| Index: fusl/src/math/logl.c
|
| diff --git a/fusl/src/math/logl.c b/fusl/src/math/logl.c
|
| index 5d5365929e62a351c4544bd9e6aace6e02834292..b01c9e6d12725decf62d7761d25a051626ad2f1f 100644
|
| --- a/fusl/src/math/logl.c
|
| +++ b/fusl/src/math/logl.c
|
| @@ -55,9 +55,8 @@
|
| #include "libm.h"
|
|
|
| #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
|
| -long double logl(long double x)
|
| -{
|
| - return log(x);
|
| +long double logl(long double x) {
|
| + return log(x);
|
| }
|
| #elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
|
| /* Coefficients for log(1+x) = x - x**2/2 + x**3 P(x)/Q(x)
|
| @@ -65,22 +64,16 @@ long double logl(long double x)
|
| * Theoretical peak relative error = 2.32e-20
|
| */
|
| static const long double P[] = {
|
| - 4.5270000862445199635215E-5L,
|
| - 4.9854102823193375972212E-1L,
|
| - 6.5787325942061044846969E0L,
|
| - 2.9911919328553073277375E1L,
|
| - 6.0949667980987787057556E1L,
|
| - 5.7112963590585538103336E1L,
|
| - 2.0039553499201281259648E1L,
|
| + 4.5270000862445199635215E-5L, 4.9854102823193375972212E-1L,
|
| + 6.5787325942061044846969E0L, 2.9911919328553073277375E1L,
|
| + 6.0949667980987787057556E1L, 5.7112963590585538103336E1L,
|
| + 2.0039553499201281259648E1L,
|
| };
|
| static const long double Q[] = {
|
| -/* 1.0000000000000000000000E0,*/
|
| - 1.5062909083469192043167E1L,
|
| - 8.3047565967967209469434E1L,
|
| - 2.2176239823732856465394E2L,
|
| - 3.0909872225312059774938E2L,
|
| - 2.1642788614495947685003E2L,
|
| - 6.0118660497603843919306E1L,
|
| + /* 1.0000000000000000000000E0,*/
|
| + 1.5062909083469192043167E1L, 8.3047565967967209469434E1L,
|
| + 2.2176239823732856465394E2L, 3.0909872225312059774938E2L,
|
| + 2.1642788614495947685003E2L, 6.0118660497603843919306E1L,
|
| };
|
|
|
| /* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2),
|
| @@ -89,87 +82,82 @@ static const long double Q[] = {
|
| * Theoretical peak relative error = 6.16e-22
|
| */
|
| static const long double R[4] = {
|
| - 1.9757429581415468984296E-3L,
|
| --7.1990767473014147232598E-1L,
|
| - 1.0777257190312272158094E1L,
|
| --3.5717684488096787370998E1L,
|
| + 1.9757429581415468984296E-3L, -7.1990767473014147232598E-1L,
|
| + 1.0777257190312272158094E1L, -3.5717684488096787370998E1L,
|
| };
|
| static const long double S[4] = {
|
| -/* 1.00000000000000000000E0L,*/
|
| --2.6201045551331104417768E1L,
|
| - 1.9361891836232102174846E2L,
|
| --4.2861221385716144629696E2L,
|
| + /* 1.00000000000000000000E0L,*/
|
| + -2.6201045551331104417768E1L, 1.9361891836232102174846E2L,
|
| + -4.2861221385716144629696E2L,
|
| };
|
| static const long double C1 = 6.9314575195312500000000E-1L;
|
| static const long double C2 = 1.4286068203094172321215E-6L;
|
|
|
| #define SQRTH 0.70710678118654752440L
|
|
|
| -long double logl(long double x)
|
| -{
|
| - long double y, z;
|
| - int e;
|
| +long double logl(long double x) {
|
| + long double y, z;
|
| + int e;
|
|
|
| - if (isnan(x))
|
| - return x;
|
| - if (x == INFINITY)
|
| - return x;
|
| - if (x <= 0.0) {
|
| - if (x == 0.0)
|
| - return -1/(x*x); /* -inf with divbyzero */
|
| - return 0/0.0f; /* nan with invalid */
|
| - }
|
| + if (isnan(x))
|
| + return x;
|
| + if (x == INFINITY)
|
| + return x;
|
| + if (x <= 0.0) {
|
| + if (x == 0.0)
|
| + return -1 / (x * x); /* -inf with divbyzero */
|
| + return 0 / 0.0f; /* nan with invalid */
|
| + }
|
|
|
| - /* separate mantissa from exponent */
|
| - /* Note, frexp is used so that denormal numbers
|
| - * will be handled properly.
|
| - */
|
| - x = frexpl(x, &e);
|
| + /* separate mantissa from exponent */
|
| + /* Note, frexp is used so that denormal numbers
|
| + * will be handled properly.
|
| + */
|
| + x = frexpl(x, &e);
|
|
|
| - /* logarithm using log(x) = z + z**3 P(z)/Q(z),
|
| - * where z = 2(x-1)/(x+1)
|
| - */
|
| - if (e > 2 || e < -2) {
|
| - if (x < SQRTH) { /* 2(2x-1)/(2x+1) */
|
| - e -= 1;
|
| - z = x - 0.5;
|
| - y = 0.5 * z + 0.5;
|
| - } else { /* 2 (x-1)/(x+1) */
|
| - z = x - 0.5;
|
| - z -= 0.5;
|
| - y = 0.5 * x + 0.5;
|
| - }
|
| - x = z / y;
|
| - z = x*x;
|
| - z = x * (z * __polevll(z, R, 3) / __p1evll(z, S, 3));
|
| - z = z + e * C2;
|
| - z = z + x;
|
| - z = z + e * C1;
|
| - return z;
|
| - }
|
| + /* logarithm using log(x) = z + z**3 P(z)/Q(z),
|
| + * where z = 2(x-1)/(x+1)
|
| + */
|
| + if (e > 2 || e < -2) {
|
| + if (x < SQRTH) { /* 2(2x-1)/(2x+1) */
|
| + e -= 1;
|
| + z = x - 0.5;
|
| + y = 0.5 * z + 0.5;
|
| + } else { /* 2 (x-1)/(x+1) */
|
| + z = x - 0.5;
|
| + z -= 0.5;
|
| + y = 0.5 * x + 0.5;
|
| + }
|
| + x = z / y;
|
| + z = x * x;
|
| + z = x * (z * __polevll(z, R, 3) / __p1evll(z, S, 3));
|
| + z = z + e * C2;
|
| + z = z + x;
|
| + z = z + e * C1;
|
| + return z;
|
| + }
|
|
|
| - /* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */
|
| - if (x < SQRTH) {
|
| - e -= 1;
|
| - x = 2.0*x - 1.0;
|
| - } else {
|
| - x = x - 1.0;
|
| - }
|
| - z = x*x;
|
| - y = x * (z * __polevll(x, P, 6) / __p1evll(x, Q, 6));
|
| - y = y + e * C2;
|
| - z = y - 0.5*z;
|
| - /* Note, the sum of above terms does not exceed x/4,
|
| - * so it contributes at most about 1/4 lsb to the error.
|
| - */
|
| - z = z + x;
|
| - z = z + e * C1; /* This sum has an error of 1/2 lsb. */
|
| - return z;
|
| + /* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */
|
| + if (x < SQRTH) {
|
| + e -= 1;
|
| + x = 2.0 * x - 1.0;
|
| + } else {
|
| + x = x - 1.0;
|
| + }
|
| + z = x * x;
|
| + y = x * (z * __polevll(x, P, 6) / __p1evll(x, Q, 6));
|
| + y = y + e * C2;
|
| + z = y - 0.5 * z;
|
| + /* Note, the sum of above terms does not exceed x/4,
|
| + * so it contributes at most about 1/4 lsb to the error.
|
| + */
|
| + z = z + x;
|
| + z = z + e * C1; /* This sum has an error of 1/2 lsb. */
|
| + return z;
|
| }
|
| #elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384
|
| // TODO: broken implementation to make things compile
|
| -long double logl(long double x)
|
| -{
|
| - return log(x);
|
| +long double logl(long double x) {
|
| + return log(x);
|
| }
|
| #endif
|
|
|