| Index: fusl/src/regex/regcomp.c
|
| diff --git a/fusl/src/regex/regcomp.c b/fusl/src/regex/regcomp.c
|
| index da6abd18580116206c70c7a8e4a91152f2ab50e9..0e1255f707f38704f3275f4aa28dd1fbad9ed8ef 100644
|
| --- a/fusl/src/regex/regcomp.c
|
| +++ b/fusl/src/regex/regcomp.c
|
| @@ -48,53 +48,45 @@ typedef struct {
|
| int position;
|
| int code_min;
|
| int code_max;
|
| - int *tags;
|
| + int* tags;
|
| int assertions;
|
| tre_ctype_t class;
|
| - tre_ctype_t *neg_classes;
|
| + tre_ctype_t* neg_classes;
|
| int backref;
|
| } tre_pos_and_tags_t;
|
|
|
| -
|
| /***********************************************************************
|
| from tre-ast.c and tre-ast.h
|
| ***********************************************************************/
|
|
|
| /* The different AST node types. */
|
| -typedef enum {
|
| - LITERAL,
|
| - CATENATION,
|
| - ITERATION,
|
| - UNION
|
| -} tre_ast_type_t;
|
| +typedef enum { LITERAL, CATENATION, ITERATION, UNION } tre_ast_type_t;
|
|
|
| /* Special subtypes of TRE_LITERAL. */
|
| -#define EMPTY -1 /* Empty leaf (denotes empty string). */
|
| -#define ASSERTION -2 /* Assertion leaf. */
|
| -#define TAG -3 /* Tag leaf. */
|
| -#define BACKREF -4 /* Back reference leaf. */
|
| +#define EMPTY -1 /* Empty leaf (denotes empty string). */
|
| +#define ASSERTION -2 /* Assertion leaf. */
|
| +#define TAG -3 /* Tag leaf. */
|
| +#define BACKREF -4 /* Back reference leaf. */
|
|
|
| -#define IS_SPECIAL(x) ((x)->code_min < 0)
|
| -#define IS_EMPTY(x) ((x)->code_min == EMPTY)
|
| +#define IS_SPECIAL(x) ((x)->code_min < 0)
|
| +#define IS_EMPTY(x) ((x)->code_min == EMPTY)
|
| #define IS_ASSERTION(x) ((x)->code_min == ASSERTION)
|
| -#define IS_TAG(x) ((x)->code_min == TAG)
|
| -#define IS_BACKREF(x) ((x)->code_min == BACKREF)
|
| -
|
| +#define IS_TAG(x) ((x)->code_min == TAG)
|
| +#define IS_BACKREF(x) ((x)->code_min == BACKREF)
|
|
|
| /* A generic AST node. All AST nodes consist of this node on the top
|
| level with `obj' pointing to the actual content. */
|
| typedef struct {
|
| - tre_ast_type_t type; /* Type of the node. */
|
| - void *obj; /* Pointer to actual node. */
|
| + tre_ast_type_t type; /* Type of the node. */
|
| + void* obj; /* Pointer to actual node. */
|
| int nullable;
|
| int submatch_id;
|
| int num_submatches;
|
| int num_tags;
|
| - tre_pos_and_tags_t *firstpos;
|
| - tre_pos_and_tags_t *lastpos;
|
| + tre_pos_and_tags_t* firstpos;
|
| + tre_pos_and_tags_t* lastpos;
|
| } tre_ast_node_t;
|
|
|
| -
|
| /* A "literal" node. These are created for assertions, back references,
|
| tags, matching parameter settings, and all expressions that match one
|
| character. */
|
| @@ -103,7 +95,7 @@ typedef struct {
|
| long code_max;
|
| int position;
|
| tre_ctype_t class;
|
| - tre_ctype_t *neg_classes;
|
| + tre_ctype_t* neg_classes;
|
| } tre_literal_t;
|
|
|
| /* A "catenation" node. These are created when two regexps are concatenated.
|
| @@ -111,15 +103,15 @@ typedef struct {
|
| holds all but the last, and `right' part holds the last subexpression
|
| (catenation is left associative). */
|
| typedef struct {
|
| - tre_ast_node_t *left;
|
| - tre_ast_node_t *right;
|
| + tre_ast_node_t* left;
|
| + tre_ast_node_t* right;
|
| } tre_catenation_t;
|
|
|
| /* An "iteration" node. These are created for the "*", "+", "?", and "{m,n}"
|
| operators. */
|
| typedef struct {
|
| /* Subexpression to match. */
|
| - tre_ast_node_t *arg;
|
| + tre_ast_node_t* arg;
|
| /* Minimum number of consecutive matches. */
|
| int min;
|
| /* Maximum number of consecutive matches. */
|
| @@ -127,100 +119,99 @@ typedef struct {
|
| /* If 0, match as many characters as possible, if 1 match as few as
|
| possible. Note that this does not always mean the same thing as
|
| matching as many/few repetitions as possible. */
|
| - unsigned int minimal:1;
|
| + unsigned int minimal : 1;
|
| } tre_iteration_t;
|
|
|
| /* An "union" node. These are created for the "|" operator. */
|
| typedef struct {
|
| - tre_ast_node_t *left;
|
| - tre_ast_node_t *right;
|
| + tre_ast_node_t* left;
|
| + tre_ast_node_t* right;
|
| } tre_union_t;
|
|
|
| -
|
| -static tre_ast_node_t *
|
| -tre_ast_new_node(tre_mem_t mem, int type, void *obj)
|
| -{
|
| - tre_ast_node_t *node = tre_mem_calloc(mem, sizeof *node);
|
| - if (!node || !obj)
|
| - return 0;
|
| - node->obj = obj;
|
| - node->type = type;
|
| - node->nullable = -1;
|
| - node->submatch_id = -1;
|
| - return node;
|
| +static tre_ast_node_t* tre_ast_new_node(tre_mem_t mem, int type, void* obj) {
|
| + tre_ast_node_t* node = tre_mem_calloc(mem, sizeof *node);
|
| + if (!node || !obj)
|
| + return 0;
|
| + node->obj = obj;
|
| + node->type = type;
|
| + node->nullable = -1;
|
| + node->submatch_id = -1;
|
| + return node;
|
| }
|
|
|
| -static tre_ast_node_t *
|
| -tre_ast_new_literal(tre_mem_t mem, int code_min, int code_max, int position)
|
| -{
|
| - tre_ast_node_t *node;
|
| - tre_literal_t *lit;
|
| -
|
| - lit = tre_mem_calloc(mem, sizeof *lit);
|
| - node = tre_ast_new_node(mem, LITERAL, lit);
|
| - if (!node)
|
| - return 0;
|
| - lit->code_min = code_min;
|
| - lit->code_max = code_max;
|
| - lit->position = position;
|
| - return node;
|
| +static tre_ast_node_t* tre_ast_new_literal(tre_mem_t mem,
|
| + int code_min,
|
| + int code_max,
|
| + int position) {
|
| + tre_ast_node_t* node;
|
| + tre_literal_t* lit;
|
| +
|
| + lit = tre_mem_calloc(mem, sizeof *lit);
|
| + node = tre_ast_new_node(mem, LITERAL, lit);
|
| + if (!node)
|
| + return 0;
|
| + lit->code_min = code_min;
|
| + lit->code_max = code_max;
|
| + lit->position = position;
|
| + return node;
|
| }
|
|
|
| -static tre_ast_node_t *
|
| -tre_ast_new_iter(tre_mem_t mem, tre_ast_node_t *arg, int min, int max, int minimal)
|
| -{
|
| - tre_ast_node_t *node;
|
| - tre_iteration_t *iter;
|
| -
|
| - iter = tre_mem_calloc(mem, sizeof *iter);
|
| - node = tre_ast_new_node(mem, ITERATION, iter);
|
| - if (!node)
|
| - return 0;
|
| - iter->arg = arg;
|
| - iter->min = min;
|
| - iter->max = max;
|
| - iter->minimal = minimal;
|
| - node->num_submatches = arg->num_submatches;
|
| - return node;
|
| +static tre_ast_node_t* tre_ast_new_iter(tre_mem_t mem,
|
| + tre_ast_node_t* arg,
|
| + int min,
|
| + int max,
|
| + int minimal) {
|
| + tre_ast_node_t* node;
|
| + tre_iteration_t* iter;
|
| +
|
| + iter = tre_mem_calloc(mem, sizeof *iter);
|
| + node = tre_ast_new_node(mem, ITERATION, iter);
|
| + if (!node)
|
| + return 0;
|
| + iter->arg = arg;
|
| + iter->min = min;
|
| + iter->max = max;
|
| + iter->minimal = minimal;
|
| + node->num_submatches = arg->num_submatches;
|
| + return node;
|
| }
|
|
|
| -static tre_ast_node_t *
|
| -tre_ast_new_union(tre_mem_t mem, tre_ast_node_t *left, tre_ast_node_t *right)
|
| -{
|
| - tre_ast_node_t *node;
|
| - tre_union_t *un;
|
| -
|
| - if (!left)
|
| - return right;
|
| - un = tre_mem_calloc(mem, sizeof *un);
|
| - node = tre_ast_new_node(mem, UNION, un);
|
| - if (!node || !right)
|
| - return 0;
|
| - un->left = left;
|
| - un->right = right;
|
| - node->num_submatches = left->num_submatches + right->num_submatches;
|
| - return node;
|
| +static tre_ast_node_t* tre_ast_new_union(tre_mem_t mem,
|
| + tre_ast_node_t* left,
|
| + tre_ast_node_t* right) {
|
| + tre_ast_node_t* node;
|
| + tre_union_t* un;
|
| +
|
| + if (!left)
|
| + return right;
|
| + un = tre_mem_calloc(mem, sizeof *un);
|
| + node = tre_ast_new_node(mem, UNION, un);
|
| + if (!node || !right)
|
| + return 0;
|
| + un->left = left;
|
| + un->right = right;
|
| + node->num_submatches = left->num_submatches + right->num_submatches;
|
| + return node;
|
| }
|
|
|
| -static tre_ast_node_t *
|
| -tre_ast_new_catenation(tre_mem_t mem, tre_ast_node_t *left, tre_ast_node_t *right)
|
| -{
|
| - tre_ast_node_t *node;
|
| - tre_catenation_t *cat;
|
| -
|
| - if (!left)
|
| - return right;
|
| - cat = tre_mem_calloc(mem, sizeof *cat);
|
| - node = tre_ast_new_node(mem, CATENATION, cat);
|
| - if (!node)
|
| - return 0;
|
| - cat->left = left;
|
| - cat->right = right;
|
| - node->num_submatches = left->num_submatches + right->num_submatches;
|
| - return node;
|
| +static tre_ast_node_t* tre_ast_new_catenation(tre_mem_t mem,
|
| + tre_ast_node_t* left,
|
| + tre_ast_node_t* right) {
|
| + tre_ast_node_t* node;
|
| + tre_catenation_t* cat;
|
| +
|
| + if (!left)
|
| + return right;
|
| + cat = tre_mem_calloc(mem, sizeof *cat);
|
| + node = tre_ast_new_node(mem, CATENATION, cat);
|
| + if (!node)
|
| + return 0;
|
| + cat->left = left;
|
| + cat->right = right;
|
| + node->num_submatches = left->num_submatches + right->num_submatches;
|
| + return node;
|
| }
|
|
|
| -
|
| /***********************************************************************
|
| from tre-stack.c and tre-stack.h
|
| ***********************************************************************/
|
| @@ -231,61 +222,56 @@ typedef struct tre_stack_rec tre_stack_t;
|
| is maximum size, and `increment' specifies how much more space will be
|
| allocated with realloc() if all space gets used up. Returns the stack
|
| object or NULL if out of memory. */
|
| -static tre_stack_t *
|
| -tre_stack_new(int size, int max_size, int increment);
|
| +static tre_stack_t* tre_stack_new(int size, int max_size, int increment);
|
|
|
| /* Frees the stack object. */
|
| -static void
|
| -tre_stack_destroy(tre_stack_t *s);
|
| +static void tre_stack_destroy(tre_stack_t* s);
|
|
|
| /* Returns the current number of objects in the stack. */
|
| -static int
|
| -tre_stack_num_objects(tre_stack_t *s);
|
| +static int tre_stack_num_objects(tre_stack_t* s);
|
|
|
| /* Each tre_stack_push_*(tre_stack_t *s, <type> value) function pushes
|
| `value' on top of stack `s'. Returns REG_ESPACE if out of memory.
|
| This tries to realloc() more space before failing if maximum size
|
| has not yet been reached. Returns REG_OK if successful. */
|
| -#define declare_pushf(typetag, type) \
|
| - static reg_errcode_t tre_stack_push_ ## typetag(tre_stack_t *s, type value)
|
| +#define declare_pushf(typetag, type) \
|
| + static reg_errcode_t tre_stack_push_##typetag(tre_stack_t* s, type value)
|
|
|
| -declare_pushf(voidptr, void *);
|
| +declare_pushf(voidptr, void*);
|
| declare_pushf(int, int);
|
|
|
| /* Each tre_stack_pop_*(tre_stack_t *s) function pops the topmost
|
| element off of stack `s' and returns it. The stack must not be
|
| empty. */
|
| -#define declare_popf(typetag, type) \
|
| - static type tre_stack_pop_ ## typetag(tre_stack_t *s)
|
| +#define declare_popf(typetag, type) \
|
| + static type tre_stack_pop_##typetag(tre_stack_t* s)
|
|
|
| -declare_popf(voidptr, void *);
|
| +declare_popf(voidptr, void*);
|
| declare_popf(int, int);
|
|
|
| /* Just to save some typing. */
|
| -#define STACK_PUSH(s, typetag, value) \
|
| - do \
|
| - { \
|
| - status = tre_stack_push_ ## typetag(s, value); \
|
| - } \
|
| - while (/*CONSTCOND*/0)
|
| -
|
| -#define STACK_PUSHX(s, typetag, value) \
|
| - { \
|
| - status = tre_stack_push_ ## typetag(s, value); \
|
| - if (status != REG_OK) \
|
| - break; \
|
| +#define STACK_PUSH(s, typetag, value) \
|
| + do { \
|
| + status = tre_stack_push_##typetag(s, value); \
|
| + } while (/*CONSTCOND*/ 0)
|
| +
|
| +#define STACK_PUSHX(s, typetag, value) \
|
| + { \
|
| + status = tre_stack_push_##typetag(s, value); \
|
| + if (status != REG_OK) \
|
| + break; \
|
| }
|
|
|
| -#define STACK_PUSHR(s, typetag, value) \
|
| - { \
|
| - reg_errcode_t _status; \
|
| - _status = tre_stack_push_ ## typetag(s, value); \
|
| - if (_status != REG_OK) \
|
| - return _status; \
|
| +#define STACK_PUSHR(s, typetag, value) \
|
| + { \
|
| + reg_errcode_t _status; \
|
| + _status = tre_stack_push_##typetag(s, value); \
|
| + if (_status != REG_OK) \
|
| + return _status; \
|
| }
|
|
|
| union tre_stack_item {
|
| - void *voidptr_value;
|
| + void* voidptr_value;
|
| int int_value;
|
| };
|
|
|
| @@ -294,218 +280,198 @@ struct tre_stack_rec {
|
| int max_size;
|
| int increment;
|
| int ptr;
|
| - union tre_stack_item *stack;
|
| + union tre_stack_item* stack;
|
| };
|
|
|
| -
|
| -static tre_stack_t *
|
| -tre_stack_new(int size, int max_size, int increment)
|
| -{
|
| - tre_stack_t *s;
|
| +static tre_stack_t* tre_stack_new(int size, int max_size, int increment) {
|
| + tre_stack_t* s;
|
|
|
| s = xmalloc(sizeof(*s));
|
| - if (s != NULL)
|
| - {
|
| - s->stack = xmalloc(sizeof(*s->stack) * size);
|
| - if (s->stack == NULL)
|
| - {
|
| - xfree(s);
|
| - return NULL;
|
| - }
|
| - s->size = size;
|
| - s->max_size = max_size;
|
| - s->increment = increment;
|
| - s->ptr = 0;
|
| + if (s != NULL) {
|
| + s->stack = xmalloc(sizeof(*s->stack) * size);
|
| + if (s->stack == NULL) {
|
| + xfree(s);
|
| + return NULL;
|
| }
|
| + s->size = size;
|
| + s->max_size = max_size;
|
| + s->increment = increment;
|
| + s->ptr = 0;
|
| + }
|
| return s;
|
| }
|
|
|
| -static void
|
| -tre_stack_destroy(tre_stack_t *s)
|
| -{
|
| +static void tre_stack_destroy(tre_stack_t* s) {
|
| xfree(s->stack);
|
| xfree(s);
|
| }
|
|
|
| -static int
|
| -tre_stack_num_objects(tre_stack_t *s)
|
| -{
|
| +static int tre_stack_num_objects(tre_stack_t* s) {
|
| return s->ptr;
|
| }
|
|
|
| -static reg_errcode_t
|
| -tre_stack_push(tre_stack_t *s, union tre_stack_item value)
|
| -{
|
| - if (s->ptr < s->size)
|
| - {
|
| - s->stack[s->ptr] = value;
|
| - s->ptr++;
|
| - }
|
| - else
|
| - {
|
| - if (s->size >= s->max_size)
|
| - {
|
| - return REG_ESPACE;
|
| - }
|
| - else
|
| - {
|
| - union tre_stack_item *new_buffer;
|
| - int new_size;
|
| - new_size = s->size + s->increment;
|
| - if (new_size > s->max_size)
|
| - new_size = s->max_size;
|
| - new_buffer = xrealloc(s->stack, sizeof(*new_buffer) * new_size);
|
| - if (new_buffer == NULL)
|
| - {
|
| - return REG_ESPACE;
|
| - }
|
| - assert(new_size > s->size);
|
| - s->size = new_size;
|
| - s->stack = new_buffer;
|
| - tre_stack_push(s, value);
|
| - }
|
| +static reg_errcode_t tre_stack_push(tre_stack_t* s,
|
| + union tre_stack_item value) {
|
| + if (s->ptr < s->size) {
|
| + s->stack[s->ptr] = value;
|
| + s->ptr++;
|
| + } else {
|
| + if (s->size >= s->max_size) {
|
| + return REG_ESPACE;
|
| + } else {
|
| + union tre_stack_item* new_buffer;
|
| + int new_size;
|
| + new_size = s->size + s->increment;
|
| + if (new_size > s->max_size)
|
| + new_size = s->max_size;
|
| + new_buffer = xrealloc(s->stack, sizeof(*new_buffer) * new_size);
|
| + if (new_buffer == NULL) {
|
| + return REG_ESPACE;
|
| + }
|
| + assert(new_size > s->size);
|
| + s->size = new_size;
|
| + s->stack = new_buffer;
|
| + tre_stack_push(s, value);
|
| }
|
| + }
|
| return REG_OK;
|
| }
|
|
|
| -#define define_pushf(typetag, type) \
|
| - declare_pushf(typetag, type) { \
|
| - union tre_stack_item item; \
|
| - item.typetag ## _value = value; \
|
| - return tre_stack_push(s, item); \
|
| -}
|
| -
|
| -define_pushf(int, int)
|
| -define_pushf(voidptr, void *)
|
| -
|
| -#define define_popf(typetag, type) \
|
| - declare_popf(typetag, type) { \
|
| - return s->stack[--s->ptr].typetag ## _value; \
|
| +#define define_pushf(typetag, type) \
|
| + declare_pushf(typetag, type) { \
|
| + union tre_stack_item item; \
|
| + item.typetag##_value = value; \
|
| + return tre_stack_push(s, item); \
|
| }
|
|
|
| -define_popf(int, int)
|
| -define_popf(voidptr, void *)
|
| +define_pushf(int, int) define_pushf(voidptr, void*)
|
| +#define define_popf(typetag, type) \
|
| + declare_popf(typetag, type) { return s->stack[--s->ptr].typetag##_value; }
|
|
|
| + define_popf(int, int) define_popf(voidptr, void*)
|
|
|
| -/***********************************************************************
|
| - from tre-parse.c and tre-parse.h
|
| -***********************************************************************/
|
| + /***********************************************************************
|
| + from tre-parse.c and tre-parse.h
|
| + ***********************************************************************/
|
|
|
| -/* Parse context. */
|
| -typedef struct {
|
| - /* Memory allocator. The AST is allocated using this. */
|
| - tre_mem_t mem;
|
| - /* Stack used for keeping track of regexp syntax. */
|
| - tre_stack_t *stack;
|
| - /* The parsed node after a parse function returns. */
|
| - tre_ast_node_t *n;
|
| - /* Position in the regexp pattern after a parse function returns. */
|
| - const char *s;
|
| - /* The first character of the regexp. */
|
| - const char *re;
|
| - /* Current submatch ID. */
|
| - int submatch_id;
|
| - /* Current position (number of literal). */
|
| - int position;
|
| - /* The highest back reference or -1 if none seen so far. */
|
| - int max_backref;
|
| - /* Compilation flags. */
|
| - int cflags;
|
| + /* Parse context. */
|
| + typedef struct {
|
| + /* Memory allocator. The AST is allocated using this. */
|
| + tre_mem_t mem;
|
| + /* Stack used for keeping track of regexp syntax. */
|
| + tre_stack_t* stack;
|
| + /* The parsed node after a parse function returns. */
|
| + tre_ast_node_t* n;
|
| + /* Position in the regexp pattern after a parse function returns. */
|
| + const char* s;
|
| + /* The first character of the regexp. */
|
| + const char* re;
|
| + /* Current submatch ID. */
|
| + int submatch_id;
|
| + /* Current position (number of literal). */
|
| + int position;
|
| + /* The highest back reference or -1 if none seen so far. */
|
| + int max_backref;
|
| + /* Compilation flags. */
|
| + int cflags;
|
| } tre_parse_ctx_t;
|
|
|
| /* Some macros for expanding \w, \s, etc. */
|
| static const struct {
|
| - char c;
|
| - const char *expansion;
|
| -} tre_macros[] = {
|
| - {'t', "\t"}, {'n', "\n"}, {'r', "\r"},
|
| - {'f', "\f"}, {'a', "\a"}, {'e', "\033"},
|
| - {'w', "[[:alnum:]_]"}, {'W', "[^[:alnum:]_]"}, {'s', "[[:space:]]"},
|
| - {'S', "[^[:space:]]"}, {'d', "[[:digit:]]"}, {'D', "[^[:digit:]]"},
|
| - { 0, 0 }
|
| -};
|
| + char c;
|
| + const char* expansion;
|
| +} tre_macros[] = {{'t', "\t"},
|
| + {'n', "\n"},
|
| + {'r', "\r"},
|
| + {'f', "\f"},
|
| + {'a', "\a"},
|
| + {'e', "\033"},
|
| + {'w', "[[:alnum:]_]"},
|
| + {'W', "[^[:alnum:]_]"},
|
| + {'s', "[[:space:]]"},
|
| + {'S', "[^[:space:]]"},
|
| + {'d', "[[:digit:]]"},
|
| + {'D', "[^[:digit:]]"},
|
| + {0, 0}};
|
|
|
| /* Expands a macro delimited by `regex' and `regex_end' to `buf', which
|
| must have at least `len' items. Sets buf[0] to zero if the there
|
| is no match in `tre_macros'. */
|
| -static const char *tre_expand_macro(const char *s)
|
| -{
|
| - int i;
|
| - for (i = 0; tre_macros[i].c && tre_macros[i].c != *s; i++);
|
| - return tre_macros[i].expansion;
|
| +static const char* tre_expand_macro(const char* s) {
|
| + int i;
|
| + for (i = 0; tre_macros[i].c && tre_macros[i].c != *s; i++)
|
| + ;
|
| + return tre_macros[i].expansion;
|
| }
|
|
|
| -static int
|
| -tre_compare_lit(const void *a, const void *b)
|
| -{
|
| - const tre_literal_t *const *la = a;
|
| - const tre_literal_t *const *lb = b;
|
| - /* assumes the range of valid code_min is < INT_MAX */
|
| - return la[0]->code_min - lb[0]->code_min;
|
| +static int tre_compare_lit(const void* a, const void* b) {
|
| + const tre_literal_t* const* la = a;
|
| + const tre_literal_t* const* lb = b;
|
| + /* assumes the range of valid code_min is < INT_MAX */
|
| + return la[0]->code_min - lb[0]->code_min;
|
| }
|
|
|
| struct literals {
|
| - tre_mem_t mem;
|
| - tre_literal_t **a;
|
| - int len;
|
| - int cap;
|
| + tre_mem_t mem;
|
| + tre_literal_t** a;
|
| + int len;
|
| + int cap;
|
| };
|
|
|
| -static tre_literal_t *tre_new_lit(struct literals *p)
|
| -{
|
| - tre_literal_t **a;
|
| - if (p->len >= p->cap) {
|
| - if (p->cap >= 1<<15)
|
| - return 0;
|
| - p->cap *= 2;
|
| - a = xrealloc(p->a, p->cap * sizeof *p->a);
|
| - if (!a)
|
| - return 0;
|
| - p->a = a;
|
| - }
|
| - a = p->a + p->len++;
|
| - *a = tre_mem_calloc(p->mem, sizeof **a);
|
| - return *a;
|
| +static tre_literal_t* tre_new_lit(struct literals* p) {
|
| + tre_literal_t** a;
|
| + if (p->len >= p->cap) {
|
| + if (p->cap >= 1 << 15)
|
| + return 0;
|
| + p->cap *= 2;
|
| + a = xrealloc(p->a, p->cap * sizeof *p->a);
|
| + if (!a)
|
| + return 0;
|
| + p->a = a;
|
| + }
|
| + a = p->a + p->len++;
|
| + *a = tre_mem_calloc(p->mem, sizeof **a);
|
| + return *a;
|
| }
|
|
|
| -static int add_icase_literals(struct literals *ls, int min, int max)
|
| -{
|
| - tre_literal_t *lit;
|
| - int b, e, c;
|
| - for (c=min; c<=max; ) {
|
| - /* assumes islower(c) and isupper(c) are exclusive
|
| - and toupper(c)!=c if islower(c).
|
| - multiple opposite case characters are not supported */
|
| - if (tre_islower(c)) {
|
| - b = e = tre_toupper(c);
|
| - for (c++, e++; c<=max; c++, e++)
|
| - if (tre_toupper(c) != e) break;
|
| - } else if (tre_isupper(c)) {
|
| - b = e = tre_tolower(c);
|
| - for (c++, e++; c<=max; c++, e++)
|
| - if (tre_tolower(c) != e) break;
|
| - } else {
|
| - c++;
|
| - continue;
|
| - }
|
| - lit = tre_new_lit(ls);
|
| - if (!lit)
|
| - return -1;
|
| - lit->code_min = b;
|
| - lit->code_max = e-1;
|
| - lit->position = -1;
|
| - }
|
| - return 0;
|
| +static int add_icase_literals(struct literals* ls, int min, int max) {
|
| + tre_literal_t* lit;
|
| + int b, e, c;
|
| + for (c = min; c <= max;) {
|
| + /* assumes islower(c) and isupper(c) are exclusive
|
| + and toupper(c)!=c if islower(c).
|
| + multiple opposite case characters are not supported */
|
| + if (tre_islower(c)) {
|
| + b = e = tre_toupper(c);
|
| + for (c++, e++; c <= max; c++, e++)
|
| + if (tre_toupper(c) != e)
|
| + break;
|
| + } else if (tre_isupper(c)) {
|
| + b = e = tre_tolower(c);
|
| + for (c++, e++; c <= max; c++, e++)
|
| + if (tre_tolower(c) != e)
|
| + break;
|
| + } else {
|
| + c++;
|
| + continue;
|
| + }
|
| + lit = tre_new_lit(ls);
|
| + if (!lit)
|
| + return -1;
|
| + lit->code_min = b;
|
| + lit->code_max = e - 1;
|
| + lit->position = -1;
|
| + }
|
| + return 0;
|
| }
|
|
|
| -
|
| /* Maximum number of character classes in a negated bracket expression. */
|
| #define MAX_NEG_CLASSES 64
|
|
|
| struct neg {
|
| - int negate;
|
| - int len;
|
| - tre_ctype_t a[MAX_NEG_CLASSES];
|
| + int negate;
|
| + int len;
|
| + tre_ctype_t a[MAX_NEG_CLASSES];
|
| };
|
|
|
| // TODO: parse bracket into a set of non-overlapping [lo,hi] ranges
|
| @@ -528,548 +494,549 @@ coll_single is a single char collating element but it can be
|
| '^' anywhere except after the openning '['
|
| */
|
|
|
| -static reg_errcode_t parse_bracket_terms(tre_parse_ctx_t *ctx, const char *s, struct literals *ls, struct neg *neg)
|
| -{
|
| - const char *start = s;
|
| - tre_ctype_t class;
|
| - int min, max;
|
| - wchar_t wc;
|
| - int len;
|
| -
|
| - for (;;) {
|
| - class = 0;
|
| - len = mbtowc(&wc, s, -1);
|
| - if (len <= 0)
|
| - return *s ? REG_BADPAT : REG_EBRACK;
|
| - if (*s == ']' && s != start) {
|
| - ctx->s = s+1;
|
| - return REG_OK;
|
| - }
|
| - if (*s == '-' && s != start && s[1] != ']' &&
|
| - /* extension: [a-z--@] is accepted as [a-z]|[--@] */
|
| - (s[1] != '-' || s[2] == ']'))
|
| - return REG_ERANGE;
|
| - if (*s == '[' && (s[1] == '.' || s[1] == '='))
|
| - /* collating symbols and equivalence classes are not supported */
|
| - return REG_ECOLLATE;
|
| - if (*s == '[' && s[1] == ':') {
|
| - char tmp[CHARCLASS_NAME_MAX+1];
|
| - s += 2;
|
| - for (len=0; len < CHARCLASS_NAME_MAX && s[len]; len++) {
|
| - if (s[len] == ':') {
|
| - memcpy(tmp, s, len);
|
| - tmp[len] = 0;
|
| - class = tre_ctype(tmp);
|
| - break;
|
| - }
|
| - }
|
| - if (!class || s[len+1] != ']')
|
| - return REG_ECTYPE;
|
| - min = 0;
|
| - max = TRE_CHAR_MAX;
|
| - s += len+2;
|
| - } else {
|
| - min = max = wc;
|
| - s += len;
|
| - if (*s == '-' && s[1] != ']') {
|
| - s++;
|
| - len = mbtowc(&wc, s, -1);
|
| - max = wc;
|
| - /* XXX - Should use collation order instead of
|
| - encoding values in character ranges. */
|
| - if (len <= 0 || min > max)
|
| - return REG_ERANGE;
|
| - s += len;
|
| - }
|
| - }
|
| -
|
| - if (class && neg->negate) {
|
| - if (neg->len >= MAX_NEG_CLASSES)
|
| - return REG_ESPACE;
|
| - neg->a[neg->len++] = class;
|
| - } else {
|
| - tre_literal_t *lit = tre_new_lit(ls);
|
| - if (!lit)
|
| - return REG_ESPACE;
|
| - lit->code_min = min;
|
| - lit->code_max = max;
|
| - lit->class = class;
|
| - lit->position = -1;
|
| -
|
| - /* Add opposite-case codepoints if REG_ICASE is present.
|
| - It seems that POSIX requires that bracket negation
|
| - should happen before case-folding, but most practical
|
| - implementations do it the other way around. Changing
|
| - the order would need efficient representation of
|
| - case-fold ranges and bracket range sets even with
|
| - simple patterns so this is ok for now. */
|
| - if (ctx->cflags & REG_ICASE && !class)
|
| - if (add_icase_literals(ls, min, max))
|
| - return REG_ESPACE;
|
| - }
|
| - }
|
| +static reg_errcode_t parse_bracket_terms(tre_parse_ctx_t* ctx,
|
| + const char* s,
|
| + struct literals* ls,
|
| + struct neg* neg) {
|
| + const char* start = s;
|
| + tre_ctype_t class;
|
| + int min, max;
|
| + wchar_t wc;
|
| + int len;
|
| +
|
| + for (;;) {
|
| + class = 0;
|
| + len = mbtowc(&wc, s, -1);
|
| + if (len <= 0)
|
| + return *s ? REG_BADPAT : REG_EBRACK;
|
| + if (*s == ']' && s != start) {
|
| + ctx->s = s + 1;
|
| + return REG_OK;
|
| + }
|
| + if (*s == '-' && s != start && s[1] != ']' &&
|
| + /* extension: [a-z--@] is accepted as [a-z]|[--@] */
|
| + (s[1] != '-' || s[2] == ']'))
|
| + return REG_ERANGE;
|
| + if (*s == '[' && (s[1] == '.' || s[1] == '='))
|
| + /* collating symbols and equivalence classes are not supported */
|
| + return REG_ECOLLATE;
|
| + if (*s == '[' && s[1] == ':') {
|
| + char tmp[CHARCLASS_NAME_MAX + 1];
|
| + s += 2;
|
| + for (len = 0; len < CHARCLASS_NAME_MAX && s[len]; len++) {
|
| + if (s[len] == ':') {
|
| + memcpy(tmp, s, len);
|
| + tmp[len] = 0;
|
| + class = tre_ctype(tmp);
|
| + break;
|
| + }
|
| + }
|
| + if (!class || s[len + 1] != ']')
|
| + return REG_ECTYPE;
|
| + min = 0;
|
| + max = TRE_CHAR_MAX;
|
| + s += len + 2;
|
| + } else {
|
| + min = max = wc;
|
| + s += len;
|
| + if (*s == '-' && s[1] != ']') {
|
| + s++;
|
| + len = mbtowc(&wc, s, -1);
|
| + max = wc;
|
| + /* XXX - Should use collation order instead of
|
| + encoding values in character ranges. */
|
| + if (len <= 0 || min > max)
|
| + return REG_ERANGE;
|
| + s += len;
|
| + }
|
| + }
|
| +
|
| + if (class && neg->negate) {
|
| + if (neg->len >= MAX_NEG_CLASSES)
|
| + return REG_ESPACE;
|
| + neg->a[neg->len++] = class;
|
| + } else {
|
| + tre_literal_t* lit = tre_new_lit(ls);
|
| + if (!lit)
|
| + return REG_ESPACE;
|
| + lit->code_min = min;
|
| + lit->code_max = max;
|
| + lit->class = class;
|
| + lit->position = -1;
|
| +
|
| + /* Add opposite-case codepoints if REG_ICASE is present.
|
| + It seems that POSIX requires that bracket negation
|
| + should happen before case-folding, but most practical
|
| + implementations do it the other way around. Changing
|
| + the order would need efficient representation of
|
| + case-fold ranges and bracket range sets even with
|
| + simple patterns so this is ok for now. */
|
| + if (ctx->cflags & REG_ICASE && !class)
|
| + if (add_icase_literals(ls, min, max))
|
| + return REG_ESPACE;
|
| + }
|
| + }
|
| }
|
|
|
| -static reg_errcode_t parse_bracket(tre_parse_ctx_t *ctx, const char *s)
|
| -{
|
| - int i, max, min, negmax, negmin;
|
| - tre_ast_node_t *node = 0, *n;
|
| - tre_ctype_t *nc = 0;
|
| - tre_literal_t *lit;
|
| - struct literals ls;
|
| - struct neg neg;
|
| - reg_errcode_t err;
|
| -
|
| - ls.mem = ctx->mem;
|
| - ls.len = 0;
|
| - ls.cap = 32;
|
| - ls.a = xmalloc(ls.cap * sizeof *ls.a);
|
| - if (!ls.a)
|
| - return REG_ESPACE;
|
| - neg.len = 0;
|
| - neg.negate = *s == '^';
|
| - if (neg.negate)
|
| - s++;
|
| -
|
| - err = parse_bracket_terms(ctx, s, &ls, &neg);
|
| - if (err != REG_OK)
|
| - goto parse_bracket_done;
|
| -
|
| - if (neg.negate) {
|
| - /* Sort the array if we need to negate it. */
|
| - qsort(ls.a, ls.len, sizeof *ls.a, tre_compare_lit);
|
| - /* extra lit for the last negated range */
|
| - lit = tre_new_lit(&ls);
|
| - if (!lit) {
|
| - err = REG_ESPACE;
|
| - goto parse_bracket_done;
|
| - }
|
| - lit->code_min = TRE_CHAR_MAX+1;
|
| - lit->code_max = TRE_CHAR_MAX+1;
|
| - lit->position = -1;
|
| - /* negated classes */
|
| - if (neg.len) {
|
| - nc = tre_mem_alloc(ctx->mem, (neg.len+1)*sizeof *neg.a);
|
| - if (!nc) {
|
| - err = REG_ESPACE;
|
| - goto parse_bracket_done;
|
| - }
|
| - memcpy(nc, neg.a, neg.len*sizeof *neg.a);
|
| - nc[neg.len] = 0;
|
| - }
|
| - }
|
| -
|
| - /* Build a union of the items in the array, negated if necessary. */
|
| - negmax = negmin = 0;
|
| - for (i = 0; i < ls.len; i++) {
|
| - lit = ls.a[i];
|
| - min = lit->code_min;
|
| - max = lit->code_max;
|
| - if (neg.negate) {
|
| - if (min <= negmin) {
|
| - /* Overlap. */
|
| - negmin = MAX(max + 1, negmin);
|
| - continue;
|
| - }
|
| - negmax = min - 1;
|
| - lit->code_min = negmin;
|
| - lit->code_max = negmax;
|
| - negmin = max + 1;
|
| - }
|
| - lit->position = ctx->position;
|
| - lit->neg_classes = nc;
|
| - n = tre_ast_new_node(ctx->mem, LITERAL, lit);
|
| - node = tre_ast_new_union(ctx->mem, node, n);
|
| - if (!node) {
|
| - err = REG_ESPACE;
|
| - break;
|
| - }
|
| - }
|
| +static reg_errcode_t parse_bracket(tre_parse_ctx_t* ctx, const char* s) {
|
| + int i, max, min, negmax, negmin;
|
| + tre_ast_node_t *node = 0, *n;
|
| + tre_ctype_t* nc = 0;
|
| + tre_literal_t* lit;
|
| + struct literals ls;
|
| + struct neg neg;
|
| + reg_errcode_t err;
|
| +
|
| + ls.mem = ctx->mem;
|
| + ls.len = 0;
|
| + ls.cap = 32;
|
| + ls.a = xmalloc(ls.cap * sizeof *ls.a);
|
| + if (!ls.a)
|
| + return REG_ESPACE;
|
| + neg.len = 0;
|
| + neg.negate = *s == '^';
|
| + if (neg.negate)
|
| + s++;
|
| +
|
| + err = parse_bracket_terms(ctx, s, &ls, &neg);
|
| + if (err != REG_OK)
|
| + goto parse_bracket_done;
|
| +
|
| + if (neg.negate) {
|
| + /* Sort the array if we need to negate it. */
|
| + qsort(ls.a, ls.len, sizeof *ls.a, tre_compare_lit);
|
| + /* extra lit for the last negated range */
|
| + lit = tre_new_lit(&ls);
|
| + if (!lit) {
|
| + err = REG_ESPACE;
|
| + goto parse_bracket_done;
|
| + }
|
| + lit->code_min = TRE_CHAR_MAX + 1;
|
| + lit->code_max = TRE_CHAR_MAX + 1;
|
| + lit->position = -1;
|
| + /* negated classes */
|
| + if (neg.len) {
|
| + nc = tre_mem_alloc(ctx->mem, (neg.len + 1) * sizeof *neg.a);
|
| + if (!nc) {
|
| + err = REG_ESPACE;
|
| + goto parse_bracket_done;
|
| + }
|
| + memcpy(nc, neg.a, neg.len * sizeof *neg.a);
|
| + nc[neg.len] = 0;
|
| + }
|
| + }
|
| +
|
| + /* Build a union of the items in the array, negated if necessary. */
|
| + negmax = negmin = 0;
|
| + for (i = 0; i < ls.len; i++) {
|
| + lit = ls.a[i];
|
| + min = lit->code_min;
|
| + max = lit->code_max;
|
| + if (neg.negate) {
|
| + if (min <= negmin) {
|
| + /* Overlap. */
|
| + negmin = MAX(max + 1, negmin);
|
| + continue;
|
| + }
|
| + negmax = min - 1;
|
| + lit->code_min = negmin;
|
| + lit->code_max = negmax;
|
| + negmin = max + 1;
|
| + }
|
| + lit->position = ctx->position;
|
| + lit->neg_classes = nc;
|
| + n = tre_ast_new_node(ctx->mem, LITERAL, lit);
|
| + node = tre_ast_new_union(ctx->mem, node, n);
|
| + if (!node) {
|
| + err = REG_ESPACE;
|
| + break;
|
| + }
|
| + }
|
|
|
| parse_bracket_done:
|
| - xfree(ls.a);
|
| - ctx->position++;
|
| - ctx->n = node;
|
| - return err;
|
| + xfree(ls.a);
|
| + ctx->position++;
|
| + ctx->n = node;
|
| + return err;
|
| }
|
|
|
| -static const char *parse_dup_count(const char *s, int *n)
|
| -{
|
| - *n = -1;
|
| - if (!isdigit(*s))
|
| - return s;
|
| - *n = 0;
|
| - for (;;) {
|
| - *n = 10 * *n + (*s - '0');
|
| - s++;
|
| - if (!isdigit(*s) || *n > RE_DUP_MAX)
|
| - break;
|
| - }
|
| - return s;
|
| +static const char* parse_dup_count(const char* s, int* n) {
|
| + *n = -1;
|
| + if (!isdigit(*s))
|
| + return s;
|
| + *n = 0;
|
| + for (;;) {
|
| + *n = 10 * *n + (*s - '0');
|
| + s++;
|
| + if (!isdigit(*s) || *n > RE_DUP_MAX)
|
| + break;
|
| + }
|
| + return s;
|
| }
|
|
|
| -static const char *parse_dup(const char *s, int ere, int *pmin, int *pmax)
|
| -{
|
| - int min, max;
|
| -
|
| - s = parse_dup_count(s, &min);
|
| - if (*s == ',')
|
| - s = parse_dup_count(s+1, &max);
|
| - else
|
| - max = min;
|
| -
|
| - if (
|
| - (max < min && max >= 0) ||
|
| - max > RE_DUP_MAX ||
|
| - min > RE_DUP_MAX ||
|
| - min < 0 ||
|
| - (!ere && *s++ != '\\') ||
|
| - *s++ != '}'
|
| - )
|
| - return 0;
|
| - *pmin = min;
|
| - *pmax = max;
|
| - return s;
|
| +static const char* parse_dup(const char* s, int ere, int* pmin, int* pmax) {
|
| + int min, max;
|
| +
|
| + s = parse_dup_count(s, &min);
|
| + if (*s == ',')
|
| + s = parse_dup_count(s + 1, &max);
|
| + else
|
| + max = min;
|
| +
|
| + if ((max < min && max >= 0) || max > RE_DUP_MAX || min > RE_DUP_MAX ||
|
| + min < 0 || (!ere && *s++ != '\\') || *s++ != '}')
|
| + return 0;
|
| + *pmin = min;
|
| + *pmax = max;
|
| + return s;
|
| }
|
|
|
| -static int hexval(unsigned c)
|
| -{
|
| - if (c-'0'<10) return c-'0';
|
| - c |= 32;
|
| - if (c-'a'<6) return c-'a'+10;
|
| - return -1;
|
| +static int hexval(unsigned c) {
|
| + if (c - '0' < 10)
|
| + return c - '0';
|
| + c |= 32;
|
| + if (c - 'a' < 6)
|
| + return c - 'a' + 10;
|
| + return -1;
|
| }
|
|
|
| -static reg_errcode_t marksub(tre_parse_ctx_t *ctx, tre_ast_node_t *node, int subid)
|
| -{
|
| - if (node->submatch_id >= 0) {
|
| - tre_ast_node_t *n = tre_ast_new_literal(ctx->mem, EMPTY, -1, -1);
|
| - if (!n)
|
| - return REG_ESPACE;
|
| - n = tre_ast_new_catenation(ctx->mem, n, node);
|
| - if (!n)
|
| - return REG_ESPACE;
|
| - n->num_submatches = node->num_submatches;
|
| - node = n;
|
| - }
|
| - node->submatch_id = subid;
|
| - node->num_submatches++;
|
| - ctx->n = node;
|
| - return REG_OK;
|
| +static reg_errcode_t marksub(tre_parse_ctx_t* ctx,
|
| + tre_ast_node_t* node,
|
| + int subid) {
|
| + if (node->submatch_id >= 0) {
|
| + tre_ast_node_t* n = tre_ast_new_literal(ctx->mem, EMPTY, -1, -1);
|
| + if (!n)
|
| + return REG_ESPACE;
|
| + n = tre_ast_new_catenation(ctx->mem, n, node);
|
| + if (!n)
|
| + return REG_ESPACE;
|
| + n->num_submatches = node->num_submatches;
|
| + node = n;
|
| + }
|
| + node->submatch_id = subid;
|
| + node->num_submatches++;
|
| + ctx->n = node;
|
| + return REG_OK;
|
| }
|
|
|
| /*
|
| BRE grammar:
|
| -Regex = Branch | '^' | '$' | '^$' | '^' Branch | Branch '$' | '^' Branch '$'
|
| +Regex = Branch | '^' | '$' | '^$' | '^' Branch | Branch '$' | '^'
|
| +Branch '$'
|
| Branch = Atom | Branch Atom
|
| -Atom = char | quoted_char | '.' | Bracket | Atom Dup | '\(' Branch '\)' | back_ref
|
| -Dup = '*' | '\{' Count '\}' | '\{' Count ',\}' | '\{' Count ',' Count '\}'
|
| +Atom = char | quoted_char | '.' | Bracket | Atom Dup | '\(' Branch
|
| +'\)' | back_ref
|
| +Dup = '*' | '\{' Count '\}' | '\{' Count ',\}' | '\{' Count ',' Count
|
| +'\}'
|
|
|
| (leading ^ and trailing $ in a sub expr may be an anchor or literal as well)
|
|
|
| ERE grammar:
|
| Regex = Branch | Regex '|' Branch
|
| Branch = Atom | Branch Atom
|
| -Atom = char | quoted_char | '.' | Bracket | Atom Dup | '(' Regex ')' | '^' | '$'
|
| -Dup = '*' | '+' | '?' | '{' Count '}' | '{' Count ',}' | '{' Count ',' Count '}'
|
| +Atom = char | quoted_char | '.' | Bracket | Atom Dup | '(' Regex
|
| +')' | '^' | '$'
|
| +Dup = '*' | '+' | '?' | '{' Count '}' | '{' Count ',}' | '{' Count
|
| +',' Count '}'
|
|
|
| (a*+?, ^*, $+, \X, {, (|a) are unspecified)
|
| */
|
|
|
| -static reg_errcode_t parse_atom(tre_parse_ctx_t *ctx, const char *s)
|
| -{
|
| - int len, ere = ctx->cflags & REG_EXTENDED;
|
| - const char *p;
|
| - tre_ast_node_t *node;
|
| - wchar_t wc;
|
| - switch (*s) {
|
| - case '[':
|
| - return parse_bracket(ctx, s+1);
|
| - case '\\':
|
| - p = tre_expand_macro(s+1);
|
| - if (p) {
|
| - /* assume \X expansion is a single atom */
|
| - reg_errcode_t err = parse_atom(ctx, p);
|
| - ctx->s = s+2;
|
| - return err;
|
| - }
|
| - /* extensions: \b, \B, \<, \>, \xHH \x{HHHH} */
|
| - switch (*++s) {
|
| - case 0:
|
| - return REG_EESCAPE;
|
| - case 'b':
|
| - node = tre_ast_new_literal(ctx->mem, ASSERTION, ASSERT_AT_WB, -1);
|
| - break;
|
| - case 'B':
|
| - node = tre_ast_new_literal(ctx->mem, ASSERTION, ASSERT_AT_WB_NEG, -1);
|
| - break;
|
| - case '<':
|
| - node = tre_ast_new_literal(ctx->mem, ASSERTION, ASSERT_AT_BOW, -1);
|
| - break;
|
| - case '>':
|
| - node = tre_ast_new_literal(ctx->mem, ASSERTION, ASSERT_AT_EOW, -1);
|
| - break;
|
| - case 'x':
|
| - s++;
|
| - int i, v = 0, c;
|
| - len = 2;
|
| - if (*s == '{') {
|
| - len = 8;
|
| - s++;
|
| - }
|
| - for (i=0; i<len && v<0x110000; i++) {
|
| - c = hexval(s[i]);
|
| - if (c < 0) break;
|
| - v = 16*v + c;
|
| - }
|
| - s += i;
|
| - if (len == 8) {
|
| - if (*s != '}')
|
| - return REG_EBRACE;
|
| - s++;
|
| - }
|
| - node = tre_ast_new_literal(ctx->mem, v, v, ctx->position++);
|
| - s--;
|
| - break;
|
| - case '{':
|
| - case '+':
|
| - case '?':
|
| - /* extension: treat \+, \? as repetitions in BRE */
|
| - /* reject repetitions after empty expression in BRE */
|
| - if (!ere)
|
| - return REG_BADRPT;
|
| - case '|':
|
| - /* extension: treat \| as alternation in BRE */
|
| - if (!ere) {
|
| - node = tre_ast_new_literal(ctx->mem, EMPTY, -1, -1);
|
| - s--;
|
| - goto end;
|
| - }
|
| - /* fallthrough */
|
| - default:
|
| - if (!ere && (unsigned)*s-'1' < 9) {
|
| - /* back reference */
|
| - int val = *s - '0';
|
| - node = tre_ast_new_literal(ctx->mem, BACKREF, val, ctx->position++);
|
| - ctx->max_backref = MAX(val, ctx->max_backref);
|
| - } else {
|
| - /* extension: accept unknown escaped char
|
| - as a literal */
|
| - goto parse_literal;
|
| - }
|
| - }
|
| - s++;
|
| - break;
|
| - case '.':
|
| - if (ctx->cflags & REG_NEWLINE) {
|
| - tre_ast_node_t *tmp1, *tmp2;
|
| - tmp1 = tre_ast_new_literal(ctx->mem, 0, '\n'-1, ctx->position++);
|
| - tmp2 = tre_ast_new_literal(ctx->mem, '\n'+1, TRE_CHAR_MAX, ctx->position++);
|
| - if (tmp1 && tmp2)
|
| - node = tre_ast_new_union(ctx->mem, tmp1, tmp2);
|
| - else
|
| - node = 0;
|
| - } else {
|
| - node = tre_ast_new_literal(ctx->mem, 0, TRE_CHAR_MAX, ctx->position++);
|
| - }
|
| - s++;
|
| - break;
|
| - case '^':
|
| - /* '^' has a special meaning everywhere in EREs, and at beginning of BRE. */
|
| - if (!ere && s != ctx->re)
|
| - goto parse_literal;
|
| - node = tre_ast_new_literal(ctx->mem, ASSERTION, ASSERT_AT_BOL, -1);
|
| - s++;
|
| - break;
|
| - case '$':
|
| - /* '$' is special everywhere in EREs, and in the end of the string in BREs. */
|
| - if (!ere && s[1])
|
| - goto parse_literal;
|
| - node = tre_ast_new_literal(ctx->mem, ASSERTION, ASSERT_AT_EOL, -1);
|
| - s++;
|
| - break;
|
| - case '*':
|
| - return REG_BADPAT;
|
| - case '{':
|
| - case '+':
|
| - case '?':
|
| - /* reject repetitions after empty expression in ERE */
|
| - if (ere)
|
| - return REG_BADRPT;
|
| - case '|':
|
| - if (!ere)
|
| - goto parse_literal;
|
| - case 0:
|
| - node = tre_ast_new_literal(ctx->mem, EMPTY, -1, -1);
|
| - break;
|
| - default:
|
| -parse_literal:
|
| - len = mbtowc(&wc, s, -1);
|
| - if (len < 0)
|
| - return REG_BADPAT;
|
| - if (ctx->cflags & REG_ICASE && (tre_isupper(wc) || tre_islower(wc))) {
|
| - tre_ast_node_t *tmp1, *tmp2;
|
| - /* multiple opposite case characters are not supported */
|
| - tmp1 = tre_ast_new_literal(ctx->mem, tre_toupper(wc), tre_toupper(wc), ctx->position);
|
| - tmp2 = tre_ast_new_literal(ctx->mem, tre_tolower(wc), tre_tolower(wc), ctx->position);
|
| - if (tmp1 && tmp2)
|
| - node = tre_ast_new_union(ctx->mem, tmp1, tmp2);
|
| - else
|
| - node = 0;
|
| - } else {
|
| - node = tre_ast_new_literal(ctx->mem, wc, wc, ctx->position);
|
| - }
|
| - ctx->position++;
|
| - s += len;
|
| - break;
|
| - }
|
| +static reg_errcode_t parse_atom(tre_parse_ctx_t* ctx, const char* s) {
|
| + int len, ere = ctx->cflags & REG_EXTENDED;
|
| + const char* p;
|
| + tre_ast_node_t* node;
|
| + wchar_t wc;
|
| + switch (*s) {
|
| + case '[':
|
| + return parse_bracket(ctx, s + 1);
|
| + case '\\':
|
| + p = tre_expand_macro(s + 1);
|
| + if (p) {
|
| + /* assume \X expansion is a single atom */
|
| + reg_errcode_t err = parse_atom(ctx, p);
|
| + ctx->s = s + 2;
|
| + return err;
|
| + }
|
| + /* extensions: \b, \B, \<, \>, \xHH \x{HHHH} */
|
| + switch (*++s) {
|
| + case 0:
|
| + return REG_EESCAPE;
|
| + case 'b':
|
| + node = tre_ast_new_literal(ctx->mem, ASSERTION, ASSERT_AT_WB, -1);
|
| + break;
|
| + case 'B':
|
| + node = tre_ast_new_literal(ctx->mem, ASSERTION, ASSERT_AT_WB_NEG, -1);
|
| + break;
|
| + case '<':
|
| + node = tre_ast_new_literal(ctx->mem, ASSERTION, ASSERT_AT_BOW, -1);
|
| + break;
|
| + case '>':
|
| + node = tre_ast_new_literal(ctx->mem, ASSERTION, ASSERT_AT_EOW, -1);
|
| + break;
|
| + case 'x':
|
| + s++;
|
| + int i, v = 0, c;
|
| + len = 2;
|
| + if (*s == '{') {
|
| + len = 8;
|
| + s++;
|
| + }
|
| + for (i = 0; i < len && v < 0x110000; i++) {
|
| + c = hexval(s[i]);
|
| + if (c < 0)
|
| + break;
|
| + v = 16 * v + c;
|
| + }
|
| + s += i;
|
| + if (len == 8) {
|
| + if (*s != '}')
|
| + return REG_EBRACE;
|
| + s++;
|
| + }
|
| + node = tre_ast_new_literal(ctx->mem, v, v, ctx->position++);
|
| + s--;
|
| + break;
|
| + case '{':
|
| + case '+':
|
| + case '?':
|
| + /* extension: treat \+, \? as repetitions in BRE */
|
| + /* reject repetitions after empty expression in BRE */
|
| + if (!ere)
|
| + return REG_BADRPT;
|
| + case '|':
|
| + /* extension: treat \| as alternation in BRE */
|
| + if (!ere) {
|
| + node = tre_ast_new_literal(ctx->mem, EMPTY, -1, -1);
|
| + s--;
|
| + goto end;
|
| + }
|
| + /* fallthrough */
|
| + default:
|
| + if (!ere && (unsigned)*s - '1' < 9) {
|
| + /* back reference */
|
| + int val = *s - '0';
|
| + node = tre_ast_new_literal(ctx->mem, BACKREF, val, ctx->position++);
|
| + ctx->max_backref = MAX(val, ctx->max_backref);
|
| + } else {
|
| + /* extension: accept unknown escaped char
|
| + as a literal */
|
| + goto parse_literal;
|
| + }
|
| + }
|
| + s++;
|
| + break;
|
| + case '.':
|
| + if (ctx->cflags & REG_NEWLINE) {
|
| + tre_ast_node_t *tmp1, *tmp2;
|
| + tmp1 = tre_ast_new_literal(ctx->mem, 0, '\n' - 1, ctx->position++);
|
| + tmp2 = tre_ast_new_literal(ctx->mem, '\n' + 1, TRE_CHAR_MAX,
|
| + ctx->position++);
|
| + if (tmp1 && tmp2)
|
| + node = tre_ast_new_union(ctx->mem, tmp1, tmp2);
|
| + else
|
| + node = 0;
|
| + } else {
|
| + node = tre_ast_new_literal(ctx->mem, 0, TRE_CHAR_MAX, ctx->position++);
|
| + }
|
| + s++;
|
| + break;
|
| + case '^':
|
| + /* '^' has a special meaning everywhere in EREs, and at beginning of BRE.
|
| + */
|
| + if (!ere && s != ctx->re)
|
| + goto parse_literal;
|
| + node = tre_ast_new_literal(ctx->mem, ASSERTION, ASSERT_AT_BOL, -1);
|
| + s++;
|
| + break;
|
| + case '$':
|
| + /* '$' is special everywhere in EREs, and in the end of the string in
|
| + * BREs. */
|
| + if (!ere && s[1])
|
| + goto parse_literal;
|
| + node = tre_ast_new_literal(ctx->mem, ASSERTION, ASSERT_AT_EOL, -1);
|
| + s++;
|
| + break;
|
| + case '*':
|
| + return REG_BADPAT;
|
| + case '{':
|
| + case '+':
|
| + case '?':
|
| + /* reject repetitions after empty expression in ERE */
|
| + if (ere)
|
| + return REG_BADRPT;
|
| + case '|':
|
| + if (!ere)
|
| + goto parse_literal;
|
| + case 0:
|
| + node = tre_ast_new_literal(ctx->mem, EMPTY, -1, -1);
|
| + break;
|
| + default:
|
| + parse_literal:
|
| + len = mbtowc(&wc, s, -1);
|
| + if (len < 0)
|
| + return REG_BADPAT;
|
| + if (ctx->cflags & REG_ICASE && (tre_isupper(wc) || tre_islower(wc))) {
|
| + tre_ast_node_t *tmp1, *tmp2;
|
| + /* multiple opposite case characters are not supported */
|
| + tmp1 = tre_ast_new_literal(ctx->mem, tre_toupper(wc), tre_toupper(wc),
|
| + ctx->position);
|
| + tmp2 = tre_ast_new_literal(ctx->mem, tre_tolower(wc), tre_tolower(wc),
|
| + ctx->position);
|
| + if (tmp1 && tmp2)
|
| + node = tre_ast_new_union(ctx->mem, tmp1, tmp2);
|
| + else
|
| + node = 0;
|
| + } else {
|
| + node = tre_ast_new_literal(ctx->mem, wc, wc, ctx->position);
|
| + }
|
| + ctx->position++;
|
| + s += len;
|
| + break;
|
| + }
|
| end:
|
| - if (!node)
|
| - return REG_ESPACE;
|
| - ctx->n = node;
|
| - ctx->s = s;
|
| - return REG_OK;
|
| + if (!node)
|
| + return REG_ESPACE;
|
| + ctx->n = node;
|
| + ctx->s = s;
|
| + return REG_OK;
|
| }
|
|
|
| -#define PUSHPTR(err, s, v) do { \
|
| - if ((err = tre_stack_push_voidptr(s, v)) != REG_OK) \
|
| - return err; \
|
| -} while(0)
|
| -
|
| -#define PUSHINT(err, s, v) do { \
|
| - if ((err = tre_stack_push_int(s, v)) != REG_OK) \
|
| - return err; \
|
| -} while(0)
|
| -
|
| -static reg_errcode_t tre_parse(tre_parse_ctx_t *ctx)
|
| -{
|
| - tre_ast_node_t *nbranch=0, *nunion=0;
|
| - int ere = ctx->cflags & REG_EXTENDED;
|
| - const char *s = ctx->re;
|
| - int subid = 0;
|
| - int depth = 0;
|
| - reg_errcode_t err;
|
| - tre_stack_t *stack = ctx->stack;
|
| -
|
| - PUSHINT(err, stack, subid++);
|
| - for (;;) {
|
| - if ((!ere && *s == '\\' && s[1] == '(') ||
|
| - (ere && *s == '(')) {
|
| - PUSHPTR(err, stack, nunion);
|
| - PUSHPTR(err, stack, nbranch);
|
| - PUSHINT(err, stack, subid++);
|
| - s++;
|
| - if (!ere)
|
| - s++;
|
| - depth++;
|
| - nbranch = nunion = 0;
|
| - continue;
|
| - }
|
| - if ((!ere && *s == '\\' && s[1] == ')') ||
|
| - (ere && *s == ')' && depth)) {
|
| - ctx->n = tre_ast_new_literal(ctx->mem, EMPTY, -1, -1);
|
| - if (!ctx->n)
|
| - return REG_ESPACE;
|
| - } else {
|
| - err = parse_atom(ctx, s);
|
| - if (err != REG_OK)
|
| - return err;
|
| - s = ctx->s;
|
| - }
|
| -
|
| - parse_iter:
|
| - /* extension: repetitions are rejected after an empty node
|
| - eg. (+), |*, {2}, but assertions are not treated as empty
|
| - so ^* or $? are accepted currently. */
|
| - for (;;) {
|
| - int min, max;
|
| -
|
| - if (*s!='\\' && *s!='*') {
|
| - if (!ere)
|
| - break;
|
| - if (*s!='+' && *s!='?' && *s!='{')
|
| - break;
|
| - }
|
| - if (*s=='\\' && ere)
|
| - break;
|
| - /* extension: treat \+, \? as repetitions in BRE */
|
| - if (*s=='\\' && s[1]!='+' && s[1]!='?' && s[1]!='{')
|
| - break;
|
| - if (*s=='\\')
|
| - s++;
|
| -
|
| - /* extension: multiple consecutive *+?{,} is unspecified,
|
| - but (a+)+ has to be supported so accepting a++ makes
|
| - sense, note however that the RE_DUP_MAX limit can be
|
| - circumvented: (a{255}){255} uses a lot of memory.. */
|
| - if (*s=='{') {
|
| - s = parse_dup(s+1, ere, &min, &max);
|
| - if (!s)
|
| - return REG_BADBR;
|
| - } else {
|
| - min=0;
|
| - max=-1;
|
| - if (*s == '+')
|
| - min = 1;
|
| - if (*s == '?')
|
| - max = 1;
|
| - s++;
|
| - }
|
| - if (max == 0)
|
| - ctx->n = tre_ast_new_literal(ctx->mem, EMPTY, -1, -1);
|
| - else
|
| - ctx->n = tre_ast_new_iter(ctx->mem, ctx->n, min, max, 0);
|
| - if (!ctx->n)
|
| - return REG_ESPACE;
|
| - }
|
| -
|
| - nbranch = tre_ast_new_catenation(ctx->mem, nbranch, ctx->n);
|
| - if ((ere && *s == '|') ||
|
| - (ere && *s == ')' && depth) ||
|
| - (!ere && *s == '\\' && s[1] == ')') ||
|
| - /* extension: treat \| as alternation in BRE */
|
| - (!ere && *s == '\\' && s[1] == '|') ||
|
| - !*s) {
|
| - /* extension: empty branch is unspecified (), (|a), (a|)
|
| - here they are not rejected but match on empty string */
|
| - int c = *s;
|
| - nunion = tre_ast_new_union(ctx->mem, nunion, nbranch);
|
| - nbranch = 0;
|
| -
|
| - if (c == '\\' && s[1] == '|') {
|
| - s+=2;
|
| - } else if (c == '|') {
|
| - s++;
|
| - } else {
|
| - if (c == '\\') {
|
| - if (!depth) return REG_EPAREN;
|
| - s+=2;
|
| - } else if (c == ')')
|
| - s++;
|
| - depth--;
|
| - err = marksub(ctx, nunion, tre_stack_pop_int(stack));
|
| - if (err != REG_OK)
|
| - return err;
|
| - if (!c && depth<0) {
|
| - ctx->submatch_id = subid;
|
| - return REG_OK;
|
| - }
|
| - if (!c || depth<0)
|
| - return REG_EPAREN;
|
| - nbranch = tre_stack_pop_voidptr(stack);
|
| - nunion = tre_stack_pop_voidptr(stack);
|
| - goto parse_iter;
|
| - }
|
| - }
|
| - }
|
| -}
|
| +#define PUSHPTR(err, s, v) \
|
| + do { \
|
| + if ((err = tre_stack_push_voidptr(s, v)) != REG_OK) \
|
| + return err; \
|
| + } while (0)
|
| +
|
| +#define PUSHINT(err, s, v) \
|
| + do { \
|
| + if ((err = tre_stack_push_int(s, v)) != REG_OK) \
|
| + return err; \
|
| + } while (0)
|
| +
|
| +static reg_errcode_t tre_parse(tre_parse_ctx_t* ctx) {
|
| + tre_ast_node_t *nbranch = 0, *nunion = 0;
|
| + int ere = ctx->cflags & REG_EXTENDED;
|
| + const char* s = ctx->re;
|
| + int subid = 0;
|
| + int depth = 0;
|
| + reg_errcode_t err;
|
| + tre_stack_t* stack = ctx->stack;
|
| +
|
| + PUSHINT(err, stack, subid++);
|
| + for (;;) {
|
| + if ((!ere && *s == '\\' && s[1] == '(') || (ere && *s == '(')) {
|
| + PUSHPTR(err, stack, nunion);
|
| + PUSHPTR(err, stack, nbranch);
|
| + PUSHINT(err, stack, subid++);
|
| + s++;
|
| + if (!ere)
|
| + s++;
|
| + depth++;
|
| + nbranch = nunion = 0;
|
| + continue;
|
| + }
|
| + if ((!ere && *s == '\\' && s[1] == ')') || (ere && *s == ')' && depth)) {
|
| + ctx->n = tre_ast_new_literal(ctx->mem, EMPTY, -1, -1);
|
| + if (!ctx->n)
|
| + return REG_ESPACE;
|
| + } else {
|
| + err = parse_atom(ctx, s);
|
| + if (err != REG_OK)
|
| + return err;
|
| + s = ctx->s;
|
| + }
|
| +
|
| + parse_iter:
|
| + /* extension: repetitions are rejected after an empty node
|
| + eg. (+), |*, {2}, but assertions are not treated as empty
|
| + so ^* or $? are accepted currently. */
|
| + for (;;) {
|
| + int min, max;
|
| +
|
| + if (*s != '\\' && *s != '*') {
|
| + if (!ere)
|
| + break;
|
| + if (*s != '+' && *s != '?' && *s != '{')
|
| + break;
|
| + }
|
| + if (*s == '\\' && ere)
|
| + break;
|
| + /* extension: treat \+, \? as repetitions in BRE */
|
| + if (*s == '\\' && s[1] != '+' && s[1] != '?' && s[1] != '{')
|
| + break;
|
| + if (*s == '\\')
|
| + s++;
|
| +
|
| + /* extension: multiple consecutive *+?{,} is unspecified,
|
| + but (a+)+ has to be supported so accepting a++ makes
|
| + sense, note however that the RE_DUP_MAX limit can be
|
| + circumvented: (a{255}){255} uses a lot of memory.. */
|
| + if (*s == '{') {
|
| + s = parse_dup(s + 1, ere, &min, &max);
|
| + if (!s)
|
| + return REG_BADBR;
|
| + } else {
|
| + min = 0;
|
| + max = -1;
|
| + if (*s == '+')
|
| + min = 1;
|
| + if (*s == '?')
|
| + max = 1;
|
| + s++;
|
| + }
|
| + if (max == 0)
|
| + ctx->n = tre_ast_new_literal(ctx->mem, EMPTY, -1, -1);
|
| + else
|
| + ctx->n = tre_ast_new_iter(ctx->mem, ctx->n, min, max, 0);
|
| + if (!ctx->n)
|
| + return REG_ESPACE;
|
| + }
|
|
|
| + nbranch = tre_ast_new_catenation(ctx->mem, nbranch, ctx->n);
|
| + if ((ere && *s == '|') || (ere && *s == ')' && depth) ||
|
| + (!ere && *s == '\\' && s[1] == ')') ||
|
| + /* extension: treat \| as alternation in BRE */
|
| + (!ere && *s == '\\' && s[1] == '|') || !*s) {
|
| + /* extension: empty branch is unspecified (), (|a), (a|)
|
| + here they are not rejected but match on empty string */
|
| + int c = *s;
|
| + nunion = tre_ast_new_union(ctx->mem, nunion, nbranch);
|
| + nbranch = 0;
|
| +
|
| + if (c == '\\' && s[1] == '|') {
|
| + s += 2;
|
| + } else if (c == '|') {
|
| + s++;
|
| + } else {
|
| + if (c == '\\') {
|
| + if (!depth)
|
| + return REG_EPAREN;
|
| + s += 2;
|
| + } else if (c == ')')
|
| + s++;
|
| + depth--;
|
| + err = marksub(ctx, nunion, tre_stack_pop_int(stack));
|
| + if (err != REG_OK)
|
| + return err;
|
| + if (!c && depth < 0) {
|
| + ctx->submatch_id = subid;
|
| + return REG_OK;
|
| + }
|
| + if (!c || depth < 0)
|
| + return REG_EPAREN;
|
| + nbranch = tre_stack_pop_voidptr(stack);
|
| + nunion = tre_stack_pop_voidptr(stack);
|
| + goto parse_iter;
|
| + }
|
| + }
|
| + }
|
| +}
|
|
|
| /***********************************************************************
|
| from tre-compile.c
|
| ***********************************************************************/
|
|
|
| -
|
| /*
|
| TODO:
|
| - Fix tre_ast_to_tnfa() to recurse using a stack instead of recursive
|
| @@ -1080,14 +1047,13 @@ static reg_errcode_t tre_parse(tre_parse_ctx_t *ctx)
|
| Algorithms to setup tags so that submatch addressing can be done.
|
| */
|
|
|
| -
|
| /* Inserts a catenation node to the root of the tree given in `node'.
|
| As the left child a new tag with number `tag_id' to `node' is added,
|
| and the right child is the old root. */
|
| -static reg_errcode_t
|
| -tre_add_tag_left(tre_mem_t mem, tre_ast_node_t *node, int tag_id)
|
| -{
|
| - tre_catenation_t *c;
|
| +static reg_errcode_t tre_add_tag_left(tre_mem_t mem,
|
| + tre_ast_node_t* node,
|
| + int tag_id) {
|
| + tre_catenation_t* c;
|
|
|
| c = tre_mem_alloc(mem, sizeof(*c));
|
| if (c == NULL)
|
| @@ -1114,10 +1080,10 @@ tre_add_tag_left(tre_mem_t mem, tre_ast_node_t *node, int tag_id)
|
| /* Inserts a catenation node to the root of the tree given in `node'.
|
| As the right child a new tag with number `tag_id' to `node' is added,
|
| and the left child is the old root. */
|
| -static reg_errcode_t
|
| -tre_add_tag_right(tre_mem_t mem, tre_ast_node_t *node, int tag_id)
|
| -{
|
| - tre_catenation_t *c;
|
| +static reg_errcode_t tre_add_tag_right(tre_mem_t mem,
|
| + tre_ast_node_t* node,
|
| + int tag_id) {
|
| + tre_catenation_t* c;
|
|
|
| c = tre_mem_alloc(mem, sizeof(*c));
|
| if (c == NULL)
|
| @@ -1151,61 +1117,54 @@ typedef enum {
|
| ADDTAGS_SET_SUBMATCH_END
|
| } tre_addtags_symbol_t;
|
|
|
| -
|
| typedef struct {
|
| int tag;
|
| int next_tag;
|
| } tre_tag_states_t;
|
|
|
| -
|
| /* Go through `regset' and set submatch data for submatches that are
|
| using this tag. */
|
| -static void
|
| -tre_purge_regset(int *regset, tre_tnfa_t *tnfa, int tag)
|
| -{
|
| +static void tre_purge_regset(int* regset, tre_tnfa_t* tnfa, int tag) {
|
| int i;
|
|
|
| - for (i = 0; regset[i] >= 0; i++)
|
| - {
|
| - int id = regset[i] / 2;
|
| - int start = !(regset[i] % 2);
|
| - if (start)
|
| - tnfa->submatch_data[id].so_tag = tag;
|
| - else
|
| - tnfa->submatch_data[id].eo_tag = tag;
|
| - }
|
| + for (i = 0; regset[i] >= 0; i++) {
|
| + int id = regset[i] / 2;
|
| + int start = !(regset[i] % 2);
|
| + if (start)
|
| + tnfa->submatch_data[id].so_tag = tag;
|
| + else
|
| + tnfa->submatch_data[id].eo_tag = tag;
|
| + }
|
| regset[0] = -1;
|
| }
|
|
|
| -
|
| /* Adds tags to appropriate locations in the parse tree in `tree', so that
|
| subexpressions marked for submatch addressing can be traced. */
|
| -static reg_errcode_t
|
| -tre_add_tags(tre_mem_t mem, tre_stack_t *stack, tre_ast_node_t *tree,
|
| - tre_tnfa_t *tnfa)
|
| -{
|
| +static reg_errcode_t tre_add_tags(tre_mem_t mem,
|
| + tre_stack_t* stack,
|
| + tre_ast_node_t* tree,
|
| + tre_tnfa_t* tnfa) {
|
| reg_errcode_t status = REG_OK;
|
| tre_addtags_symbol_t symbol;
|
| - tre_ast_node_t *node = tree; /* Tree node we are currently looking at. */
|
| + tre_ast_node_t* node = tree; /* Tree node we are currently looking at. */
|
| int bottom = tre_stack_num_objects(stack);
|
| /* True for first pass (counting number of needed tags) */
|
| int first_pass = (mem == NULL || tnfa == NULL);
|
| int *regset, *orig_regset;
|
| - int num_tags = 0; /* Total number of tags. */
|
| - int num_minimals = 0; /* Number of special minimal tags. */
|
| - int tag = 0; /* The tag that is to be added next. */
|
| - int next_tag = 1; /* Next tag to use after this one. */
|
| - int *parents; /* Stack of submatches the current submatch is
|
| - contained in. */
|
| + int num_tags = 0; /* Total number of tags. */
|
| + int num_minimals = 0; /* Number of special minimal tags. */
|
| + int tag = 0; /* The tag that is to be added next. */
|
| + int next_tag = 1; /* Next tag to use after this one. */
|
| + int* parents; /* Stack of submatches the current submatch is
|
| + contained in. */
|
| int minimal_tag = -1; /* Tag that marks the beginning of a minimal match. */
|
| - tre_tag_states_t *saved_states;
|
| + tre_tag_states_t* saved_states;
|
|
|
| tre_tag_direction_t direction = TRE_TAG_MINIMIZE;
|
| - if (!first_pass)
|
| - {
|
| - tnfa->end_tag = 0;
|
| - tnfa->minimal_tags[0] = -1;
|
| - }
|
| + if (!first_pass) {
|
| + tnfa->end_tag = 0;
|
| + tnfa->minimal_tags[0] = -1;
|
| + }
|
|
|
| regset = xmalloc(sizeof(*regset) * ((tnfa->num_submatches + 1) * 2));
|
| if (regset == NULL)
|
| @@ -1214,430 +1173,383 @@ tre_add_tags(tre_mem_t mem, tre_stack_t *stack, tre_ast_node_t *tree,
|
| orig_regset = regset;
|
|
|
| parents = xmalloc(sizeof(*parents) * (tnfa->num_submatches + 1));
|
| - if (parents == NULL)
|
| - {
|
| - xfree(regset);
|
| - return REG_ESPACE;
|
| - }
|
| + if (parents == NULL) {
|
| + xfree(regset);
|
| + return REG_ESPACE;
|
| + }
|
| parents[0] = -1;
|
|
|
| saved_states = xmalloc(sizeof(*saved_states) * (tnfa->num_submatches + 1));
|
| - if (saved_states == NULL)
|
| - {
|
| - xfree(regset);
|
| - xfree(parents);
|
| - return REG_ESPACE;
|
| - }
|
| - else
|
| - {
|
| - unsigned int i;
|
| - for (i = 0; i <= tnfa->num_submatches; i++)
|
| - saved_states[i].tag = -1;
|
| - }
|
| + if (saved_states == NULL) {
|
| + xfree(regset);
|
| + xfree(parents);
|
| + return REG_ESPACE;
|
| + } else {
|
| + unsigned int i;
|
| + for (i = 0; i <= tnfa->num_submatches; i++)
|
| + saved_states[i].tag = -1;
|
| + }
|
|
|
| STACK_PUSH(stack, voidptr, node);
|
| STACK_PUSH(stack, int, ADDTAGS_RECURSE);
|
|
|
| - while (tre_stack_num_objects(stack) > bottom)
|
| - {
|
| - if (status != REG_OK)
|
| - break;
|
| -
|
| - symbol = (tre_addtags_symbol_t)tre_stack_pop_int(stack);
|
| - switch (symbol)
|
| - {
|
| -
|
| - case ADDTAGS_SET_SUBMATCH_END:
|
| - {
|
| - int id = tre_stack_pop_int(stack);
|
| - int i;
|
| -
|
| - /* Add end of this submatch to regset. */
|
| - for (i = 0; regset[i] >= 0; i++);
|
| - regset[i] = id * 2 + 1;
|
| - regset[i + 1] = -1;
|
| -
|
| - /* Pop this submatch from the parents stack. */
|
| - for (i = 0; parents[i] >= 0; i++);
|
| - parents[i - 1] = -1;
|
| - break;
|
| - }
|
| -
|
| - case ADDTAGS_RECURSE:
|
| - node = tre_stack_pop_voidptr(stack);
|
| -
|
| - if (node->submatch_id >= 0)
|
| - {
|
| - int id = node->submatch_id;
|
| - int i;
|
| -
|
| -
|
| - /* Add start of this submatch to regset. */
|
| - for (i = 0; regset[i] >= 0; i++);
|
| - regset[i] = id * 2;
|
| - regset[i + 1] = -1;
|
| -
|
| - if (!first_pass)
|
| - {
|
| - for (i = 0; parents[i] >= 0; i++);
|
| - tnfa->submatch_data[id].parents = NULL;
|
| - if (i > 0)
|
| - {
|
| - int *p = xmalloc(sizeof(*p) * (i + 1));
|
| - if (p == NULL)
|
| - {
|
| - status = REG_ESPACE;
|
| - break;
|
| - }
|
| - assert(tnfa->submatch_data[id].parents == NULL);
|
| - tnfa->submatch_data[id].parents = p;
|
| - for (i = 0; parents[i] >= 0; i++)
|
| - p[i] = parents[i];
|
| - p[i] = -1;
|
| - }
|
| - }
|
| -
|
| - /* Add end of this submatch to regset after processing this
|
| - node. */
|
| - STACK_PUSHX(stack, int, node->submatch_id);
|
| - STACK_PUSHX(stack, int, ADDTAGS_SET_SUBMATCH_END);
|
| - }
|
| -
|
| - switch (node->type)
|
| - {
|
| - case LITERAL:
|
| - {
|
| - tre_literal_t *lit = node->obj;
|
| -
|
| - if (!IS_SPECIAL(lit) || IS_BACKREF(lit))
|
| - {
|
| - int i;
|
| - if (regset[0] >= 0)
|
| - {
|
| - /* Regset is not empty, so add a tag before the
|
| - literal or backref. */
|
| - if (!first_pass)
|
| - {
|
| - status = tre_add_tag_left(mem, node, tag);
|
| - tnfa->tag_directions[tag] = direction;
|
| - if (minimal_tag >= 0)
|
| - {
|
| - for (i = 0; tnfa->minimal_tags[i] >= 0; i++);
|
| - tnfa->minimal_tags[i] = tag;
|
| - tnfa->minimal_tags[i + 1] = minimal_tag;
|
| - tnfa->minimal_tags[i + 2] = -1;
|
| - minimal_tag = -1;
|
| - num_minimals++;
|
| - }
|
| - tre_purge_regset(regset, tnfa, tag);
|
| - }
|
| - else
|
| - {
|
| - node->num_tags = 1;
|
| - }
|
| -
|
| - regset[0] = -1;
|
| - tag = next_tag;
|
| - num_tags++;
|
| - next_tag++;
|
| - }
|
| - }
|
| - else
|
| - {
|
| - assert(!IS_TAG(lit));
|
| - }
|
| - break;
|
| - }
|
| - case CATENATION:
|
| - {
|
| - tre_catenation_t *cat = node->obj;
|
| - tre_ast_node_t *left = cat->left;
|
| - tre_ast_node_t *right = cat->right;
|
| - int reserved_tag = -1;
|
| -
|
| -
|
| - /* After processing right child. */
|
| - STACK_PUSHX(stack, voidptr, node);
|
| - STACK_PUSHX(stack, int, ADDTAGS_AFTER_CAT_RIGHT);
|
| -
|
| - /* Process right child. */
|
| - STACK_PUSHX(stack, voidptr, right);
|
| - STACK_PUSHX(stack, int, ADDTAGS_RECURSE);
|
| -
|
| - /* After processing left child. */
|
| - STACK_PUSHX(stack, int, next_tag + left->num_tags);
|
| - if (left->num_tags > 0 && right->num_tags > 0)
|
| - {
|
| - /* Reserve the next tag to the right child. */
|
| - reserved_tag = next_tag;
|
| - next_tag++;
|
| - }
|
| - STACK_PUSHX(stack, int, reserved_tag);
|
| - STACK_PUSHX(stack, int, ADDTAGS_AFTER_CAT_LEFT);
|
| -
|
| - /* Process left child. */
|
| - STACK_PUSHX(stack, voidptr, left);
|
| - STACK_PUSHX(stack, int, ADDTAGS_RECURSE);
|
| -
|
| - }
|
| - break;
|
| - case ITERATION:
|
| - {
|
| - tre_iteration_t *iter = node->obj;
|
| -
|
| - if (first_pass)
|
| - {
|
| - STACK_PUSHX(stack, int, regset[0] >= 0 || iter->minimal);
|
| - }
|
| - else
|
| - {
|
| - STACK_PUSHX(stack, int, tag);
|
| - STACK_PUSHX(stack, int, iter->minimal);
|
| - }
|
| - STACK_PUSHX(stack, voidptr, node);
|
| - STACK_PUSHX(stack, int, ADDTAGS_AFTER_ITERATION);
|
| -
|
| - STACK_PUSHX(stack, voidptr, iter->arg);
|
| - STACK_PUSHX(stack, int, ADDTAGS_RECURSE);
|
| + while (tre_stack_num_objects(stack) > bottom) {
|
| + if (status != REG_OK)
|
| + break;
|
|
|
| - /* Regset is not empty, so add a tag here. */
|
| - if (regset[0] >= 0 || iter->minimal)
|
| - {
|
| - if (!first_pass)
|
| - {
|
| - int i;
|
| - status = tre_add_tag_left(mem, node, tag);
|
| - if (iter->minimal)
|
| - tnfa->tag_directions[tag] = TRE_TAG_MAXIMIZE;
|
| - else
|
| - tnfa->tag_directions[tag] = direction;
|
| - if (minimal_tag >= 0)
|
| - {
|
| - for (i = 0; tnfa->minimal_tags[i] >= 0; i++);
|
| - tnfa->minimal_tags[i] = tag;
|
| - tnfa->minimal_tags[i + 1] = minimal_tag;
|
| - tnfa->minimal_tags[i + 2] = -1;
|
| - minimal_tag = -1;
|
| - num_minimals++;
|
| - }
|
| - tre_purge_regset(regset, tnfa, tag);
|
| - }
|
| -
|
| - regset[0] = -1;
|
| - tag = next_tag;
|
| - num_tags++;
|
| - next_tag++;
|
| - }
|
| - direction = TRE_TAG_MINIMIZE;
|
| - }
|
| - break;
|
| - case UNION:
|
| - {
|
| - tre_union_t *uni = node->obj;
|
| - tre_ast_node_t *left = uni->left;
|
| - tre_ast_node_t *right = uni->right;
|
| - int left_tag;
|
| - int right_tag;
|
| -
|
| - if (regset[0] >= 0)
|
| - {
|
| - left_tag = next_tag;
|
| - right_tag = next_tag + 1;
|
| - }
|
| - else
|
| - {
|
| - left_tag = tag;
|
| - right_tag = next_tag;
|
| - }
|
| + symbol = (tre_addtags_symbol_t)tre_stack_pop_int(stack);
|
| + switch (symbol) {
|
| + case ADDTAGS_SET_SUBMATCH_END: {
|
| + int id = tre_stack_pop_int(stack);
|
| + int i;
|
| +
|
| + /* Add end of this submatch to regset. */
|
| + for (i = 0; regset[i] >= 0; i++)
|
| + ;
|
| + regset[i] = id * 2 + 1;
|
| + regset[i + 1] = -1;
|
| +
|
| + /* Pop this submatch from the parents stack. */
|
| + for (i = 0; parents[i] >= 0; i++)
|
| + ;
|
| + parents[i - 1] = -1;
|
| + break;
|
| + }
|
|
|
| - /* After processing right child. */
|
| - STACK_PUSHX(stack, int, right_tag);
|
| - STACK_PUSHX(stack, int, left_tag);
|
| - STACK_PUSHX(stack, voidptr, regset);
|
| - STACK_PUSHX(stack, int, regset[0] >= 0);
|
| - STACK_PUSHX(stack, voidptr, node);
|
| - STACK_PUSHX(stack, voidptr, right);
|
| - STACK_PUSHX(stack, voidptr, left);
|
| - STACK_PUSHX(stack, int, ADDTAGS_AFTER_UNION_RIGHT);
|
| -
|
| - /* Process right child. */
|
| - STACK_PUSHX(stack, voidptr, right);
|
| - STACK_PUSHX(stack, int, ADDTAGS_RECURSE);
|
| -
|
| - /* After processing left child. */
|
| - STACK_PUSHX(stack, int, ADDTAGS_AFTER_UNION_LEFT);
|
| -
|
| - /* Process left child. */
|
| - STACK_PUSHX(stack, voidptr, left);
|
| - STACK_PUSHX(stack, int, ADDTAGS_RECURSE);
|
| -
|
| - /* Regset is not empty, so add a tag here. */
|
| - if (regset[0] >= 0)
|
| - {
|
| - if (!first_pass)
|
| - {
|
| - int i;
|
| - status = tre_add_tag_left(mem, node, tag);
|
| - tnfa->tag_directions[tag] = direction;
|
| - if (minimal_tag >= 0)
|
| - {
|
| - for (i = 0; tnfa->minimal_tags[i] >= 0; i++);
|
| - tnfa->minimal_tags[i] = tag;
|
| - tnfa->minimal_tags[i + 1] = minimal_tag;
|
| - tnfa->minimal_tags[i + 2] = -1;
|
| - minimal_tag = -1;
|
| - num_minimals++;
|
| - }
|
| - tre_purge_regset(regset, tnfa, tag);
|
| - }
|
| -
|
| - regset[0] = -1;
|
| - tag = next_tag;
|
| - num_tags++;
|
| - next_tag++;
|
| - }
|
| + case ADDTAGS_RECURSE:
|
| + node = tre_stack_pop_voidptr(stack);
|
| +
|
| + if (node->submatch_id >= 0) {
|
| + int id = node->submatch_id;
|
| + int i;
|
| +
|
| + /* Add start of this submatch to regset. */
|
| + for (i = 0; regset[i] >= 0; i++)
|
| + ;
|
| + regset[i] = id * 2;
|
| + regset[i + 1] = -1;
|
| +
|
| + if (!first_pass) {
|
| + for (i = 0; parents[i] >= 0; i++)
|
| + ;
|
| + tnfa->submatch_data[id].parents = NULL;
|
| + if (i > 0) {
|
| + int* p = xmalloc(sizeof(*p) * (i + 1));
|
| + if (p == NULL) {
|
| + status = REG_ESPACE;
|
| + break;
|
| + }
|
| + assert(tnfa->submatch_data[id].parents == NULL);
|
| + tnfa->submatch_data[id].parents = p;
|
| + for (i = 0; parents[i] >= 0; i++)
|
| + p[i] = parents[i];
|
| + p[i] = -1;
|
| + }
|
| + }
|
| +
|
| + /* Add end of this submatch to regset after processing this
|
| + node. */
|
| + STACK_PUSHX(stack, int, node->submatch_id);
|
| + STACK_PUSHX(stack, int, ADDTAGS_SET_SUBMATCH_END);
|
| + }
|
| +
|
| + switch (node->type) {
|
| + case LITERAL: {
|
| + tre_literal_t* lit = node->obj;
|
| +
|
| + if (!IS_SPECIAL(lit) || IS_BACKREF(lit)) {
|
| + int i;
|
| + if (regset[0] >= 0) {
|
| + /* Regset is not empty, so add a tag before the
|
| + literal or backref. */
|
| + if (!first_pass) {
|
| + status = tre_add_tag_left(mem, node, tag);
|
| + tnfa->tag_directions[tag] = direction;
|
| + if (minimal_tag >= 0) {
|
| + for (i = 0; tnfa->minimal_tags[i] >= 0; i++)
|
| + ;
|
| + tnfa->minimal_tags[i] = tag;
|
| + tnfa->minimal_tags[i + 1] = minimal_tag;
|
| + tnfa->minimal_tags[i + 2] = -1;
|
| + minimal_tag = -1;
|
| + num_minimals++;
|
| + }
|
| + tre_purge_regset(regset, tnfa, tag);
|
| + } else {
|
| + node->num_tags = 1;
|
| + }
|
| +
|
| + regset[0] = -1;
|
| + tag = next_tag;
|
| + num_tags++;
|
| + next_tag++;
|
| + }
|
| + } else {
|
| + assert(!IS_TAG(lit));
|
| + }
|
| + break;
|
| + }
|
| + case CATENATION: {
|
| + tre_catenation_t* cat = node->obj;
|
| + tre_ast_node_t* left = cat->left;
|
| + tre_ast_node_t* right = cat->right;
|
| + int reserved_tag = -1;
|
| +
|
| + /* After processing right child. */
|
| + STACK_PUSHX(stack, voidptr, node);
|
| + STACK_PUSHX(stack, int, ADDTAGS_AFTER_CAT_RIGHT);
|
| +
|
| + /* Process right child. */
|
| + STACK_PUSHX(stack, voidptr, right);
|
| + STACK_PUSHX(stack, int, ADDTAGS_RECURSE);
|
| +
|
| + /* After processing left child. */
|
| + STACK_PUSHX(stack, int, next_tag + left->num_tags);
|
| + if (left->num_tags > 0 && right->num_tags > 0) {
|
| + /* Reserve the next tag to the right child. */
|
| + reserved_tag = next_tag;
|
| + next_tag++;
|
| + }
|
| + STACK_PUSHX(stack, int, reserved_tag);
|
| + STACK_PUSHX(stack, int, ADDTAGS_AFTER_CAT_LEFT);
|
| +
|
| + /* Process left child. */
|
| + STACK_PUSHX(stack, voidptr, left);
|
| + STACK_PUSHX(stack, int, ADDTAGS_RECURSE);
|
| +
|
| + } break;
|
| + case ITERATION: {
|
| + tre_iteration_t* iter = node->obj;
|
| +
|
| + if (first_pass) {
|
| + STACK_PUSHX(stack, int, regset[0] >= 0 || iter->minimal);
|
| + } else {
|
| + STACK_PUSHX(stack, int, tag);
|
| + STACK_PUSHX(stack, int, iter->minimal);
|
| + }
|
| + STACK_PUSHX(stack, voidptr, node);
|
| + STACK_PUSHX(stack, int, ADDTAGS_AFTER_ITERATION);
|
| +
|
| + STACK_PUSHX(stack, voidptr, iter->arg);
|
| + STACK_PUSHX(stack, int, ADDTAGS_RECURSE);
|
| +
|
| + /* Regset is not empty, so add a tag here. */
|
| + if (regset[0] >= 0 || iter->minimal) {
|
| + if (!first_pass) {
|
| + int i;
|
| + status = tre_add_tag_left(mem, node, tag);
|
| + if (iter->minimal)
|
| + tnfa->tag_directions[tag] = TRE_TAG_MAXIMIZE;
|
| + else
|
| + tnfa->tag_directions[tag] = direction;
|
| + if (minimal_tag >= 0) {
|
| + for (i = 0; tnfa->minimal_tags[i] >= 0; i++)
|
| + ;
|
| + tnfa->minimal_tags[i] = tag;
|
| + tnfa->minimal_tags[i + 1] = minimal_tag;
|
| + tnfa->minimal_tags[i + 2] = -1;
|
| + minimal_tag = -1;
|
| + num_minimals++;
|
| + }
|
| + tre_purge_regset(regset, tnfa, tag);
|
| + }
|
| +
|
| + regset[0] = -1;
|
| + tag = next_tag;
|
| + num_tags++;
|
| + next_tag++;
|
| + }
|
| + direction = TRE_TAG_MINIMIZE;
|
| + } break;
|
| + case UNION: {
|
| + tre_union_t* uni = node->obj;
|
| + tre_ast_node_t* left = uni->left;
|
| + tre_ast_node_t* right = uni->right;
|
| + int left_tag;
|
| + int right_tag;
|
| +
|
| + if (regset[0] >= 0) {
|
| + left_tag = next_tag;
|
| + right_tag = next_tag + 1;
|
| + } else {
|
| + left_tag = tag;
|
| + right_tag = next_tag;
|
| + }
|
| +
|
| + /* After processing right child. */
|
| + STACK_PUSHX(stack, int, right_tag);
|
| + STACK_PUSHX(stack, int, left_tag);
|
| + STACK_PUSHX(stack, voidptr, regset);
|
| + STACK_PUSHX(stack, int, regset[0] >= 0);
|
| + STACK_PUSHX(stack, voidptr, node);
|
| + STACK_PUSHX(stack, voidptr, right);
|
| + STACK_PUSHX(stack, voidptr, left);
|
| + STACK_PUSHX(stack, int, ADDTAGS_AFTER_UNION_RIGHT);
|
| +
|
| + /* Process right child. */
|
| + STACK_PUSHX(stack, voidptr, right);
|
| + STACK_PUSHX(stack, int, ADDTAGS_RECURSE);
|
| +
|
| + /* After processing left child. */
|
| + STACK_PUSHX(stack, int, ADDTAGS_AFTER_UNION_LEFT);
|
| +
|
| + /* Process left child. */
|
| + STACK_PUSHX(stack, voidptr, left);
|
| + STACK_PUSHX(stack, int, ADDTAGS_RECURSE);
|
| +
|
| + /* Regset is not empty, so add a tag here. */
|
| + if (regset[0] >= 0) {
|
| + if (!first_pass) {
|
| + int i;
|
| + status = tre_add_tag_left(mem, node, tag);
|
| + tnfa->tag_directions[tag] = direction;
|
| + if (minimal_tag >= 0) {
|
| + for (i = 0; tnfa->minimal_tags[i] >= 0; i++)
|
| + ;
|
| + tnfa->minimal_tags[i] = tag;
|
| + tnfa->minimal_tags[i + 1] = minimal_tag;
|
| + tnfa->minimal_tags[i + 2] = -1;
|
| + minimal_tag = -1;
|
| + num_minimals++;
|
| + }
|
| + tre_purge_regset(regset, tnfa, tag);
|
| + }
|
| +
|
| + regset[0] = -1;
|
| + tag = next_tag;
|
| + num_tags++;
|
| + next_tag++;
|
| + }
|
| +
|
| + if (node->num_submatches > 0) {
|
| + /* The next two tags are reserved for markers. */
|
| + next_tag++;
|
| + tag = next_tag;
|
| + next_tag++;
|
| + }
|
| +
|
| + break;
|
| + }
|
| + }
|
| +
|
| + if (node->submatch_id >= 0) {
|
| + int i;
|
| + /* Push this submatch on the parents stack. */
|
| + for (i = 0; parents[i] >= 0; i++)
|
| + ;
|
| + parents[i] = node->submatch_id;
|
| + parents[i + 1] = -1;
|
| + }
|
| +
|
| + break; /* end case: ADDTAGS_RECURSE */
|
| +
|
| + case ADDTAGS_AFTER_ITERATION: {
|
| + int minimal = 0;
|
| + int enter_tag;
|
| + node = tre_stack_pop_voidptr(stack);
|
| + if (first_pass) {
|
| + node->num_tags = ((tre_iteration_t*)node->obj)->arg->num_tags +
|
| + tre_stack_pop_int(stack);
|
| + minimal_tag = -1;
|
| + } else {
|
| + minimal = tre_stack_pop_int(stack);
|
| + enter_tag = tre_stack_pop_int(stack);
|
| + if (minimal)
|
| + minimal_tag = enter_tag;
|
| + }
|
| +
|
| + if (!first_pass) {
|
| + if (minimal)
|
| + direction = TRE_TAG_MINIMIZE;
|
| + else
|
| + direction = TRE_TAG_MAXIMIZE;
|
| + }
|
| + break;
|
| + }
|
|
|
| - if (node->num_submatches > 0)
|
| - {
|
| - /* The next two tags are reserved for markers. */
|
| - next_tag++;
|
| - tag = next_tag;
|
| - next_tag++;
|
| - }
|
| + case ADDTAGS_AFTER_CAT_LEFT: {
|
| + int new_tag = tre_stack_pop_int(stack);
|
| + next_tag = tre_stack_pop_int(stack);
|
| + if (new_tag >= 0) {
|
| + tag = new_tag;
|
| + }
|
| + break;
|
| + }
|
|
|
| - break;
|
| - }
|
| - }
|
| -
|
| - if (node->submatch_id >= 0)
|
| - {
|
| - int i;
|
| - /* Push this submatch on the parents stack. */
|
| - for (i = 0; parents[i] >= 0; i++);
|
| - parents[i] = node->submatch_id;
|
| - parents[i + 1] = -1;
|
| - }
|
| -
|
| - break; /* end case: ADDTAGS_RECURSE */
|
| -
|
| - case ADDTAGS_AFTER_ITERATION:
|
| - {
|
| - int minimal = 0;
|
| - int enter_tag;
|
| - node = tre_stack_pop_voidptr(stack);
|
| - if (first_pass)
|
| - {
|
| - node->num_tags = ((tre_iteration_t *)node->obj)->arg->num_tags
|
| - + tre_stack_pop_int(stack);
|
| - minimal_tag = -1;
|
| - }
|
| - else
|
| - {
|
| - minimal = tre_stack_pop_int(stack);
|
| - enter_tag = tre_stack_pop_int(stack);
|
| - if (minimal)
|
| - minimal_tag = enter_tag;
|
| - }
|
| -
|
| - if (!first_pass)
|
| - {
|
| - if (minimal)
|
| - direction = TRE_TAG_MINIMIZE;
|
| - else
|
| - direction = TRE_TAG_MAXIMIZE;
|
| - }
|
| - break;
|
| - }
|
| -
|
| - case ADDTAGS_AFTER_CAT_LEFT:
|
| - {
|
| - int new_tag = tre_stack_pop_int(stack);
|
| - next_tag = tre_stack_pop_int(stack);
|
| - if (new_tag >= 0)
|
| - {
|
| - tag = new_tag;
|
| - }
|
| - break;
|
| - }
|
| -
|
| - case ADDTAGS_AFTER_CAT_RIGHT:
|
| - node = tre_stack_pop_voidptr(stack);
|
| - if (first_pass)
|
| - node->num_tags = ((tre_catenation_t *)node->obj)->left->num_tags
|
| - + ((tre_catenation_t *)node->obj)->right->num_tags;
|
| - break;
|
| -
|
| - case ADDTAGS_AFTER_UNION_LEFT:
|
| - /* Lift the bottom of the `regset' array so that when processing
|
| - the right operand the items currently in the array are
|
| - invisible. The original bottom was saved at ADDTAGS_UNION and
|
| - will be restored at ADDTAGS_AFTER_UNION_RIGHT below. */
|
| - while (*regset >= 0)
|
| - regset++;
|
| - break;
|
| -
|
| - case ADDTAGS_AFTER_UNION_RIGHT:
|
| - {
|
| - int added_tags, tag_left, tag_right;
|
| - tre_ast_node_t *left = tre_stack_pop_voidptr(stack);
|
| - tre_ast_node_t *right = tre_stack_pop_voidptr(stack);
|
| - node = tre_stack_pop_voidptr(stack);
|
| - added_tags = tre_stack_pop_int(stack);
|
| - if (first_pass)
|
| - {
|
| - node->num_tags = ((tre_union_t *)node->obj)->left->num_tags
|
| - + ((tre_union_t *)node->obj)->right->num_tags + added_tags
|
| - + ((node->num_submatches > 0) ? 2 : 0);
|
| - }
|
| - regset = tre_stack_pop_voidptr(stack);
|
| - tag_left = tre_stack_pop_int(stack);
|
| - tag_right = tre_stack_pop_int(stack);
|
| -
|
| - /* Add tags after both children, the left child gets a smaller
|
| - tag than the right child. This guarantees that we prefer
|
| - the left child over the right child. */
|
| - /* XXX - This is not always necessary (if the children have
|
| - tags which must be seen for every match of that child). */
|
| - /* XXX - Check if this is the only place where tre_add_tag_right
|
| - is used. If so, use tre_add_tag_left (putting the tag before
|
| - the child as opposed after the child) and throw away
|
| - tre_add_tag_right. */
|
| - if (node->num_submatches > 0)
|
| - {
|
| - if (!first_pass)
|
| - {
|
| - status = tre_add_tag_right(mem, left, tag_left);
|
| - tnfa->tag_directions[tag_left] = TRE_TAG_MAXIMIZE;
|
| - if (status == REG_OK)
|
| - status = tre_add_tag_right(mem, right, tag_right);
|
| - tnfa->tag_directions[tag_right] = TRE_TAG_MAXIMIZE;
|
| - }
|
| - num_tags += 2;
|
| - }
|
| - direction = TRE_TAG_MAXIMIZE;
|
| - break;
|
| - }
|
| + case ADDTAGS_AFTER_CAT_RIGHT:
|
| + node = tre_stack_pop_voidptr(stack);
|
| + if (first_pass)
|
| + node->num_tags = ((tre_catenation_t*)node->obj)->left->num_tags +
|
| + ((tre_catenation_t*)node->obj)->right->num_tags;
|
| + break;
|
| +
|
| + case ADDTAGS_AFTER_UNION_LEFT:
|
| + /* Lift the bottom of the `regset' array so that when processing
|
| + the right operand the items currently in the array are
|
| + invisible. The original bottom was saved at ADDTAGS_UNION and
|
| + will be restored at ADDTAGS_AFTER_UNION_RIGHT below. */
|
| + while (*regset >= 0)
|
| + regset++;
|
| + break;
|
| +
|
| + case ADDTAGS_AFTER_UNION_RIGHT: {
|
| + int added_tags, tag_left, tag_right;
|
| + tre_ast_node_t* left = tre_stack_pop_voidptr(stack);
|
| + tre_ast_node_t* right = tre_stack_pop_voidptr(stack);
|
| + node = tre_stack_pop_voidptr(stack);
|
| + added_tags = tre_stack_pop_int(stack);
|
| + if (first_pass) {
|
| + node->num_tags = ((tre_union_t*)node->obj)->left->num_tags +
|
| + ((tre_union_t*)node->obj)->right->num_tags +
|
| + added_tags + ((node->num_submatches > 0) ? 2 : 0);
|
| + }
|
| + regset = tre_stack_pop_voidptr(stack);
|
| + tag_left = tre_stack_pop_int(stack);
|
| + tag_right = tre_stack_pop_int(stack);
|
| +
|
| + /* Add tags after both children, the left child gets a smaller
|
| + tag than the right child. This guarantees that we prefer
|
| + the left child over the right child. */
|
| + /* XXX - This is not always necessary (if the children have
|
| + tags which must be seen for every match of that child). */
|
| + /* XXX - Check if this is the only place where tre_add_tag_right
|
| + is used. If so, use tre_add_tag_left (putting the tag before
|
| + the child as opposed after the child) and throw away
|
| + tre_add_tag_right. */
|
| + if (node->num_submatches > 0) {
|
| + if (!first_pass) {
|
| + status = tre_add_tag_right(mem, left, tag_left);
|
| + tnfa->tag_directions[tag_left] = TRE_TAG_MAXIMIZE;
|
| + if (status == REG_OK)
|
| + status = tre_add_tag_right(mem, right, tag_right);
|
| + tnfa->tag_directions[tag_right] = TRE_TAG_MAXIMIZE;
|
| + }
|
| + num_tags += 2;
|
| + }
|
| + direction = TRE_TAG_MAXIMIZE;
|
| + break;
|
| + }
|
|
|
| - default:
|
| - assert(0);
|
| - break;
|
| + default:
|
| + assert(0);
|
| + break;
|
|
|
| - } /* end switch(symbol) */
|
| - } /* end while(tre_stack_num_objects(stack) > bottom) */
|
| + } /* end switch(symbol) */
|
| + } /* end while(tre_stack_num_objects(stack) > bottom) */
|
|
|
| if (!first_pass)
|
| tre_purge_regset(regset, tnfa, tag);
|
|
|
| - if (!first_pass && minimal_tag >= 0)
|
| - {
|
| - int i;
|
| - for (i = 0; tnfa->minimal_tags[i] >= 0; i++);
|
| - tnfa->minimal_tags[i] = tag;
|
| - tnfa->minimal_tags[i + 1] = minimal_tag;
|
| - tnfa->minimal_tags[i + 2] = -1;
|
| - minimal_tag = -1;
|
| - num_minimals++;
|
| - }
|
| + if (!first_pass && minimal_tag >= 0) {
|
| + int i;
|
| + for (i = 0; tnfa->minimal_tags[i] >= 0; i++)
|
| + ;
|
| + tnfa->minimal_tags[i] = tag;
|
| + tnfa->minimal_tags[i + 1] = minimal_tag;
|
| + tnfa->minimal_tags[i + 2] = -1;
|
| + minimal_tag = -1;
|
| + num_minimals++;
|
| + }
|
|
|
| assert(tree->num_tags == num_tags);
|
| tnfa->end_tag = num_tags;
|
| @@ -1649,173 +1561,154 @@ tre_add_tags(tre_mem_t mem, tre_stack_t *stack, tre_ast_node_t *tree,
|
| return status;
|
| }
|
|
|
| -
|
| -
|
| /*
|
| AST to TNFA compilation routines.
|
| */
|
|
|
| -typedef enum {
|
| - COPY_RECURSE,
|
| - COPY_SET_RESULT_PTR
|
| -} tre_copyast_symbol_t;
|
| +typedef enum { COPY_RECURSE, COPY_SET_RESULT_PTR } tre_copyast_symbol_t;
|
|
|
| /* Flags for tre_copy_ast(). */
|
| -#define COPY_REMOVE_TAGS 1
|
| -#define COPY_MAXIMIZE_FIRST_TAG 2
|
| -
|
| -static reg_errcode_t
|
| -tre_copy_ast(tre_mem_t mem, tre_stack_t *stack, tre_ast_node_t *ast,
|
| - int flags, int *pos_add, tre_tag_direction_t *tag_directions,
|
| - tre_ast_node_t **copy, int *max_pos)
|
| -{
|
| +#define COPY_REMOVE_TAGS 1
|
| +#define COPY_MAXIMIZE_FIRST_TAG 2
|
| +
|
| +static reg_errcode_t tre_copy_ast(tre_mem_t mem,
|
| + tre_stack_t* stack,
|
| + tre_ast_node_t* ast,
|
| + int flags,
|
| + int* pos_add,
|
| + tre_tag_direction_t* tag_directions,
|
| + tre_ast_node_t** copy,
|
| + int* max_pos) {
|
| reg_errcode_t status = REG_OK;
|
| int bottom = tre_stack_num_objects(stack);
|
| int num_copied = 0;
|
| int first_tag = 1;
|
| - tre_ast_node_t **result = copy;
|
| + tre_ast_node_t** result = copy;
|
| tre_copyast_symbol_t symbol;
|
|
|
| STACK_PUSH(stack, voidptr, ast);
|
| STACK_PUSH(stack, int, COPY_RECURSE);
|
|
|
| - while (status == REG_OK && tre_stack_num_objects(stack) > bottom)
|
| - {
|
| - tre_ast_node_t *node;
|
| - if (status != REG_OK)
|
| - break;
|
| -
|
| - symbol = (tre_copyast_symbol_t)tre_stack_pop_int(stack);
|
| - switch (symbol)
|
| - {
|
| - case COPY_SET_RESULT_PTR:
|
| - result = tre_stack_pop_voidptr(stack);
|
| - break;
|
| - case COPY_RECURSE:
|
| - node = tre_stack_pop_voidptr(stack);
|
| - switch (node->type)
|
| - {
|
| - case LITERAL:
|
| - {
|
| - tre_literal_t *lit = node->obj;
|
| - int pos = lit->position;
|
| - int min = lit->code_min;
|
| - int max = lit->code_max;
|
| - if (!IS_SPECIAL(lit) || IS_BACKREF(lit))
|
| - {
|
| - /* XXX - e.g. [ab] has only one position but two
|
| - nodes, so we are creating holes in the state space
|
| - here. Not fatal, just wastes memory. */
|
| - pos += *pos_add;
|
| - num_copied++;
|
| - }
|
| - else if (IS_TAG(lit) && (flags & COPY_REMOVE_TAGS))
|
| - {
|
| - /* Change this tag to empty. */
|
| - min = EMPTY;
|
| - max = pos = -1;
|
| - }
|
| - else if (IS_TAG(lit) && (flags & COPY_MAXIMIZE_FIRST_TAG)
|
| - && first_tag)
|
| - {
|
| - /* Maximize the first tag. */
|
| - tag_directions[max] = TRE_TAG_MAXIMIZE;
|
| - first_tag = 0;
|
| - }
|
| - *result = tre_ast_new_literal(mem, min, max, pos);
|
| - if (*result == NULL)
|
| - status = REG_ESPACE;
|
| - else {
|
| - tre_literal_t *p = (*result)->obj;
|
| - p->class = lit->class;
|
| - p->neg_classes = lit->neg_classes;
|
| - }
|
| -
|
| - if (pos > *max_pos)
|
| - *max_pos = pos;
|
| - break;
|
| - }
|
| - case UNION:
|
| - {
|
| - tre_union_t *uni = node->obj;
|
| - tre_union_t *tmp;
|
| - *result = tre_ast_new_union(mem, uni->left, uni->right);
|
| - if (*result == NULL)
|
| - {
|
| - status = REG_ESPACE;
|
| - break;
|
| - }
|
| - tmp = (*result)->obj;
|
| - result = &tmp->left;
|
| - STACK_PUSHX(stack, voidptr, uni->right);
|
| - STACK_PUSHX(stack, int, COPY_RECURSE);
|
| - STACK_PUSHX(stack, voidptr, &tmp->right);
|
| - STACK_PUSHX(stack, int, COPY_SET_RESULT_PTR);
|
| - STACK_PUSHX(stack, voidptr, uni->left);
|
| - STACK_PUSHX(stack, int, COPY_RECURSE);
|
| - break;
|
| - }
|
| - case CATENATION:
|
| - {
|
| - tre_catenation_t *cat = node->obj;
|
| - tre_catenation_t *tmp;
|
| - *result = tre_ast_new_catenation(mem, cat->left, cat->right);
|
| - if (*result == NULL)
|
| - {
|
| - status = REG_ESPACE;
|
| - break;
|
| - }
|
| - tmp = (*result)->obj;
|
| - tmp->left = NULL;
|
| - tmp->right = NULL;
|
| - result = &tmp->left;
|
| -
|
| - STACK_PUSHX(stack, voidptr, cat->right);
|
| - STACK_PUSHX(stack, int, COPY_RECURSE);
|
| - STACK_PUSHX(stack, voidptr, &tmp->right);
|
| - STACK_PUSHX(stack, int, COPY_SET_RESULT_PTR);
|
| - STACK_PUSHX(stack, voidptr, cat->left);
|
| - STACK_PUSHX(stack, int, COPY_RECURSE);
|
| - break;
|
| - }
|
| - case ITERATION:
|
| - {
|
| - tre_iteration_t *iter = node->obj;
|
| - STACK_PUSHX(stack, voidptr, iter->arg);
|
| - STACK_PUSHX(stack, int, COPY_RECURSE);
|
| - *result = tre_ast_new_iter(mem, iter->arg, iter->min,
|
| - iter->max, iter->minimal);
|
| - if (*result == NULL)
|
| - {
|
| - status = REG_ESPACE;
|
| - break;
|
| - }
|
| - iter = (*result)->obj;
|
| - result = &iter->arg;
|
| - break;
|
| - }
|
| - default:
|
| - assert(0);
|
| - break;
|
| - }
|
| - break;
|
| - }
|
| + while (status == REG_OK && tre_stack_num_objects(stack) > bottom) {
|
| + tre_ast_node_t* node;
|
| + if (status != REG_OK)
|
| + break;
|
| +
|
| + symbol = (tre_copyast_symbol_t)tre_stack_pop_int(stack);
|
| + switch (symbol) {
|
| + case COPY_SET_RESULT_PTR:
|
| + result = tre_stack_pop_voidptr(stack);
|
| + break;
|
| + case COPY_RECURSE:
|
| + node = tre_stack_pop_voidptr(stack);
|
| + switch (node->type) {
|
| + case LITERAL: {
|
| + tre_literal_t* lit = node->obj;
|
| + int pos = lit->position;
|
| + int min = lit->code_min;
|
| + int max = lit->code_max;
|
| + if (!IS_SPECIAL(lit) || IS_BACKREF(lit)) {
|
| + /* XXX - e.g. [ab] has only one position but two
|
| + nodes, so we are creating holes in the state space
|
| + here. Not fatal, just wastes memory. */
|
| + pos += *pos_add;
|
| + num_copied++;
|
| + } else if (IS_TAG(lit) && (flags & COPY_REMOVE_TAGS)) {
|
| + /* Change this tag to empty. */
|
| + min = EMPTY;
|
| + max = pos = -1;
|
| + } else if (IS_TAG(lit) && (flags & COPY_MAXIMIZE_FIRST_TAG) &&
|
| + first_tag) {
|
| + /* Maximize the first tag. */
|
| + tag_directions[max] = TRE_TAG_MAXIMIZE;
|
| + first_tag = 0;
|
| + }
|
| + *result = tre_ast_new_literal(mem, min, max, pos);
|
| + if (*result == NULL)
|
| + status = REG_ESPACE;
|
| + else {
|
| + tre_literal_t* p = (*result)->obj;
|
| + p->class = lit->class;
|
| + p->neg_classes = lit->neg_classes;
|
| + }
|
| +
|
| + if (pos > *max_pos)
|
| + *max_pos = pos;
|
| + break;
|
| + }
|
| + case UNION: {
|
| + tre_union_t* uni = node->obj;
|
| + tre_union_t* tmp;
|
| + *result = tre_ast_new_union(mem, uni->left, uni->right);
|
| + if (*result == NULL) {
|
| + status = REG_ESPACE;
|
| + break;
|
| + }
|
| + tmp = (*result)->obj;
|
| + result = &tmp->left;
|
| + STACK_PUSHX(stack, voidptr, uni->right);
|
| + STACK_PUSHX(stack, int, COPY_RECURSE);
|
| + STACK_PUSHX(stack, voidptr, &tmp->right);
|
| + STACK_PUSHX(stack, int, COPY_SET_RESULT_PTR);
|
| + STACK_PUSHX(stack, voidptr, uni->left);
|
| + STACK_PUSHX(stack, int, COPY_RECURSE);
|
| + break;
|
| + }
|
| + case CATENATION: {
|
| + tre_catenation_t* cat = node->obj;
|
| + tre_catenation_t* tmp;
|
| + *result = tre_ast_new_catenation(mem, cat->left, cat->right);
|
| + if (*result == NULL) {
|
| + status = REG_ESPACE;
|
| + break;
|
| + }
|
| + tmp = (*result)->obj;
|
| + tmp->left = NULL;
|
| + tmp->right = NULL;
|
| + result = &tmp->left;
|
| +
|
| + STACK_PUSHX(stack, voidptr, cat->right);
|
| + STACK_PUSHX(stack, int, COPY_RECURSE);
|
| + STACK_PUSHX(stack, voidptr, &tmp->right);
|
| + STACK_PUSHX(stack, int, COPY_SET_RESULT_PTR);
|
| + STACK_PUSHX(stack, voidptr, cat->left);
|
| + STACK_PUSHX(stack, int, COPY_RECURSE);
|
| + break;
|
| + }
|
| + case ITERATION: {
|
| + tre_iteration_t* iter = node->obj;
|
| + STACK_PUSHX(stack, voidptr, iter->arg);
|
| + STACK_PUSHX(stack, int, COPY_RECURSE);
|
| + *result = tre_ast_new_iter(mem, iter->arg, iter->min, iter->max,
|
| + iter->minimal);
|
| + if (*result == NULL) {
|
| + status = REG_ESPACE;
|
| + break;
|
| + }
|
| + iter = (*result)->obj;
|
| + result = &iter->arg;
|
| + break;
|
| + }
|
| + default:
|
| + assert(0);
|
| + break;
|
| + }
|
| + break;
|
| }
|
| + }
|
| *pos_add += num_copied;
|
| return status;
|
| }
|
|
|
| -typedef enum {
|
| - EXPAND_RECURSE,
|
| - EXPAND_AFTER_ITER
|
| -} tre_expand_ast_symbol_t;
|
| +typedef enum { EXPAND_RECURSE, EXPAND_AFTER_ITER } tre_expand_ast_symbol_t;
|
|
|
| /* Expands each iteration node that has a finite nonzero minimum or maximum
|
| iteration count to a catenated sequence of copies of the node. */
|
| -static reg_errcode_t
|
| -tre_expand_ast(tre_mem_t mem, tre_stack_t *stack, tre_ast_node_t *ast,
|
| - int *position, tre_tag_direction_t *tag_directions)
|
| -{
|
| +static reg_errcode_t tre_expand_ast(tre_mem_t mem,
|
| + tre_stack_t* stack,
|
| + tre_ast_node_t* ast,
|
| + int* position,
|
| + tre_tag_direction_t* tag_directions) {
|
| reg_errcode_t status = REG_OK;
|
| int bottom = tre_stack_num_objects(stack);
|
| int pos_add = 0;
|
| @@ -1825,165 +1718,148 @@ tre_expand_ast(tre_mem_t mem, tre_stack_t *stack, tre_ast_node_t *ast,
|
|
|
| STACK_PUSHR(stack, voidptr, ast);
|
| STACK_PUSHR(stack, int, EXPAND_RECURSE);
|
| - while (status == REG_OK && tre_stack_num_objects(stack) > bottom)
|
| - {
|
| - tre_ast_node_t *node;
|
| - tre_expand_ast_symbol_t symbol;
|
| -
|
| - if (status != REG_OK)
|
| - break;
|
| -
|
| - symbol = (tre_expand_ast_symbol_t)tre_stack_pop_int(stack);
|
| - node = tre_stack_pop_voidptr(stack);
|
| - switch (symbol)
|
| - {
|
| - case EXPAND_RECURSE:
|
| - switch (node->type)
|
| - {
|
| - case LITERAL:
|
| - {
|
| - tre_literal_t *lit= node->obj;
|
| - if (!IS_SPECIAL(lit) || IS_BACKREF(lit))
|
| - {
|
| - lit->position += pos_add;
|
| - if (lit->position > max_pos)
|
| - max_pos = lit->position;
|
| - }
|
| - break;
|
| - }
|
| - case UNION:
|
| - {
|
| - tre_union_t *uni = node->obj;
|
| - STACK_PUSHX(stack, voidptr, uni->right);
|
| - STACK_PUSHX(stack, int, EXPAND_RECURSE);
|
| - STACK_PUSHX(stack, voidptr, uni->left);
|
| - STACK_PUSHX(stack, int, EXPAND_RECURSE);
|
| - break;
|
| - }
|
| - case CATENATION:
|
| - {
|
| - tre_catenation_t *cat = node->obj;
|
| - STACK_PUSHX(stack, voidptr, cat->right);
|
| - STACK_PUSHX(stack, int, EXPAND_RECURSE);
|
| - STACK_PUSHX(stack, voidptr, cat->left);
|
| - STACK_PUSHX(stack, int, EXPAND_RECURSE);
|
| - break;
|
| - }
|
| - case ITERATION:
|
| - {
|
| - tre_iteration_t *iter = node->obj;
|
| - STACK_PUSHX(stack, int, pos_add);
|
| - STACK_PUSHX(stack, voidptr, node);
|
| - STACK_PUSHX(stack, int, EXPAND_AFTER_ITER);
|
| - STACK_PUSHX(stack, voidptr, iter->arg);
|
| - STACK_PUSHX(stack, int, EXPAND_RECURSE);
|
| - /* If we are going to expand this node at EXPAND_AFTER_ITER
|
| - then don't increase the `pos' fields of the nodes now, it
|
| - will get done when expanding. */
|
| - if (iter->min > 1 || iter->max > 1)
|
| - pos_add = 0;
|
| - iter_depth++;
|
| - break;
|
| - }
|
| - default:
|
| - assert(0);
|
| - break;
|
| - }
|
| - break;
|
| - case EXPAND_AFTER_ITER:
|
| - {
|
| - tre_iteration_t *iter = node->obj;
|
| - int pos_add_last;
|
| - pos_add = tre_stack_pop_int(stack);
|
| - pos_add_last = pos_add;
|
| - if (iter->min > 1 || iter->max > 1)
|
| - {
|
| - tre_ast_node_t *seq1 = NULL, *seq2 = NULL;
|
| - int j;
|
| - int pos_add_save = pos_add;
|
| -
|
| - /* Create a catenated sequence of copies of the node. */
|
| - for (j = 0; j < iter->min; j++)
|
| - {
|
| - tre_ast_node_t *copy;
|
| - /* Remove tags from all but the last copy. */
|
| - int flags = ((j + 1 < iter->min)
|
| - ? COPY_REMOVE_TAGS
|
| - : COPY_MAXIMIZE_FIRST_TAG);
|
| - pos_add_save = pos_add;
|
| - status = tre_copy_ast(mem, stack, iter->arg, flags,
|
| - &pos_add, tag_directions, ©,
|
| - &max_pos);
|
| - if (status != REG_OK)
|
| - return status;
|
| - if (seq1 != NULL)
|
| - seq1 = tre_ast_new_catenation(mem, seq1, copy);
|
| - else
|
| - seq1 = copy;
|
| - if (seq1 == NULL)
|
| - return REG_ESPACE;
|
| - }
|
| + while (status == REG_OK && tre_stack_num_objects(stack) > bottom) {
|
| + tre_ast_node_t* node;
|
| + tre_expand_ast_symbol_t symbol;
|
|
|
| - if (iter->max == -1)
|
| - {
|
| - /* No upper limit. */
|
| - pos_add_save = pos_add;
|
| - status = tre_copy_ast(mem, stack, iter->arg, 0,
|
| - &pos_add, NULL, &seq2, &max_pos);
|
| - if (status != REG_OK)
|
| - return status;
|
| - seq2 = tre_ast_new_iter(mem, seq2, 0, -1, 0);
|
| - if (seq2 == NULL)
|
| - return REG_ESPACE;
|
| - }
|
| - else
|
| - {
|
| - for (j = iter->min; j < iter->max; j++)
|
| - {
|
| - tre_ast_node_t *tmp, *copy;
|
| - pos_add_save = pos_add;
|
| - status = tre_copy_ast(mem, stack, iter->arg, 0,
|
| - &pos_add, NULL, ©, &max_pos);
|
| - if (status != REG_OK)
|
| - return status;
|
| - if (seq2 != NULL)
|
| - seq2 = tre_ast_new_catenation(mem, copy, seq2);
|
| - else
|
| - seq2 = copy;
|
| - if (seq2 == NULL)
|
| - return REG_ESPACE;
|
| - tmp = tre_ast_new_literal(mem, EMPTY, -1, -1);
|
| - if (tmp == NULL)
|
| - return REG_ESPACE;
|
| - seq2 = tre_ast_new_union(mem, tmp, seq2);
|
| - if (seq2 == NULL)
|
| - return REG_ESPACE;
|
| - }
|
| - }
|
| + if (status != REG_OK)
|
| + break;
|
|
|
| - pos_add = pos_add_save;
|
| - if (seq1 == NULL)
|
| - seq1 = seq2;
|
| - else if (seq2 != NULL)
|
| - seq1 = tre_ast_new_catenation(mem, seq1, seq2);
|
| - if (seq1 == NULL)
|
| - return REG_ESPACE;
|
| - node->obj = seq1->obj;
|
| - node->type = seq1->type;
|
| - }
|
| -
|
| - iter_depth--;
|
| - pos_add_total += pos_add - pos_add_last;
|
| - if (iter_depth == 0)
|
| - pos_add = pos_add_total;
|
| -
|
| - break;
|
| - }
|
| - default:
|
| - assert(0);
|
| - break;
|
| - }
|
| + symbol = (tre_expand_ast_symbol_t)tre_stack_pop_int(stack);
|
| + node = tre_stack_pop_voidptr(stack);
|
| + switch (symbol) {
|
| + case EXPAND_RECURSE:
|
| + switch (node->type) {
|
| + case LITERAL: {
|
| + tre_literal_t* lit = node->obj;
|
| + if (!IS_SPECIAL(lit) || IS_BACKREF(lit)) {
|
| + lit->position += pos_add;
|
| + if (lit->position > max_pos)
|
| + max_pos = lit->position;
|
| + }
|
| + break;
|
| + }
|
| + case UNION: {
|
| + tre_union_t* uni = node->obj;
|
| + STACK_PUSHX(stack, voidptr, uni->right);
|
| + STACK_PUSHX(stack, int, EXPAND_RECURSE);
|
| + STACK_PUSHX(stack, voidptr, uni->left);
|
| + STACK_PUSHX(stack, int, EXPAND_RECURSE);
|
| + break;
|
| + }
|
| + case CATENATION: {
|
| + tre_catenation_t* cat = node->obj;
|
| + STACK_PUSHX(stack, voidptr, cat->right);
|
| + STACK_PUSHX(stack, int, EXPAND_RECURSE);
|
| + STACK_PUSHX(stack, voidptr, cat->left);
|
| + STACK_PUSHX(stack, int, EXPAND_RECURSE);
|
| + break;
|
| + }
|
| + case ITERATION: {
|
| + tre_iteration_t* iter = node->obj;
|
| + STACK_PUSHX(stack, int, pos_add);
|
| + STACK_PUSHX(stack, voidptr, node);
|
| + STACK_PUSHX(stack, int, EXPAND_AFTER_ITER);
|
| + STACK_PUSHX(stack, voidptr, iter->arg);
|
| + STACK_PUSHX(stack, int, EXPAND_RECURSE);
|
| + /* If we are going to expand this node at EXPAND_AFTER_ITER
|
| + then don't increase the `pos' fields of the nodes now, it
|
| + will get done when expanding. */
|
| + if (iter->min > 1 || iter->max > 1)
|
| + pos_add = 0;
|
| + iter_depth++;
|
| + break;
|
| + }
|
| + default:
|
| + assert(0);
|
| + break;
|
| + }
|
| + break;
|
| + case EXPAND_AFTER_ITER: {
|
| + tre_iteration_t* iter = node->obj;
|
| + int pos_add_last;
|
| + pos_add = tre_stack_pop_int(stack);
|
| + pos_add_last = pos_add;
|
| + if (iter->min > 1 || iter->max > 1) {
|
| + tre_ast_node_t *seq1 = NULL, *seq2 = NULL;
|
| + int j;
|
| + int pos_add_save = pos_add;
|
| +
|
| + /* Create a catenated sequence of copies of the node. */
|
| + for (j = 0; j < iter->min; j++) {
|
| + tre_ast_node_t* copy;
|
| + /* Remove tags from all but the last copy. */
|
| + int flags = ((j + 1 < iter->min) ? COPY_REMOVE_TAGS
|
| + : COPY_MAXIMIZE_FIRST_TAG);
|
| + pos_add_save = pos_add;
|
| + status = tre_copy_ast(mem, stack, iter->arg, flags, &pos_add,
|
| + tag_directions, ©, &max_pos);
|
| + if (status != REG_OK)
|
| + return status;
|
| + if (seq1 != NULL)
|
| + seq1 = tre_ast_new_catenation(mem, seq1, copy);
|
| + else
|
| + seq1 = copy;
|
| + if (seq1 == NULL)
|
| + return REG_ESPACE;
|
| + }
|
| +
|
| + if (iter->max == -1) {
|
| + /* No upper limit. */
|
| + pos_add_save = pos_add;
|
| + status = tre_copy_ast(mem, stack, iter->arg, 0, &pos_add, NULL,
|
| + &seq2, &max_pos);
|
| + if (status != REG_OK)
|
| + return status;
|
| + seq2 = tre_ast_new_iter(mem, seq2, 0, -1, 0);
|
| + if (seq2 == NULL)
|
| + return REG_ESPACE;
|
| + } else {
|
| + for (j = iter->min; j < iter->max; j++) {
|
| + tre_ast_node_t *tmp, *copy;
|
| + pos_add_save = pos_add;
|
| + status = tre_copy_ast(mem, stack, iter->arg, 0, &pos_add, NULL,
|
| + ©, &max_pos);
|
| + if (status != REG_OK)
|
| + return status;
|
| + if (seq2 != NULL)
|
| + seq2 = tre_ast_new_catenation(mem, copy, seq2);
|
| + else
|
| + seq2 = copy;
|
| + if (seq2 == NULL)
|
| + return REG_ESPACE;
|
| + tmp = tre_ast_new_literal(mem, EMPTY, -1, -1);
|
| + if (tmp == NULL)
|
| + return REG_ESPACE;
|
| + seq2 = tre_ast_new_union(mem, tmp, seq2);
|
| + if (seq2 == NULL)
|
| + return REG_ESPACE;
|
| + }
|
| + }
|
| +
|
| + pos_add = pos_add_save;
|
| + if (seq1 == NULL)
|
| + seq1 = seq2;
|
| + else if (seq2 != NULL)
|
| + seq1 = tre_ast_new_catenation(mem, seq1, seq2);
|
| + if (seq1 == NULL)
|
| + return REG_ESPACE;
|
| + node->obj = seq1->obj;
|
| + node->type = seq1->type;
|
| + }
|
| +
|
| + iter_depth--;
|
| + pos_add_total += pos_add - pos_add_last;
|
| + if (iter_depth == 0)
|
| + pos_add = pos_add_total;
|
| +
|
| + break;
|
| + }
|
| + default:
|
| + assert(0);
|
| + break;
|
| }
|
| + }
|
|
|
| *position += pos_add_total;
|
|
|
| @@ -1997,10 +1873,8 @@ tre_expand_ast(tre_mem_t mem, tre_stack_t *stack, tre_ast_node_t *ast,
|
| return status;
|
| }
|
|
|
| -static tre_pos_and_tags_t *
|
| -tre_set_empty(tre_mem_t mem)
|
| -{
|
| - tre_pos_and_tags_t *new_set;
|
| +static tre_pos_and_tags_t* tre_set_empty(tre_mem_t mem) {
|
| + tre_pos_and_tags_t* new_set;
|
|
|
| new_set = tre_mem_calloc(mem, sizeof(*new_set));
|
| if (new_set == NULL)
|
| @@ -2013,11 +1887,14 @@ tre_set_empty(tre_mem_t mem)
|
| return new_set;
|
| }
|
|
|
| -static tre_pos_and_tags_t *
|
| -tre_set_one(tre_mem_t mem, int position, int code_min, int code_max,
|
| - tre_ctype_t class, tre_ctype_t *neg_classes, int backref)
|
| -{
|
| - tre_pos_and_tags_t *new_set;
|
| +static tre_pos_and_tags_t* tre_set_one(tre_mem_t mem,
|
| + int position,
|
| + int code_min,
|
| + int code_max,
|
| + tre_ctype_t class,
|
| + tre_ctype_t* neg_classes,
|
| + int backref) {
|
| + tre_pos_and_tags_t* new_set;
|
|
|
| new_set = tre_mem_calloc(mem, sizeof(*new_set) * 2);
|
| if (new_set == NULL)
|
| @@ -2036,73 +1913,74 @@ tre_set_one(tre_mem_t mem, int position, int code_min, int code_max,
|
| return new_set;
|
| }
|
|
|
| -static tre_pos_and_tags_t *
|
| -tre_set_union(tre_mem_t mem, tre_pos_and_tags_t *set1, tre_pos_and_tags_t *set2,
|
| - int *tags, int assertions)
|
| -{
|
| +static tre_pos_and_tags_t* tre_set_union(tre_mem_t mem,
|
| + tre_pos_and_tags_t* set1,
|
| + tre_pos_and_tags_t* set2,
|
| + int* tags,
|
| + int assertions) {
|
| int s1, s2, i, j;
|
| - tre_pos_and_tags_t *new_set;
|
| - int *new_tags;
|
| + tre_pos_and_tags_t* new_set;
|
| + int* new_tags;
|
| int num_tags;
|
|
|
| - for (num_tags = 0; tags != NULL && tags[num_tags] >= 0; num_tags++);
|
| - for (s1 = 0; set1[s1].position >= 0; s1++);
|
| - for (s2 = 0; set2[s2].position >= 0; s2++);
|
| + for (num_tags = 0; tags != NULL && tags[num_tags] >= 0; num_tags++)
|
| + ;
|
| + for (s1 = 0; set1[s1].position >= 0; s1++)
|
| + ;
|
| + for (s2 = 0; set2[s2].position >= 0; s2++)
|
| + ;
|
| new_set = tre_mem_calloc(mem, sizeof(*new_set) * (s1 + s2 + 1));
|
| - if (!new_set )
|
| + if (!new_set)
|
| return NULL;
|
|
|
| - for (s1 = 0; set1[s1].position >= 0; s1++)
|
| - {
|
| - new_set[s1].position = set1[s1].position;
|
| - new_set[s1].code_min = set1[s1].code_min;
|
| - new_set[s1].code_max = set1[s1].code_max;
|
| - new_set[s1].assertions = set1[s1].assertions | assertions;
|
| - new_set[s1].class = set1[s1].class;
|
| - new_set[s1].neg_classes = set1[s1].neg_classes;
|
| - new_set[s1].backref = set1[s1].backref;
|
| - if (set1[s1].tags == NULL && tags == NULL)
|
| - new_set[s1].tags = NULL;
|
| - else
|
| - {
|
| - for (i = 0; set1[s1].tags != NULL && set1[s1].tags[i] >= 0; i++);
|
| - new_tags = tre_mem_alloc(mem, (sizeof(*new_tags)
|
| - * (i + num_tags + 1)));
|
| - if (new_tags == NULL)
|
| - return NULL;
|
| - for (j = 0; j < i; j++)
|
| - new_tags[j] = set1[s1].tags[j];
|
| - for (i = 0; i < num_tags; i++)
|
| - new_tags[j + i] = tags[i];
|
| - new_tags[j + i] = -1;
|
| - new_set[s1].tags = new_tags;
|
| - }
|
| + for (s1 = 0; set1[s1].position >= 0; s1++) {
|
| + new_set[s1].position = set1[s1].position;
|
| + new_set[s1].code_min = set1[s1].code_min;
|
| + new_set[s1].code_max = set1[s1].code_max;
|
| + new_set[s1].assertions = set1[s1].assertions | assertions;
|
| + new_set[s1].class = set1[s1].class;
|
| + new_set[s1].neg_classes = set1[s1].neg_classes;
|
| + new_set[s1].backref = set1[s1].backref;
|
| + if (set1[s1].tags == NULL && tags == NULL)
|
| + new_set[s1].tags = NULL;
|
| + else {
|
| + for (i = 0; set1[s1].tags != NULL && set1[s1].tags[i] >= 0; i++)
|
| + ;
|
| + new_tags = tre_mem_alloc(mem, (sizeof(*new_tags) * (i + num_tags + 1)));
|
| + if (new_tags == NULL)
|
| + return NULL;
|
| + for (j = 0; j < i; j++)
|
| + new_tags[j] = set1[s1].tags[j];
|
| + for (i = 0; i < num_tags; i++)
|
| + new_tags[j + i] = tags[i];
|
| + new_tags[j + i] = -1;
|
| + new_set[s1].tags = new_tags;
|
| }
|
| + }
|
|
|
| - for (s2 = 0; set2[s2].position >= 0; s2++)
|
| - {
|
| - new_set[s1 + s2].position = set2[s2].position;
|
| - new_set[s1 + s2].code_min = set2[s2].code_min;
|
| - new_set[s1 + s2].code_max = set2[s2].code_max;
|
| - /* XXX - why not | assertions here as well? */
|
| - new_set[s1 + s2].assertions = set2[s2].assertions;
|
| - new_set[s1 + s2].class = set2[s2].class;
|
| - new_set[s1 + s2].neg_classes = set2[s2].neg_classes;
|
| - new_set[s1 + s2].backref = set2[s2].backref;
|
| - if (set2[s2].tags == NULL)
|
| - new_set[s1 + s2].tags = NULL;
|
| - else
|
| - {
|
| - for (i = 0; set2[s2].tags[i] >= 0; i++);
|
| - new_tags = tre_mem_alloc(mem, sizeof(*new_tags) * (i + 1));
|
| - if (new_tags == NULL)
|
| - return NULL;
|
| - for (j = 0; j < i; j++)
|
| - new_tags[j] = set2[s2].tags[j];
|
| - new_tags[j] = -1;
|
| - new_set[s1 + s2].tags = new_tags;
|
| - }
|
| + for (s2 = 0; set2[s2].position >= 0; s2++) {
|
| + new_set[s1 + s2].position = set2[s2].position;
|
| + new_set[s1 + s2].code_min = set2[s2].code_min;
|
| + new_set[s1 + s2].code_max = set2[s2].code_max;
|
| + /* XXX - why not | assertions here as well? */
|
| + new_set[s1 + s2].assertions = set2[s2].assertions;
|
| + new_set[s1 + s2].class = set2[s2].class;
|
| + new_set[s1 + s2].neg_classes = set2[s2].neg_classes;
|
| + new_set[s1 + s2].backref = set2[s2].backref;
|
| + if (set2[s2].tags == NULL)
|
| + new_set[s1 + s2].tags = NULL;
|
| + else {
|
| + for (i = 0; set2[s2].tags[i] >= 0; i++)
|
| + ;
|
| + new_tags = tre_mem_alloc(mem, sizeof(*new_tags) * (i + 1));
|
| + if (new_tags == NULL)
|
| + return NULL;
|
| + for (j = 0; j < i; j++)
|
| + new_tags[j] = set2[s2].tags[j];
|
| + new_tags[j] = -1;
|
| + new_set[s1 + s2].tags = new_tags;
|
| }
|
| + }
|
| new_set[s1 + s2].position = -1;
|
| return new_set;
|
| }
|
| @@ -2111,14 +1989,15 @@ tre_set_union(tre_mem_t mem, tre_pos_and_tags_t *set1, tre_pos_and_tags_t *set2,
|
| taken according to POSIX.2 rules, and adds the tags on that path to
|
| `tags'. `tags' may be NULL. If `num_tags_seen' is not NULL, it is
|
| set to the number of tags seen on the path. */
|
| -static reg_errcode_t
|
| -tre_match_empty(tre_stack_t *stack, tre_ast_node_t *node, int *tags,
|
| - int *assertions, int *num_tags_seen)
|
| -{
|
| - tre_literal_t *lit;
|
| - tre_union_t *uni;
|
| - tre_catenation_t *cat;
|
| - tre_iteration_t *iter;
|
| +static reg_errcode_t tre_match_empty(tre_stack_t* stack,
|
| + tre_ast_node_t* node,
|
| + int* tags,
|
| + int* assertions,
|
| + int* num_tags_seen) {
|
| + tre_literal_t* lit;
|
| + tre_union_t* uni;
|
| + tre_catenation_t* cat;
|
| + tre_iteration_t* iter;
|
| int i;
|
| int bottom = tre_stack_num_objects(stack);
|
| reg_errcode_t status = REG_OK;
|
| @@ -2128,89 +2007,81 @@ tre_match_empty(tre_stack_t *stack, tre_ast_node_t *node, int *tags,
|
| status = tre_stack_push_voidptr(stack, node);
|
|
|
| /* Walk through the tree recursively. */
|
| - while (status == REG_OK && tre_stack_num_objects(stack) > bottom)
|
| - {
|
| - node = tre_stack_pop_voidptr(stack);
|
| -
|
| - switch (node->type)
|
| - {
|
| - case LITERAL:
|
| - lit = (tre_literal_t *)node->obj;
|
| - switch (lit->code_min)
|
| - {
|
| - case TAG:
|
| - if (lit->code_max >= 0)
|
| - {
|
| - if (tags != NULL)
|
| - {
|
| - /* Add the tag to `tags'. */
|
| - for (i = 0; tags[i] >= 0; i++)
|
| - if (tags[i] == lit->code_max)
|
| - break;
|
| - if (tags[i] < 0)
|
| - {
|
| - tags[i] = lit->code_max;
|
| - tags[i + 1] = -1;
|
| - }
|
| - }
|
| - if (num_tags_seen)
|
| - (*num_tags_seen)++;
|
| - }
|
| - break;
|
| - case ASSERTION:
|
| - assert(lit->code_max >= 1
|
| - || lit->code_max <= ASSERT_LAST);
|
| - if (assertions != NULL)
|
| - *assertions |= lit->code_max;
|
| - break;
|
| - case EMPTY:
|
| - break;
|
| - default:
|
| - assert(0);
|
| - break;
|
| - }
|
| - break;
|
| -
|
| - case UNION:
|
| - /* Subexpressions starting earlier take priority over ones
|
| - starting later, so we prefer the left subexpression over the
|
| - right subexpression. */
|
| - uni = (tre_union_t *)node->obj;
|
| - if (uni->left->nullable)
|
| - STACK_PUSHX(stack, voidptr, uni->left)
|
| - else if (uni->right->nullable)
|
| - STACK_PUSHX(stack, voidptr, uni->right)
|
| - else
|
| - assert(0);
|
| - break;
|
| -
|
| - case CATENATION:
|
| - /* The path must go through both children. */
|
| - cat = (tre_catenation_t *)node->obj;
|
| - assert(cat->left->nullable);
|
| - assert(cat->right->nullable);
|
| - STACK_PUSHX(stack, voidptr, cat->left);
|
| - STACK_PUSHX(stack, voidptr, cat->right);
|
| - break;
|
| -
|
| - case ITERATION:
|
| - /* A match with an empty string is preferred over no match at
|
| - all, so we go through the argument if possible. */
|
| - iter = (tre_iteration_t *)node->obj;
|
| - if (iter->arg->nullable)
|
| - STACK_PUSHX(stack, voidptr, iter->arg);
|
| - break;
|
| -
|
| - default:
|
| - assert(0);
|
| - break;
|
| - }
|
| + while (status == REG_OK && tre_stack_num_objects(stack) > bottom) {
|
| + node = tre_stack_pop_voidptr(stack);
|
| +
|
| + switch (node->type) {
|
| + case LITERAL:
|
| + lit = (tre_literal_t*)node->obj;
|
| + switch (lit->code_min) {
|
| + case TAG:
|
| + if (lit->code_max >= 0) {
|
| + if (tags != NULL) {
|
| + /* Add the tag to `tags'. */
|
| + for (i = 0; tags[i] >= 0; i++)
|
| + if (tags[i] == lit->code_max)
|
| + break;
|
| + if (tags[i] < 0) {
|
| + tags[i] = lit->code_max;
|
| + tags[i + 1] = -1;
|
| + }
|
| + }
|
| + if (num_tags_seen)
|
| + (*num_tags_seen)++;
|
| + }
|
| + break;
|
| + case ASSERTION:
|
| + assert(lit->code_max >= 1 || lit->code_max <= ASSERT_LAST);
|
| + if (assertions != NULL)
|
| + *assertions |= lit->code_max;
|
| + break;
|
| + case EMPTY:
|
| + break;
|
| + default:
|
| + assert(0);
|
| + break;
|
| + }
|
| + break;
|
| +
|
| + case UNION:
|
| + /* Subexpressions starting earlier take priority over ones
|
| + starting later, so we prefer the left subexpression over the
|
| + right subexpression. */
|
| + uni = (tre_union_t*)node->obj;
|
| + if (uni->left->nullable)
|
| + STACK_PUSHX(stack, voidptr, uni->left)
|
| + else if (uni->right->nullable)
|
| + STACK_PUSHX(stack, voidptr, uni->right)
|
| + else
|
| + assert(0);
|
| + break;
|
| +
|
| + case CATENATION:
|
| + /* The path must go through both children. */
|
| + cat = (tre_catenation_t*)node->obj;
|
| + assert(cat->left->nullable);
|
| + assert(cat->right->nullable);
|
| + STACK_PUSHX(stack, voidptr, cat->left);
|
| + STACK_PUSHX(stack, voidptr, cat->right);
|
| + break;
|
| +
|
| + case ITERATION:
|
| + /* A match with an empty string is preferred over no match at
|
| + all, so we go through the argument if possible. */
|
| + iter = (tre_iteration_t*)node->obj;
|
| + if (iter->arg->nullable)
|
| + STACK_PUSHX(stack, voidptr, iter->arg);
|
| + break;
|
| +
|
| + default:
|
| + assert(0);
|
| + break;
|
| }
|
| + }
|
|
|
| return status;
|
| }
|
|
|
| -
|
| typedef enum {
|
| NFL_RECURSE,
|
| NFL_POST_UNION,
|
| @@ -2218,263 +2089,228 @@ typedef enum {
|
| NFL_POST_ITERATION
|
| } tre_nfl_stack_symbol_t;
|
|
|
| -
|
| /* Computes and fills in the fields `nullable', `firstpos', and `lastpos' for
|
| the nodes of the AST `tree'. */
|
| -static reg_errcode_t
|
| -tre_compute_nfl(tre_mem_t mem, tre_stack_t *stack, tre_ast_node_t *tree)
|
| -{
|
| +static reg_errcode_t tre_compute_nfl(tre_mem_t mem,
|
| + tre_stack_t* stack,
|
| + tre_ast_node_t* tree) {
|
| int bottom = tre_stack_num_objects(stack);
|
|
|
| STACK_PUSHR(stack, voidptr, tree);
|
| STACK_PUSHR(stack, int, NFL_RECURSE);
|
|
|
| - while (tre_stack_num_objects(stack) > bottom)
|
| - {
|
| - tre_nfl_stack_symbol_t symbol;
|
| - tre_ast_node_t *node;
|
| -
|
| - symbol = (tre_nfl_stack_symbol_t)tre_stack_pop_int(stack);
|
| - node = tre_stack_pop_voidptr(stack);
|
| - switch (symbol)
|
| - {
|
| - case NFL_RECURSE:
|
| - switch (node->type)
|
| - {
|
| - case LITERAL:
|
| - {
|
| - tre_literal_t *lit = (tre_literal_t *)node->obj;
|
| - if (IS_BACKREF(lit))
|
| - {
|
| - /* Back references: nullable = false, firstpos = {i},
|
| - lastpos = {i}. */
|
| - node->nullable = 0;
|
| - node->firstpos = tre_set_one(mem, lit->position, 0,
|
| - TRE_CHAR_MAX, 0, NULL, -1);
|
| - if (!node->firstpos)
|
| - return REG_ESPACE;
|
| - node->lastpos = tre_set_one(mem, lit->position, 0,
|
| - TRE_CHAR_MAX, 0, NULL,
|
| - (int)lit->code_max);
|
| - if (!node->lastpos)
|
| - return REG_ESPACE;
|
| - }
|
| - else if (lit->code_min < 0)
|
| - {
|
| - /* Tags, empty strings, params, and zero width assertions:
|
| - nullable = true, firstpos = {}, and lastpos = {}. */
|
| - node->nullable = 1;
|
| - node->firstpos = tre_set_empty(mem);
|
| - if (!node->firstpos)
|
| - return REG_ESPACE;
|
| - node->lastpos = tre_set_empty(mem);
|
| - if (!node->lastpos)
|
| - return REG_ESPACE;
|
| - }
|
| - else
|
| - {
|
| - /* Literal at position i: nullable = false, firstpos = {i},
|
| - lastpos = {i}. */
|
| - node->nullable = 0;
|
| - node->firstpos =
|
| - tre_set_one(mem, lit->position, (int)lit->code_min,
|
| - (int)lit->code_max, 0, NULL, -1);
|
| - if (!node->firstpos)
|
| - return REG_ESPACE;
|
| - node->lastpos = tre_set_one(mem, lit->position,
|
| - (int)lit->code_min,
|
| - (int)lit->code_max,
|
| - lit->class, lit->neg_classes,
|
| - -1);
|
| - if (!node->lastpos)
|
| - return REG_ESPACE;
|
| - }
|
| - break;
|
| - }
|
| -
|
| - case UNION:
|
| - /* Compute the attributes for the two subtrees, and after that
|
| - for this node. */
|
| - STACK_PUSHR(stack, voidptr, node);
|
| - STACK_PUSHR(stack, int, NFL_POST_UNION);
|
| - STACK_PUSHR(stack, voidptr, ((tre_union_t *)node->obj)->right);
|
| - STACK_PUSHR(stack, int, NFL_RECURSE);
|
| - STACK_PUSHR(stack, voidptr, ((tre_union_t *)node->obj)->left);
|
| - STACK_PUSHR(stack, int, NFL_RECURSE);
|
| - break;
|
| -
|
| - case CATENATION:
|
| - /* Compute the attributes for the two subtrees, and after that
|
| - for this node. */
|
| - STACK_PUSHR(stack, voidptr, node);
|
| - STACK_PUSHR(stack, int, NFL_POST_CATENATION);
|
| - STACK_PUSHR(stack, voidptr, ((tre_catenation_t *)node->obj)->right);
|
| - STACK_PUSHR(stack, int, NFL_RECURSE);
|
| - STACK_PUSHR(stack, voidptr, ((tre_catenation_t *)node->obj)->left);
|
| - STACK_PUSHR(stack, int, NFL_RECURSE);
|
| - break;
|
| -
|
| - case ITERATION:
|
| - /* Compute the attributes for the subtree, and after that for
|
| - this node. */
|
| - STACK_PUSHR(stack, voidptr, node);
|
| - STACK_PUSHR(stack, int, NFL_POST_ITERATION);
|
| - STACK_PUSHR(stack, voidptr, ((tre_iteration_t *)node->obj)->arg);
|
| - STACK_PUSHR(stack, int, NFL_RECURSE);
|
| - break;
|
| - }
|
| - break; /* end case: NFL_RECURSE */
|
| -
|
| - case NFL_POST_UNION:
|
| - {
|
| - tre_union_t *uni = (tre_union_t *)node->obj;
|
| - node->nullable = uni->left->nullable || uni->right->nullable;
|
| - node->firstpos = tre_set_union(mem, uni->left->firstpos,
|
| - uni->right->firstpos, NULL, 0);
|
| - if (!node->firstpos)
|
| - return REG_ESPACE;
|
| - node->lastpos = tre_set_union(mem, uni->left->lastpos,
|
| - uni->right->lastpos, NULL, 0);
|
| - if (!node->lastpos)
|
| - return REG_ESPACE;
|
| - break;
|
| - }
|
| -
|
| - case NFL_POST_ITERATION:
|
| - {
|
| - tre_iteration_t *iter = (tre_iteration_t *)node->obj;
|
| -
|
| - if (iter->min == 0 || iter->arg->nullable)
|
| - node->nullable = 1;
|
| - else
|
| - node->nullable = 0;
|
| - node->firstpos = iter->arg->firstpos;
|
| - node->lastpos = iter->arg->lastpos;
|
| - break;
|
| - }
|
| -
|
| - case NFL_POST_CATENATION:
|
| - {
|
| - int num_tags, *tags, assertions;
|
| - reg_errcode_t status;
|
| - tre_catenation_t *cat = node->obj;
|
| - node->nullable = cat->left->nullable && cat->right->nullable;
|
| -
|
| - /* Compute firstpos. */
|
| - if (cat->left->nullable)
|
| - {
|
| - /* The left side matches the empty string. Make a first pass
|
| - with tre_match_empty() to get the number of tags and
|
| - parameters. */
|
| - status = tre_match_empty(stack, cat->left,
|
| - NULL, NULL, &num_tags);
|
| - if (status != REG_OK)
|
| - return status;
|
| - /* Allocate arrays for the tags and parameters. */
|
| - tags = xmalloc(sizeof(*tags) * (num_tags + 1));
|
| - if (!tags)
|
| - return REG_ESPACE;
|
| - tags[0] = -1;
|
| - assertions = 0;
|
| - /* Second pass with tre_mach_empty() to get the list of
|
| - tags and parameters. */
|
| - status = tre_match_empty(stack, cat->left, tags,
|
| - &assertions, NULL);
|
| - if (status != REG_OK)
|
| - {
|
| - xfree(tags);
|
| - return status;
|
| - }
|
| - node->firstpos =
|
| - tre_set_union(mem, cat->right->firstpos, cat->left->firstpos,
|
| - tags, assertions);
|
| - xfree(tags);
|
| - if (!node->firstpos)
|
| - return REG_ESPACE;
|
| - }
|
| - else
|
| - {
|
| - node->firstpos = cat->left->firstpos;
|
| - }
|
| -
|
| - /* Compute lastpos. */
|
| - if (cat->right->nullable)
|
| - {
|
| - /* The right side matches the empty string. Make a first pass
|
| - with tre_match_empty() to get the number of tags and
|
| - parameters. */
|
| - status = tre_match_empty(stack, cat->right,
|
| - NULL, NULL, &num_tags);
|
| - if (status != REG_OK)
|
| - return status;
|
| - /* Allocate arrays for the tags and parameters. */
|
| - tags = xmalloc(sizeof(int) * (num_tags + 1));
|
| - if (!tags)
|
| - return REG_ESPACE;
|
| - tags[0] = -1;
|
| - assertions = 0;
|
| - /* Second pass with tre_mach_empty() to get the list of
|
| - tags and parameters. */
|
| - status = tre_match_empty(stack, cat->right, tags,
|
| - &assertions, NULL);
|
| - if (status != REG_OK)
|
| - {
|
| - xfree(tags);
|
| - return status;
|
| - }
|
| - node->lastpos =
|
| - tre_set_union(mem, cat->left->lastpos, cat->right->lastpos,
|
| - tags, assertions);
|
| - xfree(tags);
|
| - if (!node->lastpos)
|
| - return REG_ESPACE;
|
| - }
|
| - else
|
| - {
|
| - node->lastpos = cat->right->lastpos;
|
| - }
|
| - break;
|
| - }
|
| -
|
| - default:
|
| - assert(0);
|
| - break;
|
| - }
|
| + while (tre_stack_num_objects(stack) > bottom) {
|
| + tre_nfl_stack_symbol_t symbol;
|
| + tre_ast_node_t* node;
|
| +
|
| + symbol = (tre_nfl_stack_symbol_t)tre_stack_pop_int(stack);
|
| + node = tre_stack_pop_voidptr(stack);
|
| + switch (symbol) {
|
| + case NFL_RECURSE:
|
| + switch (node->type) {
|
| + case LITERAL: {
|
| + tre_literal_t* lit = (tre_literal_t*)node->obj;
|
| + if (IS_BACKREF(lit)) {
|
| + /* Back references: nullable = false, firstpos = {i},
|
| + lastpos = {i}. */
|
| + node->nullable = 0;
|
| + node->firstpos =
|
| + tre_set_one(mem, lit->position, 0, TRE_CHAR_MAX, 0, NULL, -1);
|
| + if (!node->firstpos)
|
| + return REG_ESPACE;
|
| + node->lastpos = tre_set_one(mem, lit->position, 0, TRE_CHAR_MAX,
|
| + 0, NULL, (int)lit->code_max);
|
| + if (!node->lastpos)
|
| + return REG_ESPACE;
|
| + } else if (lit->code_min < 0) {
|
| + /* Tags, empty strings, params, and zero width assertions:
|
| + nullable = true, firstpos = {}, and lastpos = {}. */
|
| + node->nullable = 1;
|
| + node->firstpos = tre_set_empty(mem);
|
| + if (!node->firstpos)
|
| + return REG_ESPACE;
|
| + node->lastpos = tre_set_empty(mem);
|
| + if (!node->lastpos)
|
| + return REG_ESPACE;
|
| + } else {
|
| + /* Literal at position i: nullable = false, firstpos = {i},
|
| + lastpos = {i}. */
|
| + node->nullable = 0;
|
| + node->firstpos =
|
| + tre_set_one(mem, lit->position, (int)lit->code_min,
|
| + (int)lit->code_max, 0, NULL, -1);
|
| + if (!node->firstpos)
|
| + return REG_ESPACE;
|
| + node->lastpos = tre_set_one(
|
| + mem, lit->position, (int)lit->code_min, (int)lit->code_max,
|
| + lit->class, lit->neg_classes, -1);
|
| + if (!node->lastpos)
|
| + return REG_ESPACE;
|
| + }
|
| + break;
|
| + }
|
| +
|
| + case UNION:
|
| + /* Compute the attributes for the two subtrees, and after that
|
| + for this node. */
|
| + STACK_PUSHR(stack, voidptr, node);
|
| + STACK_PUSHR(stack, int, NFL_POST_UNION);
|
| + STACK_PUSHR(stack, voidptr, ((tre_union_t*)node->obj)->right);
|
| + STACK_PUSHR(stack, int, NFL_RECURSE);
|
| + STACK_PUSHR(stack, voidptr, ((tre_union_t*)node->obj)->left);
|
| + STACK_PUSHR(stack, int, NFL_RECURSE);
|
| + break;
|
| +
|
| + case CATENATION:
|
| + /* Compute the attributes for the two subtrees, and after that
|
| + for this node. */
|
| + STACK_PUSHR(stack, voidptr, node);
|
| + STACK_PUSHR(stack, int, NFL_POST_CATENATION);
|
| + STACK_PUSHR(stack, voidptr, ((tre_catenation_t*)node->obj)->right);
|
| + STACK_PUSHR(stack, int, NFL_RECURSE);
|
| + STACK_PUSHR(stack, voidptr, ((tre_catenation_t*)node->obj)->left);
|
| + STACK_PUSHR(stack, int, NFL_RECURSE);
|
| + break;
|
| +
|
| + case ITERATION:
|
| + /* Compute the attributes for the subtree, and after that for
|
| + this node. */
|
| + STACK_PUSHR(stack, voidptr, node);
|
| + STACK_PUSHR(stack, int, NFL_POST_ITERATION);
|
| + STACK_PUSHR(stack, voidptr, ((tre_iteration_t*)node->obj)->arg);
|
| + STACK_PUSHR(stack, int, NFL_RECURSE);
|
| + break;
|
| + }
|
| + break; /* end case: NFL_RECURSE */
|
| +
|
| + case NFL_POST_UNION: {
|
| + tre_union_t* uni = (tre_union_t*)node->obj;
|
| + node->nullable = uni->left->nullable || uni->right->nullable;
|
| + node->firstpos = tre_set_union(mem, uni->left->firstpos,
|
| + uni->right->firstpos, NULL, 0);
|
| + if (!node->firstpos)
|
| + return REG_ESPACE;
|
| + node->lastpos = tre_set_union(mem, uni->left->lastpos,
|
| + uni->right->lastpos, NULL, 0);
|
| + if (!node->lastpos)
|
| + return REG_ESPACE;
|
| + break;
|
| + }
|
| +
|
| + case NFL_POST_ITERATION: {
|
| + tre_iteration_t* iter = (tre_iteration_t*)node->obj;
|
| +
|
| + if (iter->min == 0 || iter->arg->nullable)
|
| + node->nullable = 1;
|
| + else
|
| + node->nullable = 0;
|
| + node->firstpos = iter->arg->firstpos;
|
| + node->lastpos = iter->arg->lastpos;
|
| + break;
|
| + }
|
| +
|
| + case NFL_POST_CATENATION: {
|
| + int num_tags, *tags, assertions;
|
| + reg_errcode_t status;
|
| + tre_catenation_t* cat = node->obj;
|
| + node->nullable = cat->left->nullable && cat->right->nullable;
|
| +
|
| + /* Compute firstpos. */
|
| + if (cat->left->nullable) {
|
| + /* The left side matches the empty string. Make a first pass
|
| + with tre_match_empty() to get the number of tags and
|
| + parameters. */
|
| + status = tre_match_empty(stack, cat->left, NULL, NULL, &num_tags);
|
| + if (status != REG_OK)
|
| + return status;
|
| + /* Allocate arrays for the tags and parameters. */
|
| + tags = xmalloc(sizeof(*tags) * (num_tags + 1));
|
| + if (!tags)
|
| + return REG_ESPACE;
|
| + tags[0] = -1;
|
| + assertions = 0;
|
| + /* Second pass with tre_mach_empty() to get the list of
|
| + tags and parameters. */
|
| + status = tre_match_empty(stack, cat->left, tags, &assertions, NULL);
|
| + if (status != REG_OK) {
|
| + xfree(tags);
|
| + return status;
|
| + }
|
| + node->firstpos = tre_set_union(mem, cat->right->firstpos,
|
| + cat->left->firstpos, tags, assertions);
|
| + xfree(tags);
|
| + if (!node->firstpos)
|
| + return REG_ESPACE;
|
| + } else {
|
| + node->firstpos = cat->left->firstpos;
|
| + }
|
| +
|
| + /* Compute lastpos. */
|
| + if (cat->right->nullable) {
|
| + /* The right side matches the empty string. Make a first pass
|
| + with tre_match_empty() to get the number of tags and
|
| + parameters. */
|
| + status = tre_match_empty(stack, cat->right, NULL, NULL, &num_tags);
|
| + if (status != REG_OK)
|
| + return status;
|
| + /* Allocate arrays for the tags and parameters. */
|
| + tags = xmalloc(sizeof(int) * (num_tags + 1));
|
| + if (!tags)
|
| + return REG_ESPACE;
|
| + tags[0] = -1;
|
| + assertions = 0;
|
| + /* Second pass with tre_mach_empty() to get the list of
|
| + tags and parameters. */
|
| + status = tre_match_empty(stack, cat->right, tags, &assertions, NULL);
|
| + if (status != REG_OK) {
|
| + xfree(tags);
|
| + return status;
|
| + }
|
| + node->lastpos = tre_set_union(mem, cat->left->lastpos,
|
| + cat->right->lastpos, tags, assertions);
|
| + xfree(tags);
|
| + if (!node->lastpos)
|
| + return REG_ESPACE;
|
| + } else {
|
| + node->lastpos = cat->right->lastpos;
|
| + }
|
| + break;
|
| + }
|
| +
|
| + default:
|
| + assert(0);
|
| + break;
|
| }
|
| + }
|
|
|
| return REG_OK;
|
| }
|
|
|
| -
|
| /* Adds a transition from each position in `p1' to each position in `p2'. */
|
| -static reg_errcode_t
|
| -tre_make_trans(tre_pos_and_tags_t *p1, tre_pos_and_tags_t *p2,
|
| - tre_tnfa_transition_t *transitions,
|
| - int *counts, int *offs)
|
| -{
|
| - tre_pos_and_tags_t *orig_p2 = p2;
|
| - tre_tnfa_transition_t *trans;
|
| +static reg_errcode_t tre_make_trans(tre_pos_and_tags_t* p1,
|
| + tre_pos_and_tags_t* p2,
|
| + tre_tnfa_transition_t* transitions,
|
| + int* counts,
|
| + int* offs) {
|
| + tre_pos_and_tags_t* orig_p2 = p2;
|
| + tre_tnfa_transition_t* trans;
|
| int i, j, k, l, dup, prev_p2_pos;
|
|
|
| if (transitions != NULL)
|
| - while (p1->position >= 0)
|
| - {
|
| - p2 = orig_p2;
|
| - prev_p2_pos = -1;
|
| - while (p2->position >= 0)
|
| - {
|
| - /* Optimization: if this position was already handled, skip it. */
|
| - if (p2->position == prev_p2_pos)
|
| - {
|
| - p2++;
|
| - continue;
|
| - }
|
| - prev_p2_pos = p2->position;
|
| - /* Set `trans' to point to the next unused transition from
|
| - position `p1->position'. */
|
| - trans = transitions + offs[p1->position];
|
| - while (trans->state != NULL)
|
| - {
|
| + while (p1->position >= 0) {
|
| + p2 = orig_p2;
|
| + prev_p2_pos = -1;
|
| + while (p2->position >= 0) {
|
| + /* Optimization: if this position was already handled, skip it. */
|
| + if (p2->position == prev_p2_pos) {
|
| + p2++;
|
| + continue;
|
| + }
|
| + prev_p2_pos = p2->position;
|
| + /* Set `trans' to point to the next unused transition from
|
| + position `p1->position'. */
|
| + trans = transitions + offs[p1->position];
|
| + while (trans->state != NULL) {
|
| #if 0
|
| /* If we find a previous transition from `p1->position' to
|
| `p2->position', it is overwritten. This can happen only
|
| @@ -2492,108 +2328,99 @@ tre_make_trans(tre_pos_and_tags_t *p1, tre_pos_and_tags_t *p2,
|
| break;
|
| }
|
| #endif
|
| - trans++;
|
| - }
|
| -
|
| - if (trans->state == NULL)
|
| - (trans + 1)->state = NULL;
|
| - /* Use the character ranges, assertions, etc. from `p1' for
|
| - the transition from `p1' to `p2'. */
|
| - trans->code_min = p1->code_min;
|
| - trans->code_max = p1->code_max;
|
| - trans->state = transitions + offs[p2->position];
|
| - trans->state_id = p2->position;
|
| - trans->assertions = p1->assertions | p2->assertions
|
| - | (p1->class ? ASSERT_CHAR_CLASS : 0)
|
| - | (p1->neg_classes != NULL ? ASSERT_CHAR_CLASS_NEG : 0);
|
| - if (p1->backref >= 0)
|
| - {
|
| - assert((trans->assertions & ASSERT_CHAR_CLASS) == 0);
|
| - assert(p2->backref < 0);
|
| - trans->u.backref = p1->backref;
|
| - trans->assertions |= ASSERT_BACKREF;
|
| - }
|
| - else
|
| - trans->u.class = p1->class;
|
| - if (p1->neg_classes != NULL)
|
| - {
|
| - for (i = 0; p1->neg_classes[i] != (tre_ctype_t)0; i++);
|
| - trans->neg_classes =
|
| - xmalloc(sizeof(*trans->neg_classes) * (i + 1));
|
| - if (trans->neg_classes == NULL)
|
| - return REG_ESPACE;
|
| - for (i = 0; p1->neg_classes[i] != (tre_ctype_t)0; i++)
|
| - trans->neg_classes[i] = p1->neg_classes[i];
|
| - trans->neg_classes[i] = (tre_ctype_t)0;
|
| - }
|
| - else
|
| - trans->neg_classes = NULL;
|
| -
|
| - /* Find out how many tags this transition has. */
|
| - i = 0;
|
| - if (p1->tags != NULL)
|
| - while(p1->tags[i] >= 0)
|
| - i++;
|
| - j = 0;
|
| - if (p2->tags != NULL)
|
| - while(p2->tags[j] >= 0)
|
| - j++;
|
| -
|
| - /* If we are overwriting a transition, free the old tag array. */
|
| - if (trans->tags != NULL)
|
| - xfree(trans->tags);
|
| - trans->tags = NULL;
|
| -
|
| - /* If there were any tags, allocate an array and fill it. */
|
| - if (i + j > 0)
|
| - {
|
| - trans->tags = xmalloc(sizeof(*trans->tags) * (i + j + 1));
|
| - if (!trans->tags)
|
| - return REG_ESPACE;
|
| - i = 0;
|
| - if (p1->tags != NULL)
|
| - while(p1->tags[i] >= 0)
|
| - {
|
| - trans->tags[i] = p1->tags[i];
|
| - i++;
|
| - }
|
| - l = i;
|
| - j = 0;
|
| - if (p2->tags != NULL)
|
| - while (p2->tags[j] >= 0)
|
| - {
|
| - /* Don't add duplicates. */
|
| - dup = 0;
|
| - for (k = 0; k < i; k++)
|
| - if (trans->tags[k] == p2->tags[j])
|
| - {
|
| - dup = 1;
|
| - break;
|
| - }
|
| - if (!dup)
|
| - trans->tags[l++] = p2->tags[j];
|
| - j++;
|
| - }
|
| - trans->tags[l] = -1;
|
| - }
|
| -
|
| - p2++;
|
| - }
|
| - p1++;
|
| + trans++;
|
| + }
|
| +
|
| + if (trans->state == NULL)
|
| + (trans + 1)->state = NULL;
|
| + /* Use the character ranges, assertions, etc. from `p1' for
|
| + the transition from `p1' to `p2'. */
|
| + trans->code_min = p1->code_min;
|
| + trans->code_max = p1->code_max;
|
| + trans->state = transitions + offs[p2->position];
|
| + trans->state_id = p2->position;
|
| + trans->assertions =
|
| + p1->assertions | p2->assertions |
|
| + (p1->class ? ASSERT_CHAR_CLASS : 0) |
|
| + (p1->neg_classes != NULL ? ASSERT_CHAR_CLASS_NEG : 0);
|
| + if (p1->backref >= 0) {
|
| + assert((trans->assertions & ASSERT_CHAR_CLASS) == 0);
|
| + assert(p2->backref < 0);
|
| + trans->u.backref = p1->backref;
|
| + trans->assertions |= ASSERT_BACKREF;
|
| + } else
|
| + trans->u.class = p1->class;
|
| + if (p1->neg_classes != NULL) {
|
| + for (i = 0; p1->neg_classes[i] != (tre_ctype_t)0; i++)
|
| + ;
|
| + trans->neg_classes = xmalloc(sizeof(*trans->neg_classes) * (i + 1));
|
| + if (trans->neg_classes == NULL)
|
| + return REG_ESPACE;
|
| + for (i = 0; p1->neg_classes[i] != (tre_ctype_t)0; i++)
|
| + trans->neg_classes[i] = p1->neg_classes[i];
|
| + trans->neg_classes[i] = (tre_ctype_t)0;
|
| + } else
|
| + trans->neg_classes = NULL;
|
| +
|
| + /* Find out how many tags this transition has. */
|
| + i = 0;
|
| + if (p1->tags != NULL)
|
| + while (p1->tags[i] >= 0)
|
| + i++;
|
| + j = 0;
|
| + if (p2->tags != NULL)
|
| + while (p2->tags[j] >= 0)
|
| + j++;
|
| +
|
| + /* If we are overwriting a transition, free the old tag array. */
|
| + if (trans->tags != NULL)
|
| + xfree(trans->tags);
|
| + trans->tags = NULL;
|
| +
|
| + /* If there were any tags, allocate an array and fill it. */
|
| + if (i + j > 0) {
|
| + trans->tags = xmalloc(sizeof(*trans->tags) * (i + j + 1));
|
| + if (!trans->tags)
|
| + return REG_ESPACE;
|
| + i = 0;
|
| + if (p1->tags != NULL)
|
| + while (p1->tags[i] >= 0) {
|
| + trans->tags[i] = p1->tags[i];
|
| + i++;
|
| + }
|
| + l = i;
|
| + j = 0;
|
| + if (p2->tags != NULL)
|
| + while (p2->tags[j] >= 0) {
|
| + /* Don't add duplicates. */
|
| + dup = 0;
|
| + for (k = 0; k < i; k++)
|
| + if (trans->tags[k] == p2->tags[j]) {
|
| + dup = 1;
|
| + break;
|
| + }
|
| + if (!dup)
|
| + trans->tags[l++] = p2->tags[j];
|
| + j++;
|
| + }
|
| + trans->tags[l] = -1;
|
| + }
|
| +
|
| + p2++;
|
| }
|
| + p1++;
|
| + }
|
| else
|
| /* Compute a maximum limit for the number of transitions leaving
|
| from each state. */
|
| - while (p1->position >= 0)
|
| - {
|
| - p2 = orig_p2;
|
| - while (p2->position >= 0)
|
| - {
|
| - counts[p1->position]++;
|
| - p2++;
|
| - }
|
| - p1++;
|
| + while (p1->position >= 0) {
|
| + p2 = orig_p2;
|
| + while (p2->position >= 0) {
|
| + counts[p1->position]++;
|
| + p2++;
|
| }
|
| + p1++;
|
| + }
|
| return REG_OK;
|
| }
|
|
|
| @@ -2601,85 +2428,77 @@ tre_make_trans(tre_pos_and_tags_t *p1, tre_pos_and_tags_t *p2,
|
| labelled with one character range (there are no transitions on empty
|
| strings). The TNFA takes O(n^2) space in the worst case, `n' is size of
|
| the regexp. */
|
| -static reg_errcode_t
|
| -tre_ast_to_tnfa(tre_ast_node_t *node, tre_tnfa_transition_t *transitions,
|
| - int *counts, int *offs)
|
| -{
|
| - tre_union_t *uni;
|
| - tre_catenation_t *cat;
|
| - tre_iteration_t *iter;
|
| +static reg_errcode_t tre_ast_to_tnfa(tre_ast_node_t* node,
|
| + tre_tnfa_transition_t* transitions,
|
| + int* counts,
|
| + int* offs) {
|
| + tre_union_t* uni;
|
| + tre_catenation_t* cat;
|
| + tre_iteration_t* iter;
|
| reg_errcode_t errcode = REG_OK;
|
|
|
| /* XXX - recurse using a stack!. */
|
| - switch (node->type)
|
| - {
|
| + switch (node->type) {
|
| case LITERAL:
|
| break;
|
| case UNION:
|
| - uni = (tre_union_t *)node->obj;
|
| + uni = (tre_union_t*)node->obj;
|
| errcode = tre_ast_to_tnfa(uni->left, transitions, counts, offs);
|
| if (errcode != REG_OK)
|
| - return errcode;
|
| + return errcode;
|
| errcode = tre_ast_to_tnfa(uni->right, transitions, counts, offs);
|
| break;
|
|
|
| case CATENATION:
|
| - cat = (tre_catenation_t *)node->obj;
|
| + cat = (tre_catenation_t*)node->obj;
|
| /* Add a transition from each position in cat->left->lastpos
|
| - to each position in cat->right->firstpos. */
|
| + to each position in cat->right->firstpos. */
|
| errcode = tre_make_trans(cat->left->lastpos, cat->right->firstpos,
|
| - transitions, counts, offs);
|
| + transitions, counts, offs);
|
| if (errcode != REG_OK)
|
| - return errcode;
|
| + return errcode;
|
| errcode = tre_ast_to_tnfa(cat->left, transitions, counts, offs);
|
| if (errcode != REG_OK)
|
| - return errcode;
|
| + return errcode;
|
| errcode = tre_ast_to_tnfa(cat->right, transitions, counts, offs);
|
| break;
|
|
|
| case ITERATION:
|
| - iter = (tre_iteration_t *)node->obj;
|
| + iter = (tre_iteration_t*)node->obj;
|
| assert(iter->max == -1 || iter->max == 1);
|
|
|
| - if (iter->max == -1)
|
| - {
|
| - assert(iter->min == 0 || iter->min == 1);
|
| - /* Add a transition from each last position in the iterated
|
| - expression to each first position. */
|
| - errcode = tre_make_trans(iter->arg->lastpos, iter->arg->firstpos,
|
| - transitions, counts, offs);
|
| - if (errcode != REG_OK)
|
| - return errcode;
|
| - }
|
| + if (iter->max == -1) {
|
| + assert(iter->min == 0 || iter->min == 1);
|
| + /* Add a transition from each last position in the iterated
|
| + expression to each first position. */
|
| + errcode = tre_make_trans(iter->arg->lastpos, iter->arg->firstpos,
|
| + transitions, counts, offs);
|
| + if (errcode != REG_OK)
|
| + return errcode;
|
| + }
|
| errcode = tre_ast_to_tnfa(iter->arg, transitions, counts, offs);
|
| break;
|
| - }
|
| + }
|
| return errcode;
|
| }
|
|
|
| +#define ERROR_EXIT(err) \
|
| + do { \
|
| + errcode = err; \
|
| + if (/*CONSTCOND*/ 1) \
|
| + goto error_exit; \
|
| + } while (/*CONSTCOND*/ 0)
|
|
|
| -#define ERROR_EXIT(err) \
|
| - do \
|
| - { \
|
| - errcode = err; \
|
| - if (/*CONSTCOND*/1) \
|
| - goto error_exit; \
|
| - } \
|
| - while (/*CONSTCOND*/0)
|
| -
|
| -
|
| -int
|
| -regcomp(regex_t *restrict preg, const char *restrict regex, int cflags)
|
| -{
|
| - tre_stack_t *stack;
|
| +int regcomp(regex_t* restrict preg, const char* restrict regex, int cflags) {
|
| + tre_stack_t* stack;
|
| tre_ast_node_t *tree, *tmp_ast_l, *tmp_ast_r;
|
| - tre_pos_and_tags_t *p;
|
| + tre_pos_and_tags_t* p;
|
| int *counts = NULL, *offs = NULL;
|
| int i, add = 0;
|
| tre_tnfa_transition_t *transitions, *initial;
|
| - tre_tnfa_t *tnfa = NULL;
|
| - tre_submatch_data_t *submatch_data;
|
| - tre_tag_direction_t *tag_directions = NULL;
|
| + tre_tnfa_t* tnfa = NULL;
|
| + tre_submatch_data_t* submatch_data;
|
| + tre_tag_direction_t* tag_directions = NULL;
|
| reg_errcode_t errcode;
|
| tre_mem_t mem;
|
|
|
| @@ -2693,11 +2512,10 @@ regcomp(regex_t *restrict preg, const char *restrict regex, int cflags)
|
| return REG_ESPACE;
|
| /* Allocate a fast memory allocator. */
|
| mem = tre_mem_new();
|
| - if (!mem)
|
| - {
|
| - tre_stack_destroy(stack);
|
| - return REG_ESPACE;
|
| - }
|
| + if (!mem) {
|
| + tre_stack_destroy(stack);
|
| + return REG_ESPACE;
|
| + }
|
|
|
| /* Parse the regexp. */
|
| memset(&parse_ctx, 0, sizeof(parse_ctx));
|
| @@ -2730,51 +2548,46 @@ regcomp(regex_t *restrict preg, const char *restrict regex, int cflags)
|
|
|
| /* Set up tags for submatch addressing. If REG_NOSUB is set and the
|
| regexp does not have back references, this can be skipped. */
|
| - if (tnfa->have_backrefs || !(cflags & REG_NOSUB))
|
| - {
|
| -
|
| - /* Figure out how many tags we will need. */
|
| - errcode = tre_add_tags(NULL, stack, tree, tnfa);
|
| - if (errcode != REG_OK)
|
| - ERROR_EXIT(errcode);
|
| -
|
| - if (tnfa->num_tags > 0)
|
| - {
|
| - tag_directions = xmalloc(sizeof(*tag_directions)
|
| - * (tnfa->num_tags + 1));
|
| - if (tag_directions == NULL)
|
| - ERROR_EXIT(REG_ESPACE);
|
| - tnfa->tag_directions = tag_directions;
|
| - memset(tag_directions, -1,
|
| - sizeof(*tag_directions) * (tnfa->num_tags + 1));
|
| - }
|
| - tnfa->minimal_tags = xcalloc((unsigned)tnfa->num_tags * 2 + 1,
|
| - sizeof(*tnfa->minimal_tags));
|
| - if (tnfa->minimal_tags == NULL)
|
| - ERROR_EXIT(REG_ESPACE);
|
| -
|
| - submatch_data = xcalloc((unsigned)parse_ctx.submatch_id,
|
| - sizeof(*submatch_data));
|
| - if (submatch_data == NULL)
|
| - ERROR_EXIT(REG_ESPACE);
|
| - tnfa->submatch_data = submatch_data;
|
| -
|
| - errcode = tre_add_tags(mem, stack, tree, tnfa);
|
| - if (errcode != REG_OK)
|
| - ERROR_EXIT(errcode);
|
| -
|
| + if (tnfa->have_backrefs || !(cflags & REG_NOSUB)) {
|
| + /* Figure out how many tags we will need. */
|
| + errcode = tre_add_tags(NULL, stack, tree, tnfa);
|
| + if (errcode != REG_OK)
|
| + ERROR_EXIT(errcode);
|
| +
|
| + if (tnfa->num_tags > 0) {
|
| + tag_directions = xmalloc(sizeof(*tag_directions) * (tnfa->num_tags + 1));
|
| + if (tag_directions == NULL)
|
| + ERROR_EXIT(REG_ESPACE);
|
| + tnfa->tag_directions = tag_directions;
|
| + memset(tag_directions, -1,
|
| + sizeof(*tag_directions) * (tnfa->num_tags + 1));
|
| }
|
| + tnfa->minimal_tags =
|
| + xcalloc((unsigned)tnfa->num_tags * 2 + 1, sizeof(*tnfa->minimal_tags));
|
| + if (tnfa->minimal_tags == NULL)
|
| + ERROR_EXIT(REG_ESPACE);
|
| +
|
| + submatch_data =
|
| + xcalloc((unsigned)parse_ctx.submatch_id, sizeof(*submatch_data));
|
| + if (submatch_data == NULL)
|
| + ERROR_EXIT(REG_ESPACE);
|
| + tnfa->submatch_data = submatch_data;
|
| +
|
| + errcode = tre_add_tags(mem, stack, tree, tnfa);
|
| + if (errcode != REG_OK)
|
| + ERROR_EXIT(errcode);
|
| + }
|
|
|
| /* Expand iteration nodes. */
|
| - errcode = tre_expand_ast(mem, stack, tree, &parse_ctx.position,
|
| - tag_directions);
|
| + errcode =
|
| + tre_expand_ast(mem, stack, tree, &parse_ctx.position, tag_directions);
|
| if (errcode != REG_OK)
|
| ERROR_EXIT(errcode);
|
|
|
| /* Add a dummy node for the final state.
|
| XXX - For certain patterns this dummy node can be optimized away,
|
| - for example "a*" or "ab*". Figure out a simple way to detect
|
| - this possibility. */
|
| + for example "a*" or "ab*". Figure out a simple way to detect
|
| + this possibility. */
|
| tmp_ast_l = tree;
|
| tmp_ast_r = tre_ast_new_literal(mem, 0, 0, parse_ctx.position++);
|
| if (tmp_ast_r == NULL)
|
| @@ -2801,12 +2614,11 @@ regcomp(regex_t *restrict preg, const char *restrict regex, int cflags)
|
| tre_ast_to_tnfa(tree, NULL, counts, NULL);
|
|
|
| add = 0;
|
| - for (i = 0; i < parse_ctx.position; i++)
|
| - {
|
| - offs[i] = add;
|
| - add += counts[i] + 1;
|
| - counts[i] = 0;
|
| - }
|
| + for (i = 0; i < parse_ctx.position; i++) {
|
| + offs[i] = add;
|
| + add += counts[i] + 1;
|
| + counts[i] = 0;
|
| + }
|
| transitions = xcalloc((unsigned)add + 1, sizeof(*transitions));
|
| if (transitions == NULL)
|
| ERROR_EXIT(REG_ESPACE);
|
| @@ -2821,11 +2633,10 @@ regcomp(regex_t *restrict preg, const char *restrict regex, int cflags)
|
|
|
| p = tree->firstpos;
|
| i = 0;
|
| - while (p->position >= 0)
|
| - {
|
| - i++;
|
| - p++;
|
| - }
|
| + while (p->position >= 0) {
|
| + i++;
|
| + p++;
|
| + }
|
|
|
| initial = xcalloc((unsigned)i + 1, sizeof(tre_tnfa_transition_t));
|
| if (initial == NULL)
|
| @@ -2833,25 +2644,24 @@ regcomp(regex_t *restrict preg, const char *restrict regex, int cflags)
|
| tnfa->initial = initial;
|
|
|
| i = 0;
|
| - for (p = tree->firstpos; p->position >= 0; p++)
|
| - {
|
| - initial[i].state = transitions + offs[p->position];
|
| - initial[i].state_id = p->position;
|
| - initial[i].tags = NULL;
|
| - /* Copy the arrays p->tags, and p->params, they are allocated
|
| - from a tre_mem object. */
|
| - if (p->tags)
|
| - {
|
| - int j;
|
| - for (j = 0; p->tags[j] >= 0; j++);
|
| - initial[i].tags = xmalloc(sizeof(*p->tags) * (j + 1));
|
| - if (!initial[i].tags)
|
| - ERROR_EXIT(REG_ESPACE);
|
| - memcpy(initial[i].tags, p->tags, sizeof(*p->tags) * (j + 1));
|
| - }
|
| - initial[i].assertions = p->assertions;
|
| - i++;
|
| + for (p = tree->firstpos; p->position >= 0; p++) {
|
| + initial[i].state = transitions + offs[p->position];
|
| + initial[i].state_id = p->position;
|
| + initial[i].tags = NULL;
|
| + /* Copy the arrays p->tags, and p->params, they are allocated
|
| + from a tre_mem object. */
|
| + if (p->tags) {
|
| + int j;
|
| + for (j = 0; p->tags[j] >= 0; j++)
|
| + ;
|
| + initial[i].tags = xmalloc(sizeof(*p->tags) * (j + 1));
|
| + if (!initial[i].tags)
|
| + ERROR_EXIT(REG_ESPACE);
|
| + memcpy(initial[i].tags, p->tags, sizeof(*p->tags) * (j + 1));
|
| }
|
| + initial[i].assertions = p->assertions;
|
| + i++;
|
| + }
|
| initial[i].state = NULL;
|
|
|
| tnfa->num_transitions = add;
|
| @@ -2864,10 +2674,10 @@ regcomp(regex_t *restrict preg, const char *restrict regex, int cflags)
|
| xfree(counts);
|
| xfree(offs);
|
|
|
| - preg->TRE_REGEX_T_FIELD = (void *)tnfa;
|
| + preg->TRE_REGEX_T_FIELD = (void*)tnfa;
|
| return REG_OK;
|
|
|
| - error_exit:
|
| +error_exit:
|
| /* Free everything that was allocated and return the error code. */
|
| tre_mem_destroy(mem);
|
| if (stack != NULL)
|
| @@ -2876,53 +2686,44 @@ regcomp(regex_t *restrict preg, const char *restrict regex, int cflags)
|
| xfree(counts);
|
| if (offs != NULL)
|
| xfree(offs);
|
| - preg->TRE_REGEX_T_FIELD = (void *)tnfa;
|
| + preg->TRE_REGEX_T_FIELD = (void*)tnfa;
|
| regfree(preg);
|
| return errcode;
|
| }
|
|
|
| -
|
| -
|
| -
|
| -void
|
| -regfree(regex_t *preg)
|
| -{
|
| - tre_tnfa_t *tnfa;
|
| +void regfree(regex_t* preg) {
|
| + tre_tnfa_t* tnfa;
|
| unsigned int i;
|
| - tre_tnfa_transition_t *trans;
|
| + tre_tnfa_transition_t* trans;
|
|
|
| - tnfa = (void *)preg->TRE_REGEX_T_FIELD;
|
| + tnfa = (void*)preg->TRE_REGEX_T_FIELD;
|
| if (!tnfa)
|
| return;
|
|
|
| for (i = 0; i < tnfa->num_transitions; i++)
|
| - if (tnfa->transitions[i].state)
|
| - {
|
| - if (tnfa->transitions[i].tags)
|
| - xfree(tnfa->transitions[i].tags);
|
| - if (tnfa->transitions[i].neg_classes)
|
| - xfree(tnfa->transitions[i].neg_classes);
|
| - }
|
| + if (tnfa->transitions[i].state) {
|
| + if (tnfa->transitions[i].tags)
|
| + xfree(tnfa->transitions[i].tags);
|
| + if (tnfa->transitions[i].neg_classes)
|
| + xfree(tnfa->transitions[i].neg_classes);
|
| + }
|
| if (tnfa->transitions)
|
| xfree(tnfa->transitions);
|
|
|
| - if (tnfa->initial)
|
| - {
|
| - for (trans = tnfa->initial; trans->state; trans++)
|
| - {
|
| - if (trans->tags)
|
| - xfree(trans->tags);
|
| - }
|
| - xfree(tnfa->initial);
|
| + if (tnfa->initial) {
|
| + for (trans = tnfa->initial; trans->state; trans++) {
|
| + if (trans->tags)
|
| + xfree(trans->tags);
|
| }
|
| + xfree(tnfa->initial);
|
| + }
|
|
|
| - if (tnfa->submatch_data)
|
| - {
|
| - for (i = 0; i < tnfa->num_submatches; i++)
|
| - if (tnfa->submatch_data[i].parents)
|
| - xfree(tnfa->submatch_data[i].parents);
|
| - xfree(tnfa->submatch_data);
|
| - }
|
| + if (tnfa->submatch_data) {
|
| + for (i = 0; i < tnfa->num_submatches; i++)
|
| + if (tnfa->submatch_data[i].parents)
|
| + xfree(tnfa->submatch_data[i].parents);
|
| + xfree(tnfa->submatch_data);
|
| + }
|
|
|
| if (tnfa->tag_directions)
|
| xfree(tnfa->tag_directions);
|
|
|