| Index: fusl/src/math/powl.c
|
| diff --git a/fusl/src/math/powl.c b/fusl/src/math/powl.c
|
| index 5b6da07b2efcce53795ec80da4a787208a2cb733..d7737b01b1b50ee60200244153a74d29706dd004 100644
|
| --- a/fusl/src/math/powl.c
|
| +++ b/fusl/src/math/powl.c
|
| @@ -70,9 +70,8 @@
|
| #include "libm.h"
|
|
|
| #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
|
| -long double powl(long double x, long double y)
|
| -{
|
| - return pow(x, y);
|
| +long double powl(long double x, long double y) {
|
| + return pow(x, y);
|
| }
|
| #elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
|
|
|
| @@ -83,91 +82,61 @@ long double powl(long double x, long double y)
|
| * on the domain 2^(-1/32) - 1 <= x <= 2^(1/32) - 1
|
| */
|
| static const long double P[] = {
|
| - 8.3319510773868690346226E-4L,
|
| - 4.9000050881978028599627E-1L,
|
| - 1.7500123722550302671919E0L,
|
| - 1.4000100839971580279335E0L,
|
| + 8.3319510773868690346226E-4L, 4.9000050881978028599627E-1L,
|
| + 1.7500123722550302671919E0L, 1.4000100839971580279335E0L,
|
| };
|
| static const long double Q[] = {
|
| -/* 1.0000000000000000000000E0L,*/
|
| - 5.2500282295834889175431E0L,
|
| - 8.4000598057587009834666E0L,
|
| - 4.2000302519914740834728E0L,
|
| + /* 1.0000000000000000000000E0L,*/
|
| + 5.2500282295834889175431E0L, 8.4000598057587009834666E0L,
|
| + 4.2000302519914740834728E0L,
|
| };
|
| /* A[i] = 2^(-i/32), rounded to IEEE long double precision.
|
| * If i is even, A[i] + B[i/2] gives additional accuracy.
|
| */
|
| static const long double A[33] = {
|
| - 1.0000000000000000000000E0L,
|
| - 9.7857206208770013448287E-1L,
|
| - 9.5760328069857364691013E-1L,
|
| - 9.3708381705514995065011E-1L,
|
| - 9.1700404320467123175367E-1L,
|
| - 8.9735453750155359320742E-1L,
|
| - 8.7812608018664974155474E-1L,
|
| - 8.5930964906123895780165E-1L,
|
| - 8.4089641525371454301892E-1L,
|
| - 8.2287773907698242225554E-1L,
|
| - 8.0524516597462715409607E-1L,
|
| - 7.8799042255394324325455E-1L,
|
| - 7.7110541270397041179298E-1L,
|
| - 7.5458221379671136985669E-1L,
|
| - 7.3841307296974965571198E-1L,
|
| - 7.2259040348852331001267E-1L,
|
| - 7.0710678118654752438189E-1L,
|
| - 6.9195494098191597746178E-1L,
|
| - 6.7712777346844636413344E-1L,
|
| - 6.6261832157987064729696E-1L,
|
| - 6.4841977732550483296079E-1L,
|
| - 6.3452547859586661129850E-1L,
|
| - 6.2092890603674202431705E-1L,
|
| - 6.0762367999023443907803E-1L,
|
| - 5.9460355750136053334378E-1L,
|
| - 5.8186242938878875689693E-1L,
|
| - 5.6939431737834582684856E-1L,
|
| - 5.5719337129794626814472E-1L,
|
| - 5.4525386633262882960438E-1L,
|
| - 5.3357020033841180906486E-1L,
|
| - 5.2213689121370692017331E-1L,
|
| - 5.1094857432705833910408E-1L,
|
| - 5.0000000000000000000000E-1L,
|
| + 1.0000000000000000000000E0L, 9.7857206208770013448287E-1L,
|
| + 9.5760328069857364691013E-1L, 9.3708381705514995065011E-1L,
|
| + 9.1700404320467123175367E-1L, 8.9735453750155359320742E-1L,
|
| + 8.7812608018664974155474E-1L, 8.5930964906123895780165E-1L,
|
| + 8.4089641525371454301892E-1L, 8.2287773907698242225554E-1L,
|
| + 8.0524516597462715409607E-1L, 7.8799042255394324325455E-1L,
|
| + 7.7110541270397041179298E-1L, 7.5458221379671136985669E-1L,
|
| + 7.3841307296974965571198E-1L, 7.2259040348852331001267E-1L,
|
| + 7.0710678118654752438189E-1L, 6.9195494098191597746178E-1L,
|
| + 6.7712777346844636413344E-1L, 6.6261832157987064729696E-1L,
|
| + 6.4841977732550483296079E-1L, 6.3452547859586661129850E-1L,
|
| + 6.2092890603674202431705E-1L, 6.0762367999023443907803E-1L,
|
| + 5.9460355750136053334378E-1L, 5.8186242938878875689693E-1L,
|
| + 5.6939431737834582684856E-1L, 5.5719337129794626814472E-1L,
|
| + 5.4525386633262882960438E-1L, 5.3357020033841180906486E-1L,
|
| + 5.2213689121370692017331E-1L, 5.1094857432705833910408E-1L,
|
| + 5.0000000000000000000000E-1L,
|
| };
|
| static const long double B[17] = {
|
| - 0.0000000000000000000000E0L,
|
| - 2.6176170809902549338711E-20L,
|
| --1.0126791927256478897086E-20L,
|
| - 1.3438228172316276937655E-21L,
|
| - 1.2207982955417546912101E-20L,
|
| --6.3084814358060867200133E-21L,
|
| - 1.3164426894366316434230E-20L,
|
| --1.8527916071632873716786E-20L,
|
| - 1.8950325588932570796551E-20L,
|
| - 1.5564775779538780478155E-20L,
|
| - 6.0859793637556860974380E-21L,
|
| --2.0208749253662532228949E-20L,
|
| - 1.4966292219224761844552E-20L,
|
| - 3.3540909728056476875639E-21L,
|
| --8.6987564101742849540743E-22L,
|
| --1.2327176863327626135542E-20L,
|
| - 0.0000000000000000000000E0L,
|
| + 0.0000000000000000000000E0L, 2.6176170809902549338711E-20L,
|
| + -1.0126791927256478897086E-20L, 1.3438228172316276937655E-21L,
|
| + 1.2207982955417546912101E-20L, -6.3084814358060867200133E-21L,
|
| + 1.3164426894366316434230E-20L, -1.8527916071632873716786E-20L,
|
| + 1.8950325588932570796551E-20L, 1.5564775779538780478155E-20L,
|
| + 6.0859793637556860974380E-21L, -2.0208749253662532228949E-20L,
|
| + 1.4966292219224761844552E-20L, 3.3540909728056476875639E-21L,
|
| + -8.6987564101742849540743E-22L, -1.2327176863327626135542E-20L,
|
| + 0.0000000000000000000000E0L,
|
| };
|
|
|
| /* 2^x = 1 + x P(x),
|
| * on the interval -1/32 <= x <= 0
|
| */
|
| static const long double R[] = {
|
| - 1.5089970579127659901157E-5L,
|
| - 1.5402715328927013076125E-4L,
|
| - 1.3333556028915671091390E-3L,
|
| - 9.6181291046036762031786E-3L,
|
| - 5.5504108664798463044015E-2L,
|
| - 2.4022650695910062854352E-1L,
|
| - 6.9314718055994530931447E-1L,
|
| + 1.5089970579127659901157E-5L, 1.5402715328927013076125E-4L,
|
| + 1.3333556028915671091390E-3L, 9.6181291046036762031786E-3L,
|
| + 5.5504108664798463044015E-2L, 2.4022650695910062854352E-1L,
|
| + 6.9314718055994530931447E-1L,
|
| };
|
|
|
| -#define MEXP (NXT*16384.0L)
|
| +#define MEXP (NXT * 16384.0L)
|
| /* The following if denormal numbers are supported, else -MEXP: */
|
| -#define MNEXP (-NXT*(16384.0L+64.0L))
|
| +#define MNEXP (-NXT * (16384.0L + 64.0L))
|
| /* log2(e) - 1 */
|
| #define LOG2EA 0.44269504088896340735992L
|
|
|
| @@ -191,231 +160,228 @@ static const volatile long double twom10000 = 0x1p-10000L;
|
| static long double reducl(long double);
|
| static long double powil(long double, int);
|
|
|
| -long double powl(long double x, long double y)
|
| -{
|
| - /* double F, Fa, Fb, G, Ga, Gb, H, Ha, Hb */
|
| - int i, nflg, iyflg, yoddint;
|
| - long e;
|
| - volatile long double z=0;
|
| - long double w=0, W=0, Wa=0, Wb=0, ya=0, yb=0, u=0;
|
| -
|
| - /* make sure no invalid exception is raised by nan comparision */
|
| - if (isnan(x)) {
|
| - if (!isnan(y) && y == 0.0)
|
| - return 1.0;
|
| - return x;
|
| - }
|
| - if (isnan(y)) {
|
| - if (x == 1.0)
|
| - return 1.0;
|
| - return y;
|
| - }
|
| - if (x == 1.0)
|
| - return 1.0; /* 1**y = 1, even if y is nan */
|
| - if (x == -1.0 && !isfinite(y))
|
| - return 1.0; /* -1**inf = 1 */
|
| - if (y == 0.0)
|
| - return 1.0; /* x**0 = 1, even if x is nan */
|
| - if (y == 1.0)
|
| - return x;
|
| - if (y >= LDBL_MAX) {
|
| - if (x > 1.0 || x < -1.0)
|
| - return INFINITY;
|
| - if (x != 0.0)
|
| - return 0.0;
|
| - }
|
| - if (y <= -LDBL_MAX) {
|
| - if (x > 1.0 || x < -1.0)
|
| - return 0.0;
|
| - if (x != 0.0 || y == -INFINITY)
|
| - return INFINITY;
|
| - }
|
| - if (x >= LDBL_MAX) {
|
| - if (y > 0.0)
|
| - return INFINITY;
|
| - return 0.0;
|
| - }
|
| -
|
| - w = floorl(y);
|
| -
|
| - /* Set iyflg to 1 if y is an integer. */
|
| - iyflg = 0;
|
| - if (w == y)
|
| - iyflg = 1;
|
| -
|
| - /* Test for odd integer y. */
|
| - yoddint = 0;
|
| - if (iyflg) {
|
| - ya = fabsl(y);
|
| - ya = floorl(0.5 * ya);
|
| - yb = 0.5 * fabsl(w);
|
| - if( ya != yb )
|
| - yoddint = 1;
|
| - }
|
| -
|
| - if (x <= -LDBL_MAX) {
|
| - if (y > 0.0) {
|
| - if (yoddint)
|
| - return -INFINITY;
|
| - return INFINITY;
|
| - }
|
| - if (y < 0.0) {
|
| - if (yoddint)
|
| - return -0.0;
|
| - return 0.0;
|
| - }
|
| - }
|
| - nflg = 0; /* (x<0)**(odd int) */
|
| - if (x <= 0.0) {
|
| - if (x == 0.0) {
|
| - if (y < 0.0) {
|
| - if (signbit(x) && yoddint)
|
| - /* (-0.0)**(-odd int) = -inf, divbyzero */
|
| - return -1.0/0.0;
|
| - /* (+-0.0)**(negative) = inf, divbyzero */
|
| - return 1.0/0.0;
|
| - }
|
| - if (signbit(x) && yoddint)
|
| - return -0.0;
|
| - return 0.0;
|
| - }
|
| - if (iyflg == 0)
|
| - return (x - x) / (x - x); /* (x<0)**(non-int) is NaN */
|
| - /* (x<0)**(integer) */
|
| - if (yoddint)
|
| - nflg = 1; /* negate result */
|
| - x = -x;
|
| - }
|
| - /* (+integer)**(integer) */
|
| - if (iyflg && floorl(x) == x && fabsl(y) < 32768.0) {
|
| - w = powil(x, (int)y);
|
| - return nflg ? -w : w;
|
| - }
|
| -
|
| - /* separate significand from exponent */
|
| - x = frexpl(x, &i);
|
| - e = i;
|
| -
|
| - /* find significand in antilog table A[] */
|
| - i = 1;
|
| - if (x <= A[17])
|
| - i = 17;
|
| - if (x <= A[i+8])
|
| - i += 8;
|
| - if (x <= A[i+4])
|
| - i += 4;
|
| - if (x <= A[i+2])
|
| - i += 2;
|
| - if (x >= A[1])
|
| - i = -1;
|
| - i += 1;
|
| -
|
| - /* Find (x - A[i])/A[i]
|
| - * in order to compute log(x/A[i]):
|
| - *
|
| - * log(x) = log( a x/a ) = log(a) + log(x/a)
|
| - *
|
| - * log(x/a) = log(1+v), v = x/a - 1 = (x-a)/a
|
| - */
|
| - x -= A[i];
|
| - x -= B[i/2];
|
| - x /= A[i];
|
| -
|
| - /* rational approximation for log(1+v):
|
| - *
|
| - * log(1+v) = v - v**2/2 + v**3 P(v) / Q(v)
|
| - */
|
| - z = x*x;
|
| - w = x * (z * __polevll(x, P, 3) / __p1evll(x, Q, 3));
|
| - w = w - 0.5*z;
|
| -
|
| - /* Convert to base 2 logarithm:
|
| - * multiply by log2(e) = 1 + LOG2EA
|
| - */
|
| - z = LOG2EA * w;
|
| - z += w;
|
| - z += LOG2EA * x;
|
| - z += x;
|
| -
|
| - /* Compute exponent term of the base 2 logarithm. */
|
| - w = -i;
|
| - w /= NXT;
|
| - w += e;
|
| - /* Now base 2 log of x is w + z. */
|
| -
|
| - /* Multiply base 2 log by y, in extended precision. */
|
| -
|
| - /* separate y into large part ya
|
| - * and small part yb less than 1/NXT
|
| - */
|
| - ya = reducl(y);
|
| - yb = y - ya;
|
| -
|
| - /* (w+z)(ya+yb)
|
| - * = w*ya + w*yb + z*y
|
| - */
|
| - F = z * y + w * yb;
|
| - Fa = reducl(F);
|
| - Fb = F - Fa;
|
| -
|
| - G = Fa + w * ya;
|
| - Ga = reducl(G);
|
| - Gb = G - Ga;
|
| -
|
| - H = Fb + Gb;
|
| - Ha = reducl(H);
|
| - w = (Ga + Ha) * NXT;
|
| -
|
| - /* Test the power of 2 for overflow */
|
| - if (w > MEXP)
|
| - return huge * huge; /* overflow */
|
| - if (w < MNEXP)
|
| - return twom10000 * twom10000; /* underflow */
|
| -
|
| - e = w;
|
| - Hb = H - Ha;
|
| -
|
| - if (Hb > 0.0) {
|
| - e += 1;
|
| - Hb -= 1.0/NXT; /*0.0625L;*/
|
| - }
|
| -
|
| - /* Now the product y * log2(x) = Hb + e/NXT.
|
| - *
|
| - * Compute base 2 exponential of Hb,
|
| - * where -0.0625 <= Hb <= 0.
|
| - */
|
| - z = Hb * __polevll(Hb, R, 6); /* z = 2**Hb - 1 */
|
| -
|
| - /* Express e/NXT as an integer plus a negative number of (1/NXT)ths.
|
| - * Find lookup table entry for the fractional power of 2.
|
| - */
|
| - if (e < 0)
|
| - i = 0;
|
| - else
|
| - i = 1;
|
| - i = e/NXT + i;
|
| - e = NXT*i - e;
|
| - w = A[e];
|
| - z = w * z; /* 2**-e * ( 1 + (2**Hb-1) ) */
|
| - z = z + w;
|
| - z = scalbnl(z, i); /* multiply by integer power of 2 */
|
| -
|
| - if (nflg)
|
| - z = -z;
|
| - return z;
|
| +long double powl(long double x, long double y) {
|
| + /* double F, Fa, Fb, G, Ga, Gb, H, Ha, Hb */
|
| + int i, nflg, iyflg, yoddint;
|
| + long e;
|
| + volatile long double z = 0;
|
| + long double w = 0, W = 0, Wa = 0, Wb = 0, ya = 0, yb = 0, u = 0;
|
| +
|
| + /* make sure no invalid exception is raised by nan comparision */
|
| + if (isnan(x)) {
|
| + if (!isnan(y) && y == 0.0)
|
| + return 1.0;
|
| + return x;
|
| + }
|
| + if (isnan(y)) {
|
| + if (x == 1.0)
|
| + return 1.0;
|
| + return y;
|
| + }
|
| + if (x == 1.0)
|
| + return 1.0; /* 1**y = 1, even if y is nan */
|
| + if (x == -1.0 && !isfinite(y))
|
| + return 1.0; /* -1**inf = 1 */
|
| + if (y == 0.0)
|
| + return 1.0; /* x**0 = 1, even if x is nan */
|
| + if (y == 1.0)
|
| + return x;
|
| + if (y >= LDBL_MAX) {
|
| + if (x > 1.0 || x < -1.0)
|
| + return INFINITY;
|
| + if (x != 0.0)
|
| + return 0.0;
|
| + }
|
| + if (y <= -LDBL_MAX) {
|
| + if (x > 1.0 || x < -1.0)
|
| + return 0.0;
|
| + if (x != 0.0 || y == -INFINITY)
|
| + return INFINITY;
|
| + }
|
| + if (x >= LDBL_MAX) {
|
| + if (y > 0.0)
|
| + return INFINITY;
|
| + return 0.0;
|
| + }
|
| +
|
| + w = floorl(y);
|
| +
|
| + /* Set iyflg to 1 if y is an integer. */
|
| + iyflg = 0;
|
| + if (w == y)
|
| + iyflg = 1;
|
| +
|
| + /* Test for odd integer y. */
|
| + yoddint = 0;
|
| + if (iyflg) {
|
| + ya = fabsl(y);
|
| + ya = floorl(0.5 * ya);
|
| + yb = 0.5 * fabsl(w);
|
| + if (ya != yb)
|
| + yoddint = 1;
|
| + }
|
| +
|
| + if (x <= -LDBL_MAX) {
|
| + if (y > 0.0) {
|
| + if (yoddint)
|
| + return -INFINITY;
|
| + return INFINITY;
|
| + }
|
| + if (y < 0.0) {
|
| + if (yoddint)
|
| + return -0.0;
|
| + return 0.0;
|
| + }
|
| + }
|
| + nflg = 0; /* (x<0)**(odd int) */
|
| + if (x <= 0.0) {
|
| + if (x == 0.0) {
|
| + if (y < 0.0) {
|
| + if (signbit(x) && yoddint)
|
| + /* (-0.0)**(-odd int) = -inf, divbyzero */
|
| + return -1.0 / 0.0;
|
| + /* (+-0.0)**(negative) = inf, divbyzero */
|
| + return 1.0 / 0.0;
|
| + }
|
| + if (signbit(x) && yoddint)
|
| + return -0.0;
|
| + return 0.0;
|
| + }
|
| + if (iyflg == 0)
|
| + return (x - x) / (x - x); /* (x<0)**(non-int) is NaN */
|
| + /* (x<0)**(integer) */
|
| + if (yoddint)
|
| + nflg = 1; /* negate result */
|
| + x = -x;
|
| + }
|
| + /* (+integer)**(integer) */
|
| + if (iyflg && floorl(x) == x && fabsl(y) < 32768.0) {
|
| + w = powil(x, (int)y);
|
| + return nflg ? -w : w;
|
| + }
|
| +
|
| + /* separate significand from exponent */
|
| + x = frexpl(x, &i);
|
| + e = i;
|
| +
|
| + /* find significand in antilog table A[] */
|
| + i = 1;
|
| + if (x <= A[17])
|
| + i = 17;
|
| + if (x <= A[i + 8])
|
| + i += 8;
|
| + if (x <= A[i + 4])
|
| + i += 4;
|
| + if (x <= A[i + 2])
|
| + i += 2;
|
| + if (x >= A[1])
|
| + i = -1;
|
| + i += 1;
|
| +
|
| + /* Find (x - A[i])/A[i]
|
| + * in order to compute log(x/A[i]):
|
| + *
|
| + * log(x) = log( a x/a ) = log(a) + log(x/a)
|
| + *
|
| + * log(x/a) = log(1+v), v = x/a - 1 = (x-a)/a
|
| + */
|
| + x -= A[i];
|
| + x -= B[i / 2];
|
| + x /= A[i];
|
| +
|
| + /* rational approximation for log(1+v):
|
| + *
|
| + * log(1+v) = v - v**2/2 + v**3 P(v) / Q(v)
|
| + */
|
| + z = x * x;
|
| + w = x * (z * __polevll(x, P, 3) / __p1evll(x, Q, 3));
|
| + w = w - 0.5 * z;
|
| +
|
| + /* Convert to base 2 logarithm:
|
| + * multiply by log2(e) = 1 + LOG2EA
|
| + */
|
| + z = LOG2EA * w;
|
| + z += w;
|
| + z += LOG2EA * x;
|
| + z += x;
|
| +
|
| + /* Compute exponent term of the base 2 logarithm. */
|
| + w = -i;
|
| + w /= NXT;
|
| + w += e;
|
| + /* Now base 2 log of x is w + z. */
|
| +
|
| + /* Multiply base 2 log by y, in extended precision. */
|
| +
|
| + /* separate y into large part ya
|
| + * and small part yb less than 1/NXT
|
| + */
|
| + ya = reducl(y);
|
| + yb = y - ya;
|
| +
|
| + /* (w+z)(ya+yb)
|
| + * = w*ya + w*yb + z*y
|
| + */
|
| + F = z * y + w * yb;
|
| + Fa = reducl(F);
|
| + Fb = F - Fa;
|
| +
|
| + G = Fa + w * ya;
|
| + Ga = reducl(G);
|
| + Gb = G - Ga;
|
| +
|
| + H = Fb + Gb;
|
| + Ha = reducl(H);
|
| + w = (Ga + Ha) * NXT;
|
| +
|
| + /* Test the power of 2 for overflow */
|
| + if (w > MEXP)
|
| + return huge * huge; /* overflow */
|
| + if (w < MNEXP)
|
| + return twom10000 * twom10000; /* underflow */
|
| +
|
| + e = w;
|
| + Hb = H - Ha;
|
| +
|
| + if (Hb > 0.0) {
|
| + e += 1;
|
| + Hb -= 1.0 / NXT; /*0.0625L;*/
|
| + }
|
| +
|
| + /* Now the product y * log2(x) = Hb + e/NXT.
|
| + *
|
| + * Compute base 2 exponential of Hb,
|
| + * where -0.0625 <= Hb <= 0.
|
| + */
|
| + z = Hb * __polevll(Hb, R, 6); /* z = 2**Hb - 1 */
|
| +
|
| + /* Express e/NXT as an integer plus a negative number of (1/NXT)ths.
|
| + * Find lookup table entry for the fractional power of 2.
|
| + */
|
| + if (e < 0)
|
| + i = 0;
|
| + else
|
| + i = 1;
|
| + i = e / NXT + i;
|
| + e = NXT * i - e;
|
| + w = A[e];
|
| + z = w * z; /* 2**-e * ( 1 + (2**Hb-1) ) */
|
| + z = z + w;
|
| + z = scalbnl(z, i); /* multiply by integer power of 2 */
|
| +
|
| + if (nflg)
|
| + z = -z;
|
| + return z;
|
| }
|
|
|
| -
|
| /* Find a multiple of 1/NXT that is within 1/NXT of x. */
|
| -static long double reducl(long double x)
|
| -{
|
| - long double t;
|
| -
|
| - t = x * NXT;
|
| - t = floorl(t);
|
| - t = t / NXT;
|
| - return t;
|
| +static long double reducl(long double x) {
|
| + long double t;
|
| +
|
| + t = x * NXT;
|
| + t = floorl(t);
|
| + t = t / NXT;
|
| + return t;
|
| }
|
|
|
| /*
|
| @@ -450,73 +416,71 @@ static long double reducl(long double x)
|
| * Returns MAXNUM on overflow, zero on underflow.
|
| */
|
|
|
| -static long double powil(long double x, int nn)
|
| -{
|
| - long double ww, y;
|
| - long double s;
|
| - int n, e, sign, lx;
|
| -
|
| - if (nn == 0)
|
| - return 1.0;
|
| -
|
| - if (nn < 0) {
|
| - sign = -1;
|
| - n = -nn;
|
| - } else {
|
| - sign = 1;
|
| - n = nn;
|
| - }
|
| -
|
| - /* Overflow detection */
|
| -
|
| - /* Calculate approximate logarithm of answer */
|
| - s = x;
|
| - s = frexpl( s, &lx);
|
| - e = (lx - 1)*n;
|
| - if ((e == 0) || (e > 64) || (e < -64)) {
|
| - s = (s - 7.0710678118654752e-1L) / (s + 7.0710678118654752e-1L);
|
| - s = (2.9142135623730950L * s - 0.5 + lx) * nn * LOGE2L;
|
| - } else {
|
| - s = LOGE2L * e;
|
| - }
|
| -
|
| - if (s > MAXLOGL)
|
| - return huge * huge; /* overflow */
|
| -
|
| - if (s < MINLOGL)
|
| - return twom10000 * twom10000; /* underflow */
|
| - /* Handle tiny denormal answer, but with less accuracy
|
| - * since roundoff error in 1.0/x will be amplified.
|
| - * The precise demarcation should be the gradual underflow threshold.
|
| - */
|
| - if (s < -MAXLOGL+2.0) {
|
| - x = 1.0/x;
|
| - sign = -sign;
|
| - }
|
| -
|
| - /* First bit of the power */
|
| - if (n & 1)
|
| - y = x;
|
| - else
|
| - y = 1.0;
|
| -
|
| - ww = x;
|
| - n >>= 1;
|
| - while (n) {
|
| - ww = ww * ww; /* arg to the 2-to-the-kth power */
|
| - if (n & 1) /* if that bit is set, then include in product */
|
| - y *= ww;
|
| - n >>= 1;
|
| - }
|
| -
|
| - if (sign < 0)
|
| - y = 1.0/y;
|
| - return y;
|
| +static long double powil(long double x, int nn) {
|
| + long double ww, y;
|
| + long double s;
|
| + int n, e, sign, lx;
|
| +
|
| + if (nn == 0)
|
| + return 1.0;
|
| +
|
| + if (nn < 0) {
|
| + sign = -1;
|
| + n = -nn;
|
| + } else {
|
| + sign = 1;
|
| + n = nn;
|
| + }
|
| +
|
| + /* Overflow detection */
|
| +
|
| + /* Calculate approximate logarithm of answer */
|
| + s = x;
|
| + s = frexpl(s, &lx);
|
| + e = (lx - 1) * n;
|
| + if ((e == 0) || (e > 64) || (e < -64)) {
|
| + s = (s - 7.0710678118654752e-1L) / (s + 7.0710678118654752e-1L);
|
| + s = (2.9142135623730950L * s - 0.5 + lx) * nn * LOGE2L;
|
| + } else {
|
| + s = LOGE2L * e;
|
| + }
|
| +
|
| + if (s > MAXLOGL)
|
| + return huge * huge; /* overflow */
|
| +
|
| + if (s < MINLOGL)
|
| + return twom10000 * twom10000; /* underflow */
|
| + /* Handle tiny denormal answer, but with less accuracy
|
| + * since roundoff error in 1.0/x will be amplified.
|
| + * The precise demarcation should be the gradual underflow threshold.
|
| + */
|
| + if (s < -MAXLOGL + 2.0) {
|
| + x = 1.0 / x;
|
| + sign = -sign;
|
| + }
|
| +
|
| + /* First bit of the power */
|
| + if (n & 1)
|
| + y = x;
|
| + else
|
| + y = 1.0;
|
| +
|
| + ww = x;
|
| + n >>= 1;
|
| + while (n) {
|
| + ww = ww * ww; /* arg to the 2-to-the-kth power */
|
| + if (n & 1) /* if that bit is set, then include in product */
|
| + y *= ww;
|
| + n >>= 1;
|
| + }
|
| +
|
| + if (sign < 0)
|
| + y = 1.0 / y;
|
| + return y;
|
| }
|
| #elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384
|
| // TODO: broken implementation to make things compile
|
| -long double powl(long double x, long double y)
|
| -{
|
| - return pow(x, y);
|
| +long double powl(long double x, long double y) {
|
| + return pow(x, y);
|
| }
|
| #endif
|
|
|