| Index: fusl/src/math/__sinl.c
|
| diff --git a/fusl/src/math/__sinl.c b/fusl/src/math/__sinl.c
|
| index 2525bbe86689080b4457ba7d5b1ea53793b90d9c..ee3e9d0dcb0cea29464d1fd05b44b91bf47686ef 100644
|
| --- a/fusl/src/math/__sinl.c
|
| +++ b/fusl/src/math/__sinl.c
|
| @@ -25,17 +25,17 @@
|
| *
|
| * See __cosl.c for more details about the polynomial.
|
| */
|
| -static const long double
|
| -S1 = -0.166666666666666666671L; /* -0xaaaaaaaaaaaaaaab.0p-66 */
|
| -static const double
|
| -S2 = 0.0083333333333333332, /* 0x11111111111111.0p-59 */
|
| -S3 = -0.00019841269841269427, /* -0x1a01a01a019f81.0p-65 */
|
| -S4 = 0.0000027557319223597490, /* 0x171de3a55560f7.0p-71 */
|
| -S5 = -0.000000025052108218074604, /* -0x1ae64564f16cad.0p-78 */
|
| -S6 = 1.6059006598854211e-10, /* 0x161242b90243b5.0p-85 */
|
| -S7 = -7.6429779983024564e-13, /* -0x1ae42ebd1b2e00.0p-93 */
|
| -S8 = 2.6174587166648325e-15; /* 0x179372ea0b3f64.0p-101 */
|
| -#define POLY(z) (S2+z*(S3+z*(S4+z*(S5+z*(S6+z*(S7+z*S8))))))
|
| +static const long double S1 =
|
| + -0.166666666666666666671L; /* -0xaaaaaaaaaaaaaaab.0p-66 */
|
| +static const double S2 = 0.0083333333333333332, /* 0x11111111111111.0p-59 */
|
| + S3 = -0.00019841269841269427, /* -0x1a01a01a019f81.0p-65 */
|
| + S4 = 0.0000027557319223597490, /* 0x171de3a55560f7.0p-71 */
|
| + S5 = -0.000000025052108218074604, /* -0x1ae64564f16cad.0p-78 */
|
| + S6 = 1.6059006598854211e-10, /* 0x161242b90243b5.0p-85 */
|
| + S7 = -7.6429779983024564e-13, /* -0x1ae42ebd1b2e00.0p-93 */
|
| + S8 = 2.6174587166648325e-15; /* 0x179372ea0b3f64.0p-101 */
|
| +#define POLY(z) \
|
| + (S2 + z * (S3 + z * (S4 + z * (S5 + z * (S6 + z * (S7 + z * S8))))))
|
| #elif LDBL_MANT_DIG == 113
|
| /*
|
| * ld128 version of __sin.c. See __sin.c for most comments.
|
| @@ -47,32 +47,39 @@ S8 = 2.6174587166648325e-15; /* 0x179372ea0b3f64.0p-101 */
|
| * See __cosl.c for more details about the polynomial.
|
| */
|
| static const long double
|
| -S1 = -0.16666666666666666666666666666666666606732416116558L,
|
| -S2 = 0.0083333333333333333333333333333331135404851288270047L,
|
| -S3 = -0.00019841269841269841269841269839935785325638310428717L,
|
| -S4 = 0.27557319223985890652557316053039946268333231205686e-5L,
|
| -S5 = -0.25052108385441718775048214826384312253862930064745e-7L,
|
| -S6 = 0.16059043836821614596571832194524392581082444805729e-9L,
|
| -S7 = -0.76471637318198151807063387954939213287488216303768e-12L,
|
| -S8 = 0.28114572543451292625024967174638477283187397621303e-14L;
|
| + S1 = -0.16666666666666666666666666666666666606732416116558L,
|
| + S2 = 0.0083333333333333333333333333333331135404851288270047L,
|
| + S3 = -0.00019841269841269841269841269839935785325638310428717L,
|
| + S4 = 0.27557319223985890652557316053039946268333231205686e-5L,
|
| + S5 = -0.25052108385441718775048214826384312253862930064745e-7L,
|
| + S6 = 0.16059043836821614596571832194524392581082444805729e-9L,
|
| + S7 = -0.76471637318198151807063387954939213287488216303768e-12L,
|
| + S8 = 0.28114572543451292625024967174638477283187397621303e-14L;
|
| static const double
|
| -S9 = -0.82206352458348947812512122163446202498005154296863e-17,
|
| -S10 = 0.19572940011906109418080609928334380560135358385256e-19,
|
| -S11 = -0.38680813379701966970673724299207480965452616911420e-22,
|
| -S12 = 0.64038150078671872796678569586315881020659912139412e-25;
|
| -#define POLY(z) (S2+z*(S3+z*(S4+z*(S5+z*(S6+z*(S7+z*(S8+ \
|
| - z*(S9+z*(S10+z*(S11+z*S12))))))))))
|
| + S9 = -0.82206352458348947812512122163446202498005154296863e-17,
|
| + S10 = 0.19572940011906109418080609928334380560135358385256e-19,
|
| + S11 = -0.38680813379701966970673724299207480965452616911420e-22,
|
| + S12 = 0.64038150078671872796678569586315881020659912139412e-25;
|
| +#define POLY(z) \
|
| + (S2 + \
|
| + z * (S3 + \
|
| + z * (S4 + \
|
| + z * (S5 + \
|
| + z * (S6 + \
|
| + z * (S7 + \
|
| + z * (S8 + \
|
| + z * (S9 + \
|
| + z * (S10 + z * (S11 + z * S12))))))))))
|
| #endif
|
|
|
| -long double __sinl(long double x, long double y, int iy)
|
| -{
|
| - long double z,r,v;
|
| +long double __sinl(long double x, long double y, int iy) {
|
| + long double z, r, v;
|
|
|
| - z = x*x;
|
| - v = z*x;
|
| - r = POLY(z);
|
| - if (iy == 0)
|
| - return x+v*(S1+z*r);
|
| - return x-((z*(0.5*y-v*r)-y)-v*S1);
|
| + z = x * x;
|
| + v = z * x;
|
| + r = POLY(z);
|
| + if (iy == 0)
|
| + return x + v * (S1 + z * r);
|
| + return x - ((z * (0.5 * y - v * r) - y) - v * S1);
|
| }
|
| #endif
|
|
|