log2l(long double x) { |
+ long double y, z; |
+ int e; |
- if (isnan(x)) |
- return x; |
- if (x == INFINITY) |
- return x; |
- if (x <= 0.0) { |
- if (x == 0.0) |
- return -1/(x*x); /* -inf with divbyzero */ |
- return 0/0.0f; /* nan with invalid */ |
- } |
+ if (isnan(x)) |
+ return x; |
+ if (x == INFINITY) |
+ return x; |
+ if (x <= 0.0) { |
+ if (x == 0.0) |
+ return -1 / (x * x); /* -inf with divbyzero */ |
+ return 0 / 0.0f; /* nan with invalid */ |
+ } |
- /* separate mantissa from exponent */ |
- /* Note, frexp is used so that denormal numbers |
- * will be handled properly. |
- */ |
- x = frexpl(x, &e); |
+ /* separate mantissa from exponent */ |
+ /* Note, frexp is used so that denormal numbers |
+ * will be handled properly. |
+ */ |
+ x = frexpl(x, &e); |
- /* logarithm using log(x) = z + z**3 P(z)/Q(z), |
- * where z = 2(x-1)/x+1) |
- */ |
- if (e > 2 || e < -2) { |
- if (x < SQRTH) { /* 2(2x-1)/(2x+1) */ |
- e -= 1; |
- z = x - 0.5; |
- y = 0.5 * z + 0.5; |
- } else { /* 2 (x-1)/(x+1) */ |
- z = x - 0.5; |
- z -= 0.5; |
- y = 0.5 * x + 0.5; |
- } |
- x = z / y; |
- z = x*x; |
- y = x * (z * __polevll(z, R, 3) / __p1evll(z, S, 3)); |
- goto done; |
- } |
+ /* logarithm using log(x) = z + z**3 P(z)/Q(z), |
+ * where z = 2(x-1)/x+1) |
+ */ |
+ if (e > 2 || e < -2) { |
+ if (x < SQRTH) { /* 2(2x-1)/(2x+1) */ |
+ e -= 1; |
+ z = x - 0.5; |
+ y = 0.5 * z + 0.5; |
+ } else { /* 2 (x-1)/(x+1) */ |
+ z = x - 0.5; |
+ z -= 0.5; |
+ y = 0.5 * x + 0.5; |
+ } |
+ x = z / y; |
+ z = x * x; |
+ y = x * (z * __polevll(z, R, 3) / __p1evll(z, S, 3)); |
+ goto done; |
+ } |
- /* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */ |
- if (x < SQRTH) { |
- e -= 1; |
- x = 2.0*x - 1.0; |
- } else { |
- x = x - 1.0; |
- } |
- z = x*x; |
- y = x * (z * __polevll(x, P, 6) / __p1evll(x, Q, 7)); |
- y = y - 0.5*z; |
+ /* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */ |
+ if (x < SQRTH) { |
+ e -= 1; |
+ x = 2.0 * x - 1.0; |
+ } else { |
+ x = x - 1.0; |
+ } |
+ z = x * x; |
+ y = x * (z * __polevll(x, P, 6) / __p1evll(x, Q, 7)); |
+ y = y - 0.5 * z; |
done: |
- /* Multiply log of fraction by log2(e) |
- * and base 2 exponent by 1 |
- * |
- * ***CAUTION*** |
- * |
- * This sequence of operations is critical and it may |
- * be horribly defeated by some compiler optimizers. |
- */ |
- z = y * LOG2EA; |
- z += x * LOG2EA; |
- z += y; |
- z += x; |
- z += e; |
- return z; |
+ /* Multiply log of fraction by log2(e) |
+ * and base 2 exponent by 1 |
+ * |
+ * ***CAUTION*** |
+ * |
+ * This sequence of operations is critical and it may |
+ * be horribly defeated by some compiler optimizers. |
+ */ |
+ z = y * LOG2EA; |
+ z += x * LOG2EA; |
+ z += y; |
+ z += x; |
+ z += e; |
+ return z; |
} |
#elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384 |
// TODO: broken implementation to make things compile |
-long double log2l(long double x) |
-{ |
- return log2(x); |
+long double log2l(long double x) { |
+ return log2(x); |
} |
#endif |