Index: fusl/src/math/log1pl.c |
diff --git a/fusl/src/math/log1pl.c b/fusl/src/math/log1pl.c |
index 141b5f0b0c295a38d7ab1e1793bdbe2ec35fa2ae..2e070cb163da077db5f3c6b48c4d2ea70ed628a9 100644 |
--- a/fusl/src/math/log1pl.c |
+++ b/fusl/src/math/log1pl.c |
@@ -51,9 +51,8 @@ |
#include "libm.h" |
#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024 |
-long double log1pl(long double x) |
-{ |
- return log1p(x); |
+long double log1pl(long double x) { |
+ return log1p(x); |
} |
#elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384 |
/* Coefficients for log(1+x) = x - x^2 / 2 + x^3 P(x)/Q(x) |
@@ -61,22 +60,16 @@ long double log1pl(long double x) |
* Theoretical peak relative error = 2.32e-20 |
*/ |
static const long double P[] = { |
- 4.5270000862445199635215E-5L, |
- 4.9854102823193375972212E-1L, |
- 6.5787325942061044846969E0L, |
- 2.9911919328553073277375E1L, |
- 6.0949667980987787057556E1L, |
- 5.7112963590585538103336E1L, |
- 2.0039553499201281259648E1L, |
+ 4.5270000862445199635215E-5L, 4.9854102823193375972212E-1L, |
+ 6.5787325942061044846969E0L, 2.9911919328553073277375E1L, |
+ 6.0949667980987787057556E1L, 5.7112963590585538103336E1L, |
+ 2.0039553499201281259648E1L, |
}; |
static const long double Q[] = { |
-/* 1.0000000000000000000000E0,*/ |
- 1.5062909083469192043167E1L, |
- 8.3047565967967209469434E1L, |
- 2.2176239823732856465394E2L, |
- 3.0909872225312059774938E2L, |
- 2.1642788614495947685003E2L, |
- 6.0118660497603843919306E1L, |
+ /* 1.0000000000000000000000E0,*/ |
+ 1.5062909083469192043167E1L, 8.3047565967967209469434E1L, |
+ 2.2176239823732856465394E2L, 3.0909872225312059774938E2L, |
+ 2.1642788614495947685003E2L, 6.0118660497603843919306E1L, |
}; |
/* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2), |
@@ -85,93 +78,88 @@ static const long double Q[] = { |
* Theoretical peak relative error = 6.16e-22 |
*/ |
static const long double R[4] = { |
- 1.9757429581415468984296E-3L, |
--7.1990767473014147232598E-1L, |
- 1.0777257190312272158094E1L, |
--3.5717684488096787370998E1L, |
+ 1.9757429581415468984296E-3L, -7.1990767473014147232598E-1L, |
+ 1.0777257190312272158094E1L, -3.5717684488096787370998E1L, |
}; |
static const long double S[4] = { |
-/* 1.00000000000000000000E0L,*/ |
--2.6201045551331104417768E1L, |
- 1.9361891836232102174846E2L, |
--4.2861221385716144629696E2L, |
+ /* 1.00000000000000000000E0L,*/ |
+ -2.6201045551331104417768E1L, 1.9361891836232102174846E2L, |
+ -4.2861221385716144629696E2L, |
}; |
static const long double C1 = 6.9314575195312500000000E-1L; |
static const long double C2 = 1.4286068203094172321215E-6L; |
#define SQRTH 0.70710678118654752440L |
-long double log1pl(long double xm1) |
-{ |
- long double x, y, z; |
- int e; |
+long double log1pl(long double xm1) { |
+ long double x, y, z; |
+ int e; |
- if (isnan(xm1)) |
- return xm1; |
- if (xm1 == INFINITY) |
- return xm1; |
- if (xm1 == 0.0) |
- return xm1; |
+ if (isnan(xm1)) |
+ return xm1; |
+ if (xm1 == INFINITY) |
+ return xm1; |
+ if (xm1 == 0.0) |
+ return xm1; |
- x = xm1 + 1.0; |
+ x = xm1 + 1.0; |
- /* Test for domain errors. */ |
- if (x <= 0.0) { |
- if (x == 0.0) |
- return -1/(x*x); /* -inf with divbyzero */ |
- return 0/0.0f; /* nan with invalid */ |
- } |
+ /* Test for domain errors. */ |
+ if (x <= 0.0) { |
+ if (x == 0.0) |
+ return -1 / (x * x); /* -inf with divbyzero */ |
+ return 0 / 0.0f; /* nan with invalid */ |
+ } |
- /* Separate mantissa from exponent. |
- Use frexp so that denormal numbers will be handled properly. */ |
- x = frexpl(x, &e); |
+ /* Separate mantissa from exponent. |
+ Use frexp so that denormal numbers will be handled properly. */ |
+ x = frexpl(x, &e); |
- /* logarithm using log(x) = z + z^3 P(z)/Q(z), |
- where z = 2(x-1)/x+1) */ |
- if (e > 2 || e < -2) { |
- if (x < SQRTH) { /* 2(2x-1)/(2x+1) */ |
- e -= 1; |
- z = x - 0.5; |
- y = 0.5 * z + 0.5; |
- } else { /* 2 (x-1)/(x+1) */ |
- z = x - 0.5; |
- z -= 0.5; |
- y = 0.5 * x + 0.5; |
- } |
- x = z / y; |
- z = x*x; |
- z = x * (z * __polevll(z, R, 3) / __p1evll(z, S, 3)); |
- z = z + e * C2; |
- z = z + x; |
- z = z + e * C1; |
- return z; |
- } |
+ /* logarithm using log(x) = z + z^3 P(z)/Q(z), |
+ where z = 2(x-1)/x+1) */ |
+ if (e > 2 || e < -2) { |
+ if (x < SQRTH) { /* 2(2x-1)/(2x+1) */ |
+ e -= 1; |
+ z = x - 0.5; |
+ y = 0.5 * z + 0.5; |
+ } else { /* 2 (x-1)/(x+1) */ |
+ z = x - 0.5; |
+ z -= 0.5; |
+ y = 0.5 * x + 0.5; |
+ } |
+ x = z / y; |
+ z = x * x; |
+ z = x * (z * __polevll(z, R, 3) / __p1evll(z, S, 3)); |
+ z = z + e * C2; |
+ z = z + x; |
+ z = z + e * C1; |
+ return z; |
+ } |
- /* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */ |
- if (x < SQRTH) { |
- e -= 1; |
- if (e != 0) |
- x = 2.0 * x - 1.0; |
- else |
- x = xm1; |
- } else { |
- if (e != 0) |
- x = x - 1.0; |
- else |
- x = xm1; |
- } |
- z = x*x; |
- y = x * (z * __polevll(x, P, 6) / __p1evll(x, Q, 6)); |
- y = y + e * C2; |
- z = y - 0.5 * z; |
- z = z + x; |
- z = z + e * C1; |
- return z; |
+ /* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */ |
+ if (x < SQRTH) { |
+ e -= 1; |
+ if (e != 0) |
+ x = 2.0 * x - 1.0; |
+ else |
+ x = xm1; |
+ } else { |
+ if (e != 0) |
+ x = x - 1.0; |
+ else |
+ x = xm1; |
+ } |
+ z = x * x; |
+ y = x * (z * __polevll(x, P, 6) / __p1evll(x, Q, 6)); |
+ y = y + e * C2; |
+ z = y - 0.5 * z; |
+ z = z + x; |
+ z = z + e * C1; |
+ return z; |
} |
#elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384 |
// TODO: broken implementation to make things compile |
-long double log1pl(long double x) |
-{ |
- return log1p(x); |
+long double log1pl(long double x) { |
+ return log1p(x); |
} |
#endif |