| Index: fusl/src/math/expm1l.c
|
| diff --git a/fusl/src/math/expm1l.c b/fusl/src/math/expm1l.c
|
| index d17150785282f9ce2e566de629b0061cd8848207..c7149a82e70f375c2efe995ee64dbd8b896fc942 100644
|
| --- a/fusl/src/math/expm1l.c
|
| +++ b/fusl/src/math/expm1l.c
|
| @@ -50,74 +50,70 @@
|
| #include "libm.h"
|
|
|
| #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
|
| -long double expm1l(long double x)
|
| -{
|
| - return expm1(x);
|
| +long double expm1l(long double x) {
|
| + return expm1(x);
|
| }
|
| #elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
|
|
|
| /* exp(x) - 1 = x + 0.5 x^2 + x^3 P(x)/Q(x)
|
| -.5 ln 2 < x < .5 ln 2
|
| Theoretical peak relative error = 3.4e-22 */
|
| -static const long double
|
| -P0 = -1.586135578666346600772998894928250240826E4L,
|
| -P1 = 2.642771505685952966904660652518429479531E3L,
|
| -P2 = -3.423199068835684263987132888286791620673E2L,
|
| -P3 = 1.800826371455042224581246202420972737840E1L,
|
| -P4 = -5.238523121205561042771939008061958820811E-1L,
|
| -Q0 = -9.516813471998079611319047060563358064497E4L,
|
| -Q1 = 3.964866271411091674556850458227710004570E4L,
|
| -Q2 = -7.207678383830091850230366618190187434796E3L,
|
| -Q3 = 7.206038318724600171970199625081491823079E2L,
|
| -Q4 = -4.002027679107076077238836622982900945173E1L,
|
| -/* Q5 = 1.000000000000000000000000000000000000000E0 */
|
| -/* C1 + C2 = ln 2 */
|
| -C1 = 6.93145751953125E-1L,
|
| -C2 = 1.428606820309417232121458176568075500134E-6L,
|
| -/* ln 2^-65 */
|
| -minarg = -4.5054566736396445112120088E1L,
|
| -/* ln 2^16384 */
|
| -maxarg = 1.1356523406294143949492E4L;
|
| +static const long double P0 = -1.586135578666346600772998894928250240826E4L,
|
| + P1 = 2.642771505685952966904660652518429479531E3L,
|
| + P2 = -3.423199068835684263987132888286791620673E2L,
|
| + P3 = 1.800826371455042224581246202420972737840E1L,
|
| + P4 = -5.238523121205561042771939008061958820811E-1L,
|
| + Q0 = -9.516813471998079611319047060563358064497E4L,
|
| + Q1 = 3.964866271411091674556850458227710004570E4L,
|
| + Q2 = -7.207678383830091850230366618190187434796E3L,
|
| + Q3 = 7.206038318724600171970199625081491823079E2L,
|
| + Q4 = -4.002027679107076077238836622982900945173E1L,
|
| + /* Q5 = 1.000000000000000000000000000000000000000E0 */
|
| + /* C1 + C2 = ln 2 */
|
| + C1 = 6.93145751953125E-1L,
|
| + C2 = 1.428606820309417232121458176568075500134E-6L,
|
| + /* ln 2^-65 */
|
| + minarg = -4.5054566736396445112120088E1L,
|
| + /* ln 2^16384 */
|
| + maxarg = 1.1356523406294143949492E4L;
|
|
|
| -long double expm1l(long double x)
|
| -{
|
| - long double px, qx, xx;
|
| - int k;
|
| +long double expm1l(long double x) {
|
| + long double px, qx, xx;
|
| + int k;
|
|
|
| - if (isnan(x))
|
| - return x;
|
| - if (x > maxarg)
|
| - return x*0x1p16383L; /* overflow, unless x==inf */
|
| - if (x == 0.0)
|
| - return x;
|
| - if (x < minarg)
|
| - return -1.0;
|
| + if (isnan(x))
|
| + return x;
|
| + if (x > maxarg)
|
| + return x * 0x1p16383L; /* overflow, unless x==inf */
|
| + if (x == 0.0)
|
| + return x;
|
| + if (x < minarg)
|
| + return -1.0;
|
|
|
| - xx = C1 + C2;
|
| - /* Express x = ln 2 (k + remainder), remainder not exceeding 1/2. */
|
| - px = floorl(0.5 + x / xx);
|
| - k = px;
|
| - /* remainder times ln 2 */
|
| - x -= px * C1;
|
| - x -= px * C2;
|
| + xx = C1 + C2;
|
| + /* Express x = ln 2 (k + remainder), remainder not exceeding 1/2. */
|
| + px = floorl(0.5 + x / xx);
|
| + k = px;
|
| + /* remainder times ln 2 */
|
| + x -= px * C1;
|
| + x -= px * C2;
|
|
|
| - /* Approximate exp(remainder ln 2).*/
|
| - px = (((( P4 * x + P3) * x + P2) * x + P1) * x + P0) * x;
|
| - qx = (((( x + Q4) * x + Q3) * x + Q2) * x + Q1) * x + Q0;
|
| - xx = x * x;
|
| - qx = x + (0.5 * xx + xx * px / qx);
|
| + /* Approximate exp(remainder ln 2).*/
|
| + px = ((((P4 * x + P3) * x + P2) * x + P1) * x + P0) * x;
|
| + qx = ((((x + Q4) * x + Q3) * x + Q2) * x + Q1) * x + Q0;
|
| + xx = x * x;
|
| + qx = x + (0.5 * xx + xx * px / qx);
|
|
|
| - /* exp(x) = exp(k ln 2) exp(remainder ln 2) = 2^k exp(remainder ln 2).
|
| - We have qx = exp(remainder ln 2) - 1, so
|
| - exp(x) - 1 = 2^k (qx + 1) - 1 = 2^k qx + 2^k - 1. */
|
| - px = scalbnl(1.0, k);
|
| - x = px * qx + (px - 1.0);
|
| - return x;
|
| + /* exp(x) = exp(k ln 2) exp(remainder ln 2) = 2^k exp(remainder ln 2).
|
| + We have qx = exp(remainder ln 2) - 1, so
|
| + exp(x) - 1 = 2^k (qx + 1) - 1 = 2^k qx + 2^k - 1. */
|
| + px = scalbnl(1.0, k);
|
| + x = px * qx + (px - 1.0);
|
| + return x;
|
| }
|
| #elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384
|
| // TODO: broken implementation to make things compile
|
| -long double expm1l(long double x)
|
| -{
|
| - return expm1(x);
|
| +long double expm1l(long double x) {
|
| + return expm1(x);
|
| }
|
| #endif
|
|
|