Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(104)

Side by Side Diff: fusl/src/math/j1.c

Issue 1714623002: [fusl] clang-format fusl (Closed) Base URL: git@github.com:domokit/mojo.git@master
Patch Set: headers too Created 4 years, 10 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
1 /* origin: FreeBSD /usr/src/lib/msun/src/e_j1.c */ 1 /* origin: FreeBSD /usr/src/lib/msun/src/e_j1.c */
2 /* 2 /*
3 * ==================================================== 3 * ====================================================
4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5 * 5 *
6 * Developed at SunSoft, a Sun Microsystems, Inc. business. 6 * Developed at SunSoft, a Sun Microsystems, Inc. business.
7 * Permission to use, copy, modify, and distribute this 7 * Permission to use, copy, modify, and distribute this
8 * software is freely granted, provided that this notice 8 * software is freely granted, provided that this notice
9 * is preserved. 9 * is preserved.
10 * ==================================================== 10 * ====================================================
(...skipping 40 matching lines...) Expand 10 before | Expand all | Expand 10 after
51 * 3. For x>=2. 51 * 3. For x>=2.
52 * y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1)) 52 * y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
53 * where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1) 53 * where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
54 * by method mentioned above. 54 * by method mentioned above.
55 */ 55 */
56 56
57 #include "libm.h" 57 #include "libm.h"
58 58
59 static double pone(double), qone(double); 59 static double pone(double), qone(double);
60 60
61 static const double 61 static const double invsqrtpi =
62 invsqrtpi = 5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */ 62 5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
63 tpi = 6.36619772367581382433e-01; /* 0x3FE45F30, 0x6DC9C883 */ 63 tpi = 6.36619772367581382433e-01; /* 0x3FE45F30, 0x6DC9C883 */
64 64
65 static double common(uint32_t ix, double x, int y1, int sign) 65 static double common(uint32_t ix, double x, int y1, int sign) {
66 { 66 double z, s, c, ss, cc;
67 » double z,s,c,ss,cc;
68 67
69 » /* 68 /*
70 » * j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x-3pi/4)-q1(x)*sin(x-3pi/4)) 69 * j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x-3pi/4)-q1(x)*sin(x-3pi/4))
71 » * y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x-3pi/4)+q1(x)*cos(x-3pi/4)) 70 * y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x-3pi/4)+q1(x)*cos(x-3pi/4))
72 » * 71 *
73 » * sin(x-3pi/4) = -(sin(x) + cos(x))/sqrt(2) 72 * sin(x-3pi/4) = -(sin(x) + cos(x))/sqrt(2)
74 » * cos(x-3pi/4) = (sin(x) - cos(x))/sqrt(2) 73 * cos(x-3pi/4) = (sin(x) - cos(x))/sqrt(2)
75 » * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x)) 74 * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
76 » */ 75 */
77 » s = sin(x); 76 s = sin(x);
78 » if (y1) 77 if (y1)
79 » » s = -s; 78 s = -s;
80 » c = cos(x); 79 c = cos(x);
81 » cc = s-c; 80 cc = s - c;
82 » if (ix < 0x7fe00000) { 81 if (ix < 0x7fe00000) {
83 » » /* avoid overflow in 2*x */ 82 /* avoid overflow in 2*x */
84 » » ss = -s-c; 83 ss = -s - c;
85 » » z = cos(2*x); 84 z = cos(2 * x);
86 » » if (s*c > 0) 85 if (s * c > 0)
87 » » » cc = z/ss; 86 cc = z / ss;
88 » » else 87 else
89 » » » ss = z/cc; 88 ss = z / cc;
90 » » if (ix < 0x48000000) { 89 if (ix < 0x48000000) {
91 » » » if (y1) 90 if (y1)
92 » » » » ss = -ss; 91 ss = -ss;
93 » » » cc = pone(x)*cc-qone(x)*ss; 92 cc = pone(x) * cc - qone(x) * ss;
94 » » } 93 }
95 » } 94 }
96 » if (sign) 95 if (sign)
97 » » cc = -cc; 96 cc = -cc;
98 » return invsqrtpi*cc/sqrt(x); 97 return invsqrtpi * cc / sqrt(x);
99 } 98 }
100 99
101 /* R0/S0 on [0,2] */ 100 /* R0/S0 on [0,2] */
102 static const double 101 static const double
103 r00 = -6.25000000000000000000e-02, /* 0xBFB00000, 0x00000000 */ 102 r00 = -6.25000000000000000000e-02, /* 0xBFB00000, 0x00000000 */
104 r01 = 1.40705666955189706048e-03, /* 0x3F570D9F, 0x98472C61 */ 103 r01 = 1.40705666955189706048e-03, /* 0x3F570D9F, 0x98472C61 */
105 r02 = -1.59955631084035597520e-05, /* 0xBEF0C5C6, 0xBA169668 */ 104 r02 = -1.59955631084035597520e-05, /* 0xBEF0C5C6, 0xBA169668 */
106 r03 = 4.96727999609584448412e-08, /* 0x3E6AAAFA, 0x46CA0BD9 */ 105 r03 = 4.96727999609584448412e-08, /* 0x3E6AAAFA, 0x46CA0BD9 */
107 s01 = 1.91537599538363460805e-02, /* 0x3F939D0B, 0x12637E53 */ 106 s01 = 1.91537599538363460805e-02, /* 0x3F939D0B, 0x12637E53 */
108 s02 = 1.85946785588630915560e-04, /* 0x3F285F56, 0xB9CDF664 */ 107 s02 = 1.85946785588630915560e-04, /* 0x3F285F56, 0xB9CDF664 */
109 s03 = 1.17718464042623683263e-06, /* 0x3EB3BFF8, 0x333F8498 */ 108 s03 = 1.17718464042623683263e-06, /* 0x3EB3BFF8, 0x333F8498 */
110 s04 = 5.04636257076217042715e-09, /* 0x3E35AC88, 0xC97DFF2C */ 109 s04 = 5.04636257076217042715e-09, /* 0x3E35AC88, 0xC97DFF2C */
111 s05 = 1.23542274426137913908e-11; /* 0x3DAB2ACF, 0xCFB97ED8 */ 110 s05 = 1.23542274426137913908e-11; /* 0x3DAB2ACF, 0xCFB97ED8 */
112 111
113 double j1(double x) 112 double j1(double x) {
114 { 113 double z, r, s;
115 » double z,r,s; 114 uint32_t ix;
116 » uint32_t ix; 115 int sign;
117 » int sign;
118 116
119 » GET_HIGH_WORD(ix, x); 117 GET_HIGH_WORD(ix, x);
120 » sign = ix>>31; 118 sign = ix >> 31;
121 » ix &= 0x7fffffff; 119 ix &= 0x7fffffff;
122 » if (ix >= 0x7ff00000) 120 if (ix >= 0x7ff00000)
123 » » return 1/(x*x); 121 return 1 / (x * x);
124 » if (ix >= 0x40000000) /* |x| >= 2 */ 122 if (ix >= 0x40000000) /* |x| >= 2 */
125 » » return common(ix, fabs(x), 0, sign); 123 return common(ix, fabs(x), 0, sign);
126 » if (ix >= 0x38000000) { /* |x| >= 2**-127 */ 124 if (ix >= 0x38000000) { /* |x| >= 2**-127 */
127 » » z = x*x; 125 z = x * x;
128 » » r = z*(r00+z*(r01+z*(r02+z*r03))); 126 r = z * (r00 + z * (r01 + z * (r02 + z * r03)));
129 » » s = 1+z*(s01+z*(s02+z*(s03+z*(s04+z*s05)))); 127 s = 1 + z * (s01 + z * (s02 + z * (s03 + z * (s04 + z * s05))));
130 » » z = r/s; 128 z = r / s;
131 » } else 129 } else
132 » » /* avoid underflow, raise inexact if x!=0 */ 130 /* avoid underflow, raise inexact if x!=0 */
133 » » z = x; 131 z = x;
134 » return (0.5 + z)*x; 132 return (0.5 + z) * x;
135 } 133 }
136 134
137 static const double U0[5] = { 135 static const double U0[5] = {
138 -1.96057090646238940668e-01, /* 0xBFC91866, 0x143CBC8A */ 136 -1.96057090646238940668e-01, /* 0xBFC91866, 0x143CBC8A */
139 5.04438716639811282616e-02, /* 0x3FA9D3C7, 0x76292CD1 */ 137 5.04438716639811282616e-02, /* 0x3FA9D3C7, 0x76292CD1 */
140 -1.91256895875763547298e-03, /* 0xBF5F55E5, 0x4844F50F */ 138 -1.91256895875763547298e-03, /* 0xBF5F55E5, 0x4844F50F */
141 2.35252600561610495928e-05, /* 0x3EF8AB03, 0x8FA6B88E */ 139 2.35252600561610495928e-05, /* 0x3EF8AB03, 0x8FA6B88E */
142 -9.19099158039878874504e-08, /* 0xBE78AC00, 0x569105B8 */ 140 -9.19099158039878874504e-08, /* 0xBE78AC00, 0x569105B8 */
143 }; 141 };
144 static const double V0[5] = { 142 static const double V0[5] = {
145 1.99167318236649903973e-02, /* 0x3F94650D, 0x3F4DA9F0 */ 143 1.99167318236649903973e-02, /* 0x3F94650D, 0x3F4DA9F0 */
146 2.02552581025135171496e-04, /* 0x3F2A8C89, 0x6C257764 */ 144 2.02552581025135171496e-04, /* 0x3F2A8C89, 0x6C257764 */
147 1.35608801097516229404e-06, /* 0x3EB6C05A, 0x894E8CA6 */ 145 1.35608801097516229404e-06, /* 0x3EB6C05A, 0x894E8CA6 */
148 6.22741452364621501295e-09, /* 0x3E3ABF1D, 0x5BA69A86 */ 146 6.22741452364621501295e-09, /* 0x3E3ABF1D, 0x5BA69A86 */
149 1.66559246207992079114e-11, /* 0x3DB25039, 0xDACA772A */ 147 1.66559246207992079114e-11, /* 0x3DB25039, 0xDACA772A */
150 }; 148 };
151 149
152 double y1(double x) 150 double y1(double x) {
153 { 151 double z, u, v;
154 » double z,u,v; 152 uint32_t ix, lx;
155 » uint32_t ix,lx;
156 153
157 » EXTRACT_WORDS(ix, lx, x); 154 EXTRACT_WORDS(ix, lx, x);
158 » /* y1(nan)=nan, y1(<0)=nan, y1(0)=-inf, y1(inf)=0 */ 155 /* y1(nan)=nan, y1(<0)=nan, y1(0)=-inf, y1(inf)=0 */
159 » if ((ix<<1 | lx) == 0) 156 if ((ix << 1 | lx) == 0)
160 » » return -1/0.0; 157 return -1 / 0.0;
161 » if (ix>>31) 158 if (ix >> 31)
162 » » return 0/0.0; 159 return 0 / 0.0;
163 » if (ix >= 0x7ff00000) 160 if (ix >= 0x7ff00000)
164 » » return 1/x; 161 return 1 / x;
165 162
166 » if (ix >= 0x40000000) /* x >= 2 */ 163 if (ix >= 0x40000000) /* x >= 2 */
167 » » return common(ix, x, 1, 0); 164 return common(ix, x, 1, 0);
168 » if (ix < 0x3c900000) /* x < 2**-54 */ 165 if (ix < 0x3c900000) /* x < 2**-54 */
169 » » return -tpi/x; 166 return -tpi / x;
170 » z = x*x; 167 z = x * x;
171 » u = U0[0]+z*(U0[1]+z*(U0[2]+z*(U0[3]+z*U0[4]))); 168 u = U0[0] + z * (U0[1] + z * (U0[2] + z * (U0[3] + z * U0[4])));
172 » v = 1+z*(V0[0]+z*(V0[1]+z*(V0[2]+z*(V0[3]+z*V0[4])))); 169 v = 1 + z * (V0[0] + z * (V0[1] + z * (V0[2] + z * (V0[3] + z * V0[4]))));
173 » return x*(u/v) + tpi*(j1(x)*log(x)-1/x); 170 return x * (u / v) + tpi * (j1(x) * log(x) - 1 / x);
174 } 171 }
175 172
176 /* For x >= 8, the asymptotic expansions of pone is 173 /* For x >= 8, the asymptotic expansions of pone is
177 * 1 + 15/128 s^2 - 4725/2^15 s^4 - ..., where s = 1/x. 174 * 1 + 15/128 s^2 - 4725/2^15 s^4 - ..., where s = 1/x.
178 * We approximate pone by 175 * We approximate pone by
179 * pone(x) = 1 + (R/S) 176 * pone(x) = 1 + (R/S)
180 * where R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10 177 * where R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10
181 * S = 1 + ps0*s^2 + ... + ps4*s^10 178 * S = 1 + ps0*s^2 + ... + ps4*s^10
182 * and 179 * and
183 * | pone(x)-1-R/S | <= 2 ** ( -60.06) 180 * | pone(x)-1-R/S | <= 2 ** ( -60.06)
184 */ 181 */
185 182
186 static const double pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ 183 static const double pr8[6] = {
187 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */ 184 /* for x in [inf, 8]=1/[0,0.125] */
188 1.17187499999988647970e-01, /* 0x3FBDFFFF, 0xFFFFFCCE */ 185 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
189 1.32394806593073575129e+01, /* 0x402A7A9D, 0x357F7FCE */ 186 1.17187499999988647970e-01, /* 0x3FBDFFFF, 0xFFFFFCCE */
190 4.12051854307378562225e+02, /* 0x4079C0D4, 0x652EA590 */ 187 1.32394806593073575129e+01, /* 0x402A7A9D, 0x357F7FCE */
191 3.87474538913960532227e+03, /* 0x40AE457D, 0xA3A532CC */ 188 4.12051854307378562225e+02, /* 0x4079C0D4, 0x652EA590 */
192 7.91447954031891731574e+03, /* 0x40BEEA7A, 0xC32782DD */ 189 3.87474538913960532227e+03, /* 0x40AE457D, 0xA3A532CC */
190 7.91447954031891731574e+03, /* 0x40BEEA7A, 0xC32782DD */
193 }; 191 };
194 static const double ps8[5] = { 192 static const double ps8[5] = {
195 1.14207370375678408436e+02, /* 0x405C8D45, 0x8E656CAC */ 193 1.14207370375678408436e+02, /* 0x405C8D45, 0x8E656CAC */
196 3.65093083420853463394e+03, /* 0x40AC85DC, 0x964D274F */ 194 3.65093083420853463394e+03, /* 0x40AC85DC, 0x964D274F */
197 3.69562060269033463555e+04, /* 0x40E20B86, 0x97C5BB7F */ 195 3.69562060269033463555e+04, /* 0x40E20B86, 0x97C5BB7F */
198 9.76027935934950801311e+04, /* 0x40F7D42C, 0xB28F17BB */ 196 9.76027935934950801311e+04, /* 0x40F7D42C, 0xB28F17BB */
199 3.08042720627888811578e+04, /* 0x40DE1511, 0x697A0B2D */ 197 3.08042720627888811578e+04, /* 0x40DE1511, 0x697A0B2D */
200 }; 198 };
201 199
202 static const double pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ 200 static const double pr5[6] = {
203 1.31990519556243522749e-11, /* 0x3DAD0667, 0xDAE1CA7D */ 201 /* for x in [8,4.5454]=1/[0.125,0.22001] */
204 1.17187493190614097638e-01, /* 0x3FBDFFFF, 0xE2C10043 */ 202 1.31990519556243522749e-11, /* 0x3DAD0667, 0xDAE1CA7D */
205 6.80275127868432871736e+00, /* 0x401B3604, 0x6E6315E3 */ 203 1.17187493190614097638e-01, /* 0x3FBDFFFF, 0xE2C10043 */
206 1.08308182990189109773e+02, /* 0x405B13B9, 0x452602ED */ 204 6.80275127868432871736e+00, /* 0x401B3604, 0x6E6315E3 */
207 5.17636139533199752805e+02, /* 0x40802D16, 0xD052D649 */ 205 1.08308182990189109773e+02, /* 0x405B13B9, 0x452602ED */
208 5.28715201363337541807e+02, /* 0x408085B8, 0xBB7E0CB7 */ 206 5.17636139533199752805e+02, /* 0x40802D16, 0xD052D649 */
207 5.28715201363337541807e+02, /* 0x408085B8, 0xBB7E0CB7 */
209 }; 208 };
210 static const double ps5[5] = { 209 static const double ps5[5] = {
211 5.92805987221131331921e+01, /* 0x404DA3EA, 0xA8AF633D */ 210 5.92805987221131331921e+01, /* 0x404DA3EA, 0xA8AF633D */
212 9.91401418733614377743e+02, /* 0x408EFB36, 0x1B066701 */ 211 9.91401418733614377743e+02, /* 0x408EFB36, 0x1B066701 */
213 5.35326695291487976647e+03, /* 0x40B4E944, 0x5706B6FB */ 212 5.35326695291487976647e+03, /* 0x40B4E944, 0x5706B6FB */
214 7.84469031749551231769e+03, /* 0x40BEA4B0, 0xB8A5BB15 */ 213 7.84469031749551231769e+03, /* 0x40BEA4B0, 0xB8A5BB15 */
215 1.50404688810361062679e+03, /* 0x40978030, 0x036F5E51 */ 214 1.50404688810361062679e+03, /* 0x40978030, 0x036F5E51 */
216 }; 215 };
217 216
218 static const double pr3[6] = { 217 static const double pr3[6] = {
219 3.02503916137373618024e-09, /* 0x3E29FC21, 0xA7AD9EDD */ 218 3.02503916137373618024e-09, /* 0x3E29FC21, 0xA7AD9EDD */
220 1.17186865567253592491e-01, /* 0x3FBDFFF5, 0x5B21D17B */ 219 1.17186865567253592491e-01, /* 0x3FBDFFF5, 0x5B21D17B */
221 3.93297750033315640650e+00, /* 0x400F76BC, 0xE85EAD8A */ 220 3.93297750033315640650e+00, /* 0x400F76BC, 0xE85EAD8A */
222 3.51194035591636932736e+01, /* 0x40418F48, 0x9DA6D129 */ 221 3.51194035591636932736e+01, /* 0x40418F48, 0x9DA6D129 */
223 9.10550110750781271918e+01, /* 0x4056C385, 0x4D2C1837 */ 222 9.10550110750781271918e+01, /* 0x4056C385, 0x4D2C1837 */
224 4.85590685197364919645e+01, /* 0x4048478F, 0x8EA83EE5 */ 223 4.85590685197364919645e+01, /* 0x4048478F, 0x8EA83EE5 */
225 }; 224 };
226 static const double ps3[5] = { 225 static const double ps3[5] = {
227 3.47913095001251519989e+01, /* 0x40416549, 0xA134069C */ 226 3.47913095001251519989e+01, /* 0x40416549, 0xA134069C */
228 3.36762458747825746741e+02, /* 0x40750C33, 0x07F1A75F */ 227 3.36762458747825746741e+02, /* 0x40750C33, 0x07F1A75F */
229 1.04687139975775130551e+03, /* 0x40905B7C, 0x5037D523 */ 228 1.04687139975775130551e+03, /* 0x40905B7C, 0x5037D523 */
230 8.90811346398256432622e+02, /* 0x408BD67D, 0xA32E31E9 */ 229 8.90811346398256432622e+02, /* 0x408BD67D, 0xA32E31E9 */
231 1.03787932439639277504e+02, /* 0x4059F26D, 0x7C2EED53 */ 230 1.03787932439639277504e+02, /* 0x4059F26D, 0x7C2EED53 */
232 }; 231 };
233 232
234 static const double pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ 233 static const double pr2[6] = {
235 1.07710830106873743082e-07, /* 0x3E7CE9D4, 0xF65544F4 */ 234 /* for x in [2.8570,2]=1/[0.3499,0.5] */
236 1.17176219462683348094e-01, /* 0x3FBDFF42, 0xBE760D83 */ 235 1.07710830106873743082e-07, /* 0x3E7CE9D4, 0xF65544F4 */
237 2.36851496667608785174e+00, /* 0x4002F2B7, 0xF98FAEC0 */ 236 1.17176219462683348094e-01, /* 0x3FBDFF42, 0xBE760D83 */
238 1.22426109148261232917e+01, /* 0x40287C37, 0x7F71A964 */ 237 2.36851496667608785174e+00, /* 0x4002F2B7, 0xF98FAEC0 */
239 1.76939711271687727390e+01, /* 0x4031B1A8, 0x177F8EE2 */ 238 1.22426109148261232917e+01, /* 0x40287C37, 0x7F71A964 */
240 5.07352312588818499250e+00, /* 0x40144B49, 0xA574C1FE */ 239 1.76939711271687727390e+01, /* 0x4031B1A8, 0x177F8EE2 */
240 5.07352312588818499250e+00, /* 0x40144B49, 0xA574C1FE */
241 }; 241 };
242 static const double ps2[5] = { 242 static const double ps2[5] = {
243 2.14364859363821409488e+01, /* 0x40356FBD, 0x8AD5ECDC */ 243 2.14364859363821409488e+01, /* 0x40356FBD, 0x8AD5ECDC */
244 1.25290227168402751090e+02, /* 0x405F5293, 0x14F92CD5 */ 244 1.25290227168402751090e+02, /* 0x405F5293, 0x14F92CD5 */
245 2.32276469057162813669e+02, /* 0x406D08D8, 0xD5A2DBD9 */ 245 2.32276469057162813669e+02, /* 0x406D08D8, 0xD5A2DBD9 */
246 1.17679373287147100768e+02, /* 0x405D6B7A, 0xDA1884A9 */ 246 1.17679373287147100768e+02, /* 0x405D6B7A, 0xDA1884A9 */
247 8.36463893371618283368e+00, /* 0x4020BAB1, 0xF44E5192 */ 247 8.36463893371618283368e+00, /* 0x4020BAB1, 0xF44E5192 */
248 }; 248 };
249 249
250 static double pone(double x) 250 static double pone(double x) {
251 { 251 const double *p, *q;
252 » const double *p,*q; 252 double_t z, r, s;
253 » double_t z,r,s; 253 uint32_t ix;
254 » uint32_t ix;
255 254
256 » GET_HIGH_WORD(ix, x); 255 GET_HIGH_WORD(ix, x);
257 » ix &= 0x7fffffff; 256 ix &= 0x7fffffff;
258 » if (ix >= 0x40200000){p = pr8; q = ps8;} 257 if (ix >= 0x40200000) {
259 » else if (ix >= 0x40122E8B){p = pr5; q = ps5;} 258 p = pr8;
260 » else if (ix >= 0x4006DB6D){p = pr3; q = ps3;} 259 q = ps8;
261 » else /*ix >= 0x40000000*/ {p = pr2; q = ps2;} 260 } else if (ix >= 0x40122E8B) {
262 » z = 1.0/(x*x); 261 p = pr5;
263 » r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5])))); 262 q = ps5;
264 » s = 1.0+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4])))); 263 } else if (ix >= 0x4006DB6D) {
265 » return 1.0+ r/s; 264 p = pr3;
265 q = ps3;
266 } else /*ix >= 0x40000000*/ {
267 p = pr2;
268 q = ps2;
269 }
270 z = 1.0 / (x * x);
271 r = p[0] + z * (p[1] + z * (p[2] + z * (p[3] + z * (p[4] + z * p[5]))));
272 s = 1.0 + z * (q[0] + z * (q[1] + z * (q[2] + z * (q[3] + z * q[4]))));
273 return 1.0 + r / s;
266 } 274 }
267 275
268 /* For x >= 8, the asymptotic expansions of qone is 276 /* For x >= 8, the asymptotic expansions of qone is
269 * 3/8 s - 105/1024 s^3 - ..., where s = 1/x. 277 * 3/8 s - 105/1024 s^3 - ..., where s = 1/x.
270 * We approximate pone by 278 * We approximate pone by
271 * qone(x) = s*(0.375 + (R/S)) 279 * qone(x) = s*(0.375 + (R/S))
272 * where R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10 280 * where R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10
273 * S = 1 + qs1*s^2 + ... + qs6*s^12 281 * S = 1 + qs1*s^2 + ... + qs6*s^12
274 * and 282 * and
275 * | qone(x)/s -0.375-R/S | <= 2 ** ( -61.13) 283 * | qone(x)/s -0.375-R/S | <= 2 ** ( -61.13)
276 */ 284 */
277 285
278 static const double qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ 286 static const double qr8[6] = {
279 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */ 287 /* for x in [inf, 8]=1/[0,0.125] */
280 -1.02539062499992714161e-01, /* 0xBFBA3FFF, 0xFFFFFDF3 */ 288 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
281 -1.62717534544589987888e+01, /* 0xC0304591, 0xA26779F7 */ 289 -1.02539062499992714161e-01, /* 0xBFBA3FFF, 0xFFFFFDF3 */
282 -7.59601722513950107896e+02, /* 0xC087BCD0, 0x53E4B576 */ 290 -1.62717534544589987888e+01, /* 0xC0304591, 0xA26779F7 */
283 -1.18498066702429587167e+04, /* 0xC0C724E7, 0x40F87415 */ 291 -7.59601722513950107896e+02, /* 0xC087BCD0, 0x53E4B576 */
284 -4.84385124285750353010e+04, /* 0xC0E7A6D0, 0x65D09C6A */ 292 -1.18498066702429587167e+04, /* 0xC0C724E7, 0x40F87415 */
293 -4.84385124285750353010e+04, /* 0xC0E7A6D0, 0x65D09C6A */
285 }; 294 };
286 static const double qs8[6] = { 295 static const double qs8[6] = {
287 1.61395369700722909556e+02, /* 0x40642CA6, 0xDE5BCDE5 */ 296 1.61395369700722909556e+02, /* 0x40642CA6, 0xDE5BCDE5 */
288 7.82538599923348465381e+03, /* 0x40BE9162, 0xD0D88419 */ 297 7.82538599923348465381e+03, /* 0x40BE9162, 0xD0D88419 */
289 1.33875336287249578163e+05, /* 0x4100579A, 0xB0B75E98 */ 298 1.33875336287249578163e+05, /* 0x4100579A, 0xB0B75E98 */
290 7.19657723683240939863e+05, /* 0x4125F653, 0x72869C19 */ 299 7.19657723683240939863e+05, /* 0x4125F653, 0x72869C19 */
291 6.66601232617776375264e+05, /* 0x412457D2, 0x7719AD5C */ 300 6.66601232617776375264e+05, /* 0x412457D2, 0x7719AD5C */
292 -2.94490264303834643215e+05, /* 0xC111F969, 0x0EA5AA18 */ 301 -2.94490264303834643215e+05, /* 0xC111F969, 0x0EA5AA18 */
293 }; 302 };
294 303
295 static const double qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ 304 static const double qr5[6] = {
296 -2.08979931141764104297e-11, /* 0xBDB6FA43, 0x1AA1A098 */ 305 /* for x in [8,4.5454]=1/[0.125,0.22001] */
297 -1.02539050241375426231e-01, /* 0xBFBA3FFF, 0xCB597FEF */ 306 -2.08979931141764104297e-11, /* 0xBDB6FA43, 0x1AA1A098 */
298 -8.05644828123936029840e+00, /* 0xC0201CE6, 0xCA03AD4B */ 307 -1.02539050241375426231e-01, /* 0xBFBA3FFF, 0xCB597FEF */
299 -1.83669607474888380239e+02, /* 0xC066F56D, 0x6CA7B9B0 */ 308 -8.05644828123936029840e+00, /* 0xC0201CE6, 0xCA03AD4B */
300 -1.37319376065508163265e+03, /* 0xC09574C6, 0x6931734F */ 309 -1.83669607474888380239e+02, /* 0xC066F56D, 0x6CA7B9B0 */
301 -2.61244440453215656817e+03, /* 0xC0A468E3, 0x88FDA79D */ 310 -1.37319376065508163265e+03, /* 0xC09574C6, 0x6931734F */
311 -2.61244440453215656817e+03, /* 0xC0A468E3, 0x88FDA79D */
302 }; 312 };
303 static const double qs5[6] = { 313 static const double qs5[6] = {
304 8.12765501384335777857e+01, /* 0x405451B2, 0xFF5A11B2 */ 314 8.12765501384335777857e+01, /* 0x405451B2, 0xFF5A11B2 */
305 1.99179873460485964642e+03, /* 0x409F1F31, 0xE77BF839 */ 315 1.99179873460485964642e+03, /* 0x409F1F31, 0xE77BF839 */
306 1.74684851924908907677e+04, /* 0x40D10F1F, 0x0D64CE29 */ 316 1.74684851924908907677e+04, /* 0x40D10F1F, 0x0D64CE29 */
307 4.98514270910352279316e+04, /* 0x40E8576D, 0xAABAD197 */ 317 4.98514270910352279316e+04, /* 0x40E8576D, 0xAABAD197 */
308 2.79480751638918118260e+04, /* 0x40DB4B04, 0xCF7C364B */ 318 2.79480751638918118260e+04, /* 0x40DB4B04, 0xCF7C364B */
309 -4.71918354795128470869e+03, /* 0xC0B26F2E, 0xFCFFA004 */ 319 -4.71918354795128470869e+03, /* 0xC0B26F2E, 0xFCFFA004 */
310 }; 320 };
311 321
312 static const double qr3[6] = { 322 static const double qr3[6] = {
313 -5.07831226461766561369e-09, /* 0xBE35CFA9, 0xD38FC84F */ 323 -5.07831226461766561369e-09, /* 0xBE35CFA9, 0xD38FC84F */
314 -1.02537829820837089745e-01, /* 0xBFBA3FEB, 0x51AEED54 */ 324 -1.02537829820837089745e-01, /* 0xBFBA3FEB, 0x51AEED54 */
315 -4.61011581139473403113e+00, /* 0xC01270C2, 0x3302D9FF */ 325 -4.61011581139473403113e+00, /* 0xC01270C2, 0x3302D9FF */
316 -5.78472216562783643212e+01, /* 0xC04CEC71, 0xC25D16DA */ 326 -5.78472216562783643212e+01, /* 0xC04CEC71, 0xC25D16DA */
317 -2.28244540737631695038e+02, /* 0xC06C87D3, 0x4718D55F */ 327 -2.28244540737631695038e+02, /* 0xC06C87D3, 0x4718D55F */
318 -2.19210128478909325622e+02, /* 0xC06B66B9, 0x5F5C1BF6 */ 328 -2.19210128478909325622e+02, /* 0xC06B66B9, 0x5F5C1BF6 */
319 }; 329 };
320 static const double qs3[6] = { 330 static const double qs3[6] = {
321 4.76651550323729509273e+01, /* 0x4047D523, 0xCCD367E4 */ 331 4.76651550323729509273e+01, /* 0x4047D523, 0xCCD367E4 */
322 6.73865112676699709482e+02, /* 0x40850EEB, 0xC031EE3E */ 332 6.73865112676699709482e+02, /* 0x40850EEB, 0xC031EE3E */
323 3.38015286679526343505e+03, /* 0x40AA684E, 0x448E7C9A */ 333 3.38015286679526343505e+03, /* 0x40AA684E, 0x448E7C9A */
324 5.54772909720722782367e+03, /* 0x40B5ABBA, 0xA61D54A6 */ 334 5.54772909720722782367e+03, /* 0x40B5ABBA, 0xA61D54A6 */
325 1.90311919338810798763e+03, /* 0x409DBC7A, 0x0DD4DF4B */ 335 1.90311919338810798763e+03, /* 0x409DBC7A, 0x0DD4DF4B */
326 -1.35201191444307340817e+02, /* 0xC060E670, 0x290A311F */ 336 -1.35201191444307340817e+02, /* 0xC060E670, 0x290A311F */
327 }; 337 };
328 338
329 static const double qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ 339 static const double qr2[6] = {
330 -1.78381727510958865572e-07, /* 0xBE87F126, 0x44C626D2 */ 340 /* for x in [2.8570,2]=1/[0.3499,0.5] */
331 -1.02517042607985553460e-01, /* 0xBFBA3E8E, 0x9148B010 */ 341 -1.78381727510958865572e-07, /* 0xBE87F126, 0x44C626D2 */
332 -2.75220568278187460720e+00, /* 0xC0060484, 0x69BB4EDA */ 342 -1.02517042607985553460e-01, /* 0xBFBA3E8E, 0x9148B010 */
333 -1.96636162643703720221e+01, /* 0xC033A9E2, 0xC168907F */ 343 -2.75220568278187460720e+00, /* 0xC0060484, 0x69BB4EDA */
334 -4.23253133372830490089e+01, /* 0xC04529A3, 0xDE104AAA */ 344 -1.96636162643703720221e+01, /* 0xC033A9E2, 0xC168907F */
335 -2.13719211703704061733e+01, /* 0xC0355F36, 0x39CF6E52 */ 345 -4.23253133372830490089e+01, /* 0xC04529A3, 0xDE104AAA */
346 -2.13719211703704061733e+01, /* 0xC0355F36, 0x39CF6E52 */
336 }; 347 };
337 static const double qs2[6] = { 348 static const double qs2[6] = {
338 2.95333629060523854548e+01, /* 0x403D888A, 0x78AE64FF */ 349 2.95333629060523854548e+01, /* 0x403D888A, 0x78AE64FF */
339 2.52981549982190529136e+02, /* 0x406F9F68, 0xDB821CBA */ 350 2.52981549982190529136e+02, /* 0x406F9F68, 0xDB821CBA */
340 7.57502834868645436472e+02, /* 0x4087AC05, 0xCE49A0F7 */ 351 7.57502834868645436472e+02, /* 0x4087AC05, 0xCE49A0F7 */
341 7.39393205320467245656e+02, /* 0x40871B25, 0x48D4C029 */ 352 7.39393205320467245656e+02, /* 0x40871B25, 0x48D4C029 */
342 1.55949003336666123687e+02, /* 0x40637E5E, 0x3C3ED8D4 */ 353 1.55949003336666123687e+02, /* 0x40637E5E, 0x3C3ED8D4 */
343 -4.95949898822628210127e+00, /* 0xC013D686, 0xE71BE86B */ 354 -4.95949898822628210127e+00, /* 0xC013D686, 0xE71BE86B */
344 }; 355 };
345 356
346 static double qone(double x) 357 static double qone(double x) {
347 { 358 const double *p, *q;
348 » const double *p,*q; 359 double_t s, r, z;
349 » double_t s,r,z; 360 uint32_t ix;
350 » uint32_t ix;
351 361
352 » GET_HIGH_WORD(ix, x); 362 GET_HIGH_WORD(ix, x);
353 » ix &= 0x7fffffff; 363 ix &= 0x7fffffff;
354 » if (ix >= 0x40200000){p = qr8; q = qs8;} 364 if (ix >= 0x40200000) {
355 » else if (ix >= 0x40122E8B){p = qr5; q = qs5;} 365 p = qr8;
356 » else if (ix >= 0x4006DB6D){p = qr3; q = qs3;} 366 q = qs8;
357 » else /*ix >= 0x40000000*/ {p = qr2; q = qs2;} 367 } else if (ix >= 0x40122E8B) {
358 » z = 1.0/(x*x); 368 p = qr5;
359 » r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5])))); 369 q = qs5;
360 » s = 1.0+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5]))))); 370 } else if (ix >= 0x4006DB6D) {
361 » return (.375 + r/s)/x; 371 p = qr3;
372 q = qs3;
373 } else /*ix >= 0x40000000*/ {
374 p = qr2;
375 q = qs2;
376 }
377 z = 1.0 / (x * x);
378 r = p[0] + z * (p[1] + z * (p[2] + z * (p[3] + z * (p[4] + z * p[5]))));
379 s = 1.0 +
380 z * (q[0] + z * (q[1] + z * (q[2] + z * (q[3] + z * (q[4] + z * q[5])))));
381 return (.375 + r / s) / x;
362 } 382 }
OLDNEW
« fusl/arch/aarch64/atomic_arch.h ('K') | « fusl/src/math/j0f.c ('k') | fusl/src/math/j1f.c » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698