OLD | NEW |
1 #include "pthread_impl.h" | 1 #include "pthread_impl.h" |
2 | 2 |
3 void __pthread_testcancel(void); | 3 void __pthread_testcancel(void); |
4 int __pthread_mutex_lock(pthread_mutex_t *); | 4 int __pthread_mutex_lock(pthread_mutex_t*); |
5 int __pthread_mutex_unlock(pthread_mutex_t *); | 5 int __pthread_mutex_unlock(pthread_mutex_t*); |
6 int __pthread_setcancelstate(int, int *); | 6 int __pthread_setcancelstate(int, int*); |
7 | 7 |
8 /* | 8 /* |
9 * struct waiter | 9 * struct waiter |
10 * | 10 * |
11 * Waiter objects have automatic storage on the waiting thread, and | 11 * Waiter objects have automatic storage on the waiting thread, and |
12 * are used in building a linked list representing waiters currently | 12 * are used in building a linked list representing waiters currently |
13 * waiting on the condition variable or a group of waiters woken | 13 * waiting on the condition variable or a group of waiters woken |
14 * together by a broadcast or signal; in the case of signal, this is a | 14 * together by a broadcast or signal; in the case of signal, this is a |
15 * degenerate list of one member. | 15 * degenerate list of one member. |
16 * | 16 * |
17 * Waiter lists attached to the condition variable itself are | 17 * Waiter lists attached to the condition variable itself are |
18 * protected by the lock on the cv. Detached waiter lists are never | 18 * protected by the lock on the cv. Detached waiter lists are never |
19 * modified again, but can only be traversed in reverse order, and are | 19 * modified again, but can only be traversed in reverse order, and are |
20 * protected by the "barrier" locks in each node, which are unlocked | 20 * protected by the "barrier" locks in each node, which are unlocked |
21 * in turn to control wake order. | 21 * in turn to control wake order. |
22 * | 22 * |
23 * Since process-shared cond var semantics do not necessarily allow | 23 * Since process-shared cond var semantics do not necessarily allow |
24 * one thread to see another's automatic storage (they may be in | 24 * one thread to see another's automatic storage (they may be in |
25 * different processes), the waiter list is not used for the | 25 * different processes), the waiter list is not used for the |
26 * process-shared case, but the structure is still used to store data | 26 * process-shared case, but the structure is still used to store data |
27 * needed by the cancellation cleanup handler. | 27 * needed by the cancellation cleanup handler. |
28 */ | 28 */ |
29 | 29 |
30 struct waiter { | 30 struct waiter { |
31 » struct waiter *prev, *next; | 31 struct waiter *prev, *next; |
32 » volatile int state, barrier; | 32 volatile int state, barrier; |
33 » volatile int *notify; | 33 volatile int* notify; |
34 }; | 34 }; |
35 | 35 |
36 /* Self-synchronized-destruction-safe lock functions */ | 36 /* Self-synchronized-destruction-safe lock functions */ |
37 | 37 |
38 static inline void lock(volatile int *l) | 38 static inline void lock(volatile int* l) { |
39 { | 39 if (a_cas(l, 0, 1)) { |
40 » if (a_cas(l, 0, 1)) { | 40 a_cas(l, 1, 2); |
41 » » a_cas(l, 1, 2); | 41 do |
42 » » do __wait(l, 0, 2, 1); | 42 __wait(l, 0, 2, 1); |
43 » » while (a_cas(l, 0, 2)); | 43 while (a_cas(l, 0, 2)); |
44 » } | 44 } |
45 } | 45 } |
46 | 46 |
47 static inline void unlock(volatile int *l) | 47 static inline void unlock(volatile int* l) { |
48 { | 48 if (a_swap(l, 0) == 2) |
49 » if (a_swap(l, 0)==2) | 49 __wake(l, 1, 1); |
50 » » __wake(l, 1, 1); | 50 } |
51 } | 51 |
52 | 52 static inline void unlock_requeue(volatile int* l, volatile int* r, int w) { |
53 static inline void unlock_requeue(volatile int *l, volatile int *r, int w) | 53 a_store(l, 0); |
54 { | 54 if (w) |
55 » a_store(l, 0); | 55 __wake(l, 1, 1); |
56 » if (w) __wake(l, 1, 1); | 56 else |
57 » else __syscall(SYS_futex, l, FUTEX_REQUEUE|128, 0, 1, r) != -ENOSYS | 57 __syscall(SYS_futex, l, FUTEX_REQUEUE | 128, 0, 1, r) != -ENOSYS || |
58 » » || __syscall(SYS_futex, l, FUTEX_REQUEUE, 0, 1, r); | 58 __syscall(SYS_futex, l, FUTEX_REQUEUE, 0, 1, r); |
59 } | 59 } |
60 | 60 |
61 enum { | 61 enum { |
62 » WAITING, | 62 WAITING, |
63 » SIGNALED, | 63 SIGNALED, |
64 » LEAVING, | 64 LEAVING, |
65 }; | 65 }; |
66 | 66 |
67 int __pthread_cond_timedwait(pthread_cond_t *restrict c, pthread_mutex_t *restri
ct m, const struct timespec *restrict ts) | 67 int __pthread_cond_timedwait(pthread_cond_t* restrict c, |
68 { | 68 pthread_mutex_t* restrict m, |
69 » struct waiter node = { 0 }; | 69 const struct timespec* restrict ts) { |
70 » int e, seq, clock = c->_c_clock, cs, shared=0, oldstate, tmp; | 70 struct waiter node = {0}; |
71 » volatile int *fut; | 71 int e, seq, clock = c->_c_clock, cs, shared = 0, oldstate, tmp; |
72 | 72 volatile int* fut; |
73 » if ((m->_m_type&15) && (m->_m_lock&INT_MAX) != __pthread_self()->tid) | 73 |
74 » » return EPERM; | 74 if ((m->_m_type & 15) && (m->_m_lock & INT_MAX) != __pthread_self()->tid) |
75 | 75 return EPERM; |
76 » if (ts && ts->tv_nsec >= 1000000000UL) | 76 |
77 » » return EINVAL; | 77 if (ts && ts->tv_nsec >= 1000000000UL) |
78 | 78 return EINVAL; |
79 » __pthread_testcancel(); | 79 |
80 | 80 __pthread_testcancel(); |
81 » if (c->_c_shared) { | 81 |
82 » » shared = 1; | 82 if (c->_c_shared) { |
83 » » fut = &c->_c_seq; | 83 shared = 1; |
84 » » seq = c->_c_seq; | 84 fut = &c->_c_seq; |
85 » » a_inc(&c->_c_waiters); | 85 seq = c->_c_seq; |
86 » } else { | 86 a_inc(&c->_c_waiters); |
87 » » lock(&c->_c_lock); | 87 } else { |
88 | 88 lock(&c->_c_lock); |
89 » » seq = node.barrier = 2; | 89 |
90 » » fut = &node.barrier; | 90 seq = node.barrier = 2; |
91 » » node.state = WAITING; | 91 fut = &node.barrier; |
92 » » node.next = c->_c_head; | 92 node.state = WAITING; |
93 » » c->_c_head = &node; | 93 node.next = c->_c_head; |
94 » » if (!c->_c_tail) c->_c_tail = &node; | 94 c->_c_head = &node; |
95 » » else node.next->prev = &node; | 95 if (!c->_c_tail) |
96 | 96 c->_c_tail = &node; |
97 » » unlock(&c->_c_lock); | 97 else |
98 » } | 98 node.next->prev = &node; |
99 | 99 |
100 » __pthread_mutex_unlock(m); | 100 unlock(&c->_c_lock); |
101 | 101 } |
102 » __pthread_setcancelstate(PTHREAD_CANCEL_MASKED, &cs); | 102 |
103 » if (cs == PTHREAD_CANCEL_DISABLE) __pthread_setcancelstate(cs, 0); | 103 __pthread_mutex_unlock(m); |
104 | 104 |
105 » do e = __timedwait_cp(fut, seq, clock, ts, !shared); | 105 __pthread_setcancelstate(PTHREAD_CANCEL_MASKED, &cs); |
106 » while (*fut==seq && (!e || e==EINTR)); | 106 if (cs == PTHREAD_CANCEL_DISABLE) |
107 » if (e == EINTR) e = 0; | 107 __pthread_setcancelstate(cs, 0); |
108 | 108 |
109 » if (shared) { | 109 do |
110 » » /* Suppress cancellation if a signal was potentially | 110 e = __timedwait_cp(fut, seq, clock, ts, !shared); |
111 » » * consumed; this is a legitimate form of spurious | 111 while (*fut == seq && (!e || e == EINTR)); |
112 » » * wake even if not. */ | 112 if (e == EINTR) |
113 » » if (e == ECANCELED && c->_c_seq != seq) e = 0; | 113 e = 0; |
114 » » if (a_fetch_add(&c->_c_waiters, -1) == -0x7fffffff) | 114 |
115 » » » __wake(&c->_c_waiters, 1, 0); | 115 if (shared) { |
116 » » oldstate = WAITING; | 116 /* Suppress cancellation if a signal was potentially |
117 » » goto relock; | 117 * consumed; this is a legitimate form of spurious |
118 » } | 118 * wake even if not. */ |
119 | 119 if (e == ECANCELED && c->_c_seq != seq) |
120 » oldstate = a_cas(&node.state, WAITING, LEAVING); | 120 e = 0; |
121 | 121 if (a_fetch_add(&c->_c_waiters, -1) == -0x7fffffff) |
122 » if (oldstate == WAITING) { | 122 __wake(&c->_c_waiters, 1, 0); |
123 » » /* Access to cv object is valid because this waiter was not | 123 oldstate = WAITING; |
124 » » * yet signaled and a new signal/broadcast cannot return | 124 goto relock; |
125 » » * after seeing a LEAVING waiter without getting notified | 125 } |
126 » » * via the futex notify below. */ | 126 |
127 | 127 oldstate = a_cas(&node.state, WAITING, LEAVING); |
128 » » lock(&c->_c_lock); | 128 |
129 » » | 129 if (oldstate == WAITING) { |
130 » » if (c->_c_head == &node) c->_c_head = node.next; | 130 /* Access to cv object is valid because this waiter was not |
131 » » else if (node.prev) node.prev->next = node.next; | 131 * yet signaled and a new signal/broadcast cannot return |
132 » » if (c->_c_tail == &node) c->_c_tail = node.prev; | 132 * after seeing a LEAVING waiter without getting notified |
133 » » else if (node.next) node.next->prev = node.prev; | 133 * via the futex notify below. */ |
134 » » | 134 |
135 » » unlock(&c->_c_lock); | 135 lock(&c->_c_lock); |
136 | 136 |
137 » » if (node.notify) { | 137 if (c->_c_head == &node) |
138 » » » if (a_fetch_add(node.notify, -1)==1) | 138 c->_c_head = node.next; |
139 » » » » __wake(node.notify, 1, 1); | 139 else if (node.prev) |
140 » » } | 140 node.prev->next = node.next; |
141 » } else { | 141 if (c->_c_tail == &node) |
142 » » /* Lock barrier first to control wake order. */ | 142 c->_c_tail = node.prev; |
143 » » lock(&node.barrier); | 143 else if (node.next) |
144 » } | 144 node.next->prev = node.prev; |
| 145 |
| 146 unlock(&c->_c_lock); |
| 147 |
| 148 if (node.notify) { |
| 149 if (a_fetch_add(node.notify, -1) == 1) |
| 150 __wake(node.notify, 1, 1); |
| 151 } |
| 152 } else { |
| 153 /* Lock barrier first to control wake order. */ |
| 154 lock(&node.barrier); |
| 155 } |
145 | 156 |
146 relock: | 157 relock: |
147 » /* Errors locking the mutex override any existing error or | 158 /* Errors locking the mutex override any existing error or |
148 » * cancellation, since the caller must see them to know the | 159 * cancellation, since the caller must see them to know the |
149 » * state of the mutex. */ | 160 * state of the mutex. */ |
150 » if ((tmp = pthread_mutex_lock(m))) e = tmp; | 161 if ((tmp = pthread_mutex_lock(m))) |
151 | 162 e = tmp; |
152 » if (oldstate == WAITING) goto done; | 163 |
153 | 164 if (oldstate == WAITING) |
154 » if (!node.next) a_inc(&m->_m_waiters); | 165 goto done; |
155 | 166 |
156 » /* Unlock the barrier that's holding back the next waiter, and | 167 if (!node.next) |
157 » * either wake it or requeue it to the mutex. */ | 168 a_inc(&m->_m_waiters); |
158 » if (node.prev) | 169 |
159 » » unlock_requeue(&node.prev->barrier, &m->_m_lock, m->_m_type & 12
8); | 170 /* Unlock the barrier that's holding back the next waiter, and |
160 » else | 171 * either wake it or requeue it to the mutex. */ |
161 » » a_dec(&m->_m_waiters); | 172 if (node.prev) |
162 | 173 unlock_requeue(&node.prev->barrier, &m->_m_lock, m->_m_type & 128); |
163 » /* Since a signal was consumed, cancellation is not permitted. */ | 174 else |
164 » if (e == ECANCELED) e = 0; | 175 a_dec(&m->_m_waiters); |
| 176 |
| 177 /* Since a signal was consumed, cancellation is not permitted. */ |
| 178 if (e == ECANCELED) |
| 179 e = 0; |
165 | 180 |
166 done: | 181 done: |
167 » __pthread_setcancelstate(cs, 0); | 182 __pthread_setcancelstate(cs, 0); |
168 | 183 |
169 » if (e == ECANCELED) { | 184 if (e == ECANCELED) { |
170 » » __pthread_testcancel(); | 185 __pthread_testcancel(); |
171 » » __pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, 0); | 186 __pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, 0); |
172 » } | 187 } |
173 | 188 |
174 » return e; | 189 return e; |
175 } | 190 } |
176 | 191 |
177 int __private_cond_signal(pthread_cond_t *c, int n) | 192 int __private_cond_signal(pthread_cond_t* c, int n) { |
178 { | 193 struct waiter *p, *first = 0; |
179 » struct waiter *p, *first=0; | 194 volatile int ref = 0; |
180 » volatile int ref = 0; | 195 int cur; |
181 » int cur; | 196 |
182 | 197 lock(&c->_c_lock); |
183 » lock(&c->_c_lock); | 198 for (p = c->_c_tail; n && p; p = p->prev) { |
184 » for (p=c->_c_tail; n && p; p=p->prev) { | 199 if (a_cas(&p->state, WAITING, SIGNALED) != WAITING) { |
185 » » if (a_cas(&p->state, WAITING, SIGNALED) != WAITING) { | 200 ref++; |
186 » » » ref++; | 201 p->notify = &ref; |
187 » » » p->notify = &ref; | 202 } else { |
188 » » } else { | 203 n--; |
189 » » » n--; | 204 if (!first) |
190 » » » if (!first) first=p; | 205 first = p; |
191 » » } | 206 } |
192 » } | 207 } |
193 » /* Split the list, leaving any remainder on the cv. */ | 208 /* Split the list, leaving any remainder on the cv. */ |
194 » if (p) { | 209 if (p) { |
195 » » if (p->next) p->next->prev = 0; | 210 if (p->next) |
196 » » p->next = 0; | 211 p->next->prev = 0; |
197 » } else { | 212 p->next = 0; |
198 » » c->_c_head = 0; | 213 } else { |
199 » } | 214 c->_c_head = 0; |
200 » c->_c_tail = p; | 215 } |
201 » unlock(&c->_c_lock); | 216 c->_c_tail = p; |
202 | 217 unlock(&c->_c_lock); |
203 » /* Wait for any waiters in the LEAVING state to remove | 218 |
204 » * themselves from the list before returning or allowing | 219 /* Wait for any waiters in the LEAVING state to remove |
205 » * signaled threads to proceed. */ | 220 * themselves from the list before returning or allowing |
206 » while ((cur = ref)) __wait(&ref, 0, cur, 1); | 221 * signaled threads to proceed. */ |
207 | 222 while ((cur = ref)) |
208 » /* Allow first signaled waiter, if any, to proceed. */ | 223 __wait(&ref, 0, cur, 1); |
209 » if (first) unlock(&first->barrier); | 224 |
210 | 225 /* Allow first signaled waiter, if any, to proceed. */ |
211 » return 0; | 226 if (first) |
| 227 unlock(&first->barrier); |
| 228 |
| 229 return 0; |
212 } | 230 } |
213 | 231 |
214 weak_alias(__pthread_cond_timedwait, pthread_cond_timedwait); | 232 weak_alias(__pthread_cond_timedwait, pthread_cond_timedwait); |
OLD | NEW |