Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(373)

Side by Side Diff: fusl/src/math/j0.c

Issue 1714623002: [fusl] clang-format fusl (Closed) Base URL: git@github.com:domokit/mojo.git@master
Patch Set: headers too Created 4 years, 10 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
1 /* origin: FreeBSD /usr/src/lib/msun/src/e_j0.c */ 1 /* origin: FreeBSD /usr/src/lib/msun/src/e_j0.c */
2 /* 2 /*
3 * ==================================================== 3 * ====================================================
4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5 * 5 *
6 * Developed at SunSoft, a Sun Microsystems, Inc. business. 6 * Developed at SunSoft, a Sun Microsystems, Inc. business.
7 * Permission to use, copy, modify, and distribute this 7 * Permission to use, copy, modify, and distribute this
8 * software is freely granted, provided that this notice 8 * software is freely granted, provided that this notice
9 * is preserved. 9 * is preserved.
10 * ==================================================== 10 * ====================================================
(...skipping 40 matching lines...) Expand 10 before | Expand all | Expand 10 after
51 * y0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)+q0(x)*sin(x0)) 51 * y0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)+q0(x)*sin(x0))
52 * where x0 = x-pi/4. It is better to compute sin(x0),cos(x0) 52 * where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
53 * by the method mentioned above. 53 * by the method mentioned above.
54 * 3. Special cases: y0(0)=-inf, y0(x<0)=NaN, y0(inf)=0. 54 * 3. Special cases: y0(0)=-inf, y0(x<0)=NaN, y0(inf)=0.
55 */ 55 */
56 56
57 #include "libm.h" 57 #include "libm.h"
58 58
59 static double pzero(double), qzero(double); 59 static double pzero(double), qzero(double);
60 60
61 static const double 61 static const double invsqrtpi =
62 invsqrtpi = 5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */ 62 5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
63 tpi = 6.36619772367581382433e-01; /* 0x3FE45F30, 0x6DC9C883 */ 63 tpi = 6.36619772367581382433e-01; /* 0x3FE45F30, 0x6DC9C883 */
64 64
65 /* common method when |x|>=2 */ 65 /* common method when |x|>=2 */
66 static double common(uint32_t ix, double x, int y0) 66 static double common(uint32_t ix, double x, int y0) {
67 { 67 double s, c, ss, cc, z;
68 » double s,c,ss,cc,z;
69 68
70 » /* 69 /*
71 » * j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x-pi/4)-q0(x)*sin(x-pi/4)) 70 * j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x-pi/4)-q0(x)*sin(x-pi/4))
72 » * y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x-pi/4)+q0(x)*cos(x-pi/4)) 71 * y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x-pi/4)+q0(x)*cos(x-pi/4))
73 » * 72 *
74 » * sin(x-pi/4) = (sin(x) - cos(x))/sqrt(2) 73 * sin(x-pi/4) = (sin(x) - cos(x))/sqrt(2)
75 » * cos(x-pi/4) = (sin(x) + cos(x))/sqrt(2) 74 * cos(x-pi/4) = (sin(x) + cos(x))/sqrt(2)
76 » * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x)) 75 * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
77 » */ 76 */
78 » s = sin(x); 77 s = sin(x);
79 » c = cos(x); 78 c = cos(x);
80 » if (y0) 79 if (y0)
81 » » c = -c; 80 c = -c;
82 » cc = s+c; 81 cc = s + c;
83 » /* avoid overflow in 2*x, big ulp error when x>=0x1p1023 */ 82 /* avoid overflow in 2*x, big ulp error when x>=0x1p1023 */
84 » if (ix < 0x7fe00000) { 83 if (ix < 0x7fe00000) {
85 » » ss = s-c; 84 ss = s - c;
86 » » z = -cos(2*x); 85 z = -cos(2 * x);
87 » » if (s*c < 0) 86 if (s * c < 0)
88 » » » cc = z/ss; 87 cc = z / ss;
89 » » else 88 else
90 » » » ss = z/cc; 89 ss = z / cc;
91 » » if (ix < 0x48000000) { 90 if (ix < 0x48000000) {
92 » » » if (y0) 91 if (y0)
93 » » » » ss = -ss; 92 ss = -ss;
94 » » » cc = pzero(x)*cc-qzero(x)*ss; 93 cc = pzero(x) * cc - qzero(x) * ss;
95 » » } 94 }
96 » } 95 }
97 » return invsqrtpi*cc/sqrt(x); 96 return invsqrtpi * cc / sqrt(x);
98 } 97 }
99 98
100 /* R0/S0 on [0, 2.00] */ 99 /* R0/S0 on [0, 2.00] */
101 static const double 100 static const double R02 =
102 R02 = 1.56249999999999947958e-02, /* 0x3F8FFFFF, 0xFFFFFFFD */ 101 1.56249999999999947958e-02, /* 0x3F8FFFFF, 0xFFFFFFFD */
103 R03 = -1.89979294238854721751e-04, /* 0xBF28E6A5, 0xB61AC6E9 */ 102 R03 = -1.89979294238854721751e-04, /* 0xBF28E6A5, 0xB61AC6E9 */
104 R04 = 1.82954049532700665670e-06, /* 0x3EBEB1D1, 0x0C503919 */ 103 R04 = 1.82954049532700665670e-06, /* 0x3EBEB1D1, 0x0C503919 */
105 R05 = -4.61832688532103189199e-09, /* 0xBE33D5E7, 0x73D63FCE */ 104 R05 = -4.61832688532103189199e-09, /* 0xBE33D5E7, 0x73D63FCE */
106 S01 = 1.56191029464890010492e-02, /* 0x3F8FFCE8, 0x82C8C2A4 */ 105 S01 = 1.56191029464890010492e-02, /* 0x3F8FFCE8, 0x82C8C2A4 */
107 S02 = 1.16926784663337450260e-04, /* 0x3F1EA6D2, 0xDD57DBF4 */ 106 S02 = 1.16926784663337450260e-04, /* 0x3F1EA6D2, 0xDD57DBF4 */
108 S03 = 5.13546550207318111446e-07, /* 0x3EA13B54, 0xCE84D5A9 */ 107 S03 = 5.13546550207318111446e-07, /* 0x3EA13B54, 0xCE84D5A9 */
109 S04 = 1.16614003333790000205e-09; /* 0x3E1408BC, 0xF4745D8F */ 108 S04 = 1.16614003333790000205e-09; /* 0x3E1408BC, 0xF4745D8F */
110 109
111 double j0(double x) 110 double j0(double x) {
112 { 111 double z, r, s;
113 » double z,r,s; 112 uint32_t ix;
114 » uint32_t ix;
115 113
116 » GET_HIGH_WORD(ix, x); 114 GET_HIGH_WORD(ix, x);
117 » ix &= 0x7fffffff; 115 ix &= 0x7fffffff;
118 116
119 » /* j0(+-inf)=0, j0(nan)=nan */ 117 /* j0(+-inf)=0, j0(nan)=nan */
120 » if (ix >= 0x7ff00000) 118 if (ix >= 0x7ff00000)
121 » » return 1/(x*x); 119 return 1 / (x * x);
122 » x = fabs(x); 120 x = fabs(x);
123 121
124 » if (ix >= 0x40000000) { /* |x| >= 2 */ 122 if (ix >= 0x40000000) { /* |x| >= 2 */
125 » » /* large ulp error near zeros: 2.4, 5.52, 8.6537,.. */ 123 /* large ulp error near zeros: 2.4, 5.52, 8.6537,.. */
126 » » return common(ix,x,0); 124 return common(ix, x, 0);
127 » } 125 }
128 126
129 » /* 1 - x*x/4 + x*x*R(x^2)/S(x^2) */ 127 /* 1 - x*x/4 + x*x*R(x^2)/S(x^2) */
130 » if (ix >= 0x3f200000) { /* |x| >= 2**-13 */ 128 if (ix >= 0x3f200000) { /* |x| >= 2**-13 */
131 » » /* up to 4ulp error close to 2 */ 129 /* up to 4ulp error close to 2 */
132 » » z = x*x; 130 z = x * x;
133 » » r = z*(R02+z*(R03+z*(R04+z*R05))); 131 r = z * (R02 + z * (R03 + z * (R04 + z * R05)));
134 » » s = 1+z*(S01+z*(S02+z*(S03+z*S04))); 132 s = 1 + z * (S01 + z * (S02 + z * (S03 + z * S04)));
135 » » return (1+x/2)*(1-x/2) + z*(r/s); 133 return (1 + x / 2) * (1 - x / 2) + z * (r / s);
136 » } 134 }
137 135
138 » /* 1 - x*x/4 */ 136 /* 1 - x*x/4 */
139 » /* prevent underflow */ 137 /* prevent underflow */
140 » /* inexact should be raised when x!=0, this is not done correctly */ 138 /* inexact should be raised when x!=0, this is not done correctly */
141 » if (ix >= 0x38000000) /* |x| >= 2**-127 */ 139 if (ix >= 0x38000000) /* |x| >= 2**-127 */
142 » » x = 0.25*x*x; 140 x = 0.25 * x * x;
143 » return 1 - x; 141 return 1 - x;
144 } 142 }
145 143
146 static const double 144 static const double
147 u00 = -7.38042951086872317523e-02, /* 0xBFB2E4D6, 0x99CBD01F */ 145 u00 = -7.38042951086872317523e-02, /* 0xBFB2E4D6, 0x99CBD01F */
148 u01 = 1.76666452509181115538e-01, /* 0x3FC69D01, 0x9DE9E3FC */ 146 u01 = 1.76666452509181115538e-01, /* 0x3FC69D01, 0x9DE9E3FC */
149 u02 = -1.38185671945596898896e-02, /* 0xBF8C4CE8, 0xB16CFA97 */ 147 u02 = -1.38185671945596898896e-02, /* 0xBF8C4CE8, 0xB16CFA97 */
150 u03 = 3.47453432093683650238e-04, /* 0x3F36C54D, 0x20B29B6B */ 148 u03 = 3.47453432093683650238e-04, /* 0x3F36C54D, 0x20B29B6B */
151 u04 = -3.81407053724364161125e-06, /* 0xBECFFEA7, 0x73D25CAD */ 149 u04 = -3.81407053724364161125e-06, /* 0xBECFFEA7, 0x73D25CAD */
152 u05 = 1.95590137035022920206e-08, /* 0x3E550057, 0x3B4EABD4 */ 150 u05 = 1.95590137035022920206e-08, /* 0x3E550057, 0x3B4EABD4 */
153 u06 = -3.98205194132103398453e-11, /* 0xBDC5E43D, 0x693FB3C8 */ 151 u06 = -3.98205194132103398453e-11, /* 0xBDC5E43D, 0x693FB3C8 */
154 v01 = 1.27304834834123699328e-02, /* 0x3F8A1270, 0x91C9C71A */ 152 v01 = 1.27304834834123699328e-02, /* 0x3F8A1270, 0x91C9C71A */
155 v02 = 7.60068627350353253702e-05, /* 0x3F13ECBB, 0xF578C6C1 */ 153 v02 = 7.60068627350353253702e-05, /* 0x3F13ECBB, 0xF578C6C1 */
156 v03 = 2.59150851840457805467e-07, /* 0x3E91642D, 0x7FF202FD */ 154 v03 = 2.59150851840457805467e-07, /* 0x3E91642D, 0x7FF202FD */
157 v04 = 4.41110311332675467403e-10; /* 0x3DFE5018, 0x3BD6D9EF */ 155 v04 = 4.41110311332675467403e-10; /* 0x3DFE5018, 0x3BD6D9EF */
158 156
159 double y0(double x) 157 double y0(double x) {
160 { 158 double z, u, v;
161 » double z,u,v; 159 uint32_t ix, lx;
162 » uint32_t ix,lx;
163 160
164 » EXTRACT_WORDS(ix, lx, x); 161 EXTRACT_WORDS(ix, lx, x);
165 162
166 » /* y0(nan)=nan, y0(<0)=nan, y0(0)=-inf, y0(inf)=0 */ 163 /* y0(nan)=nan, y0(<0)=nan, y0(0)=-inf, y0(inf)=0 */
167 » if ((ix<<1 | lx) == 0) 164 if ((ix << 1 | lx) == 0)
168 » » return -1/0.0; 165 return -1 / 0.0;
169 » if (ix>>31) 166 if (ix >> 31)
170 » » return 0/0.0; 167 return 0 / 0.0;
171 » if (ix >= 0x7ff00000) 168 if (ix >= 0x7ff00000)
172 » » return 1/x; 169 return 1 / x;
173 170
174 » if (ix >= 0x40000000) { /* x >= 2 */ 171 if (ix >= 0x40000000) { /* x >= 2 */
175 » » /* large ulp errors near zeros: 3.958, 7.086,.. */ 172 /* large ulp errors near zeros: 3.958, 7.086,.. */
176 » » return common(ix,x,1); 173 return common(ix, x, 1);
177 » } 174 }
178 175
179 » /* U(x^2)/V(x^2) + (2/pi)*j0(x)*log(x) */ 176 /* U(x^2)/V(x^2) + (2/pi)*j0(x)*log(x) */
180 » if (ix >= 0x3e400000) { /* x >= 2**-27 */ 177 if (ix >= 0x3e400000) { /* x >= 2**-27 */
181 » » /* large ulp error near the first zero, x ~= 0.89 */ 178 /* large ulp error near the first zero, x ~= 0.89 */
182 » » z = x*x; 179 z = x * x;
183 » » u = u00+z*(u01+z*(u02+z*(u03+z*(u04+z*(u05+z*u06))))); 180 u = u00 +
184 » » v = 1.0+z*(v01+z*(v02+z*(v03+z*v04))); 181 z * (u01 + z * (u02 + z * (u03 + z * (u04 + z * (u05 + z * u06)))));
185 » » return u/v + tpi*(j0(x)*log(x)); 182 v = 1.0 + z * (v01 + z * (v02 + z * (v03 + z * v04)));
186 » } 183 return u / v + tpi * (j0(x) * log(x));
187 » return u00 + tpi*log(x); 184 }
185 return u00 + tpi * log(x);
188 } 186 }
189 187
190 /* The asymptotic expansions of pzero is 188 /* The asymptotic expansions of pzero is
191 * 1 - 9/128 s^2 + 11025/98304 s^4 - ..., where s = 1/x. 189 * 1 - 9/128 s^2 + 11025/98304 s^4 - ..., where s = 1/x.
192 * For x >= 2, We approximate pzero by 190 * For x >= 2, We approximate pzero by
193 * pzero(x) = 1 + (R/S) 191 * pzero(x) = 1 + (R/S)
194 * where R = pR0 + pR1*s^2 + pR2*s^4 + ... + pR5*s^10 192 * where R = pR0 + pR1*s^2 + pR2*s^4 + ... + pR5*s^10
195 * S = 1 + pS0*s^2 + ... + pS4*s^10 193 * S = 1 + pS0*s^2 + ... + pS4*s^10
196 * and 194 * and
197 * | pzero(x)-1-R/S | <= 2 ** ( -60.26) 195 * | pzero(x)-1-R/S | <= 2 ** ( -60.26)
198 */ 196 */
199 static const double pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ 197 static const double pR8[6] = {
200 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */ 198 /* for x in [inf, 8]=1/[0,0.125] */
201 -7.03124999999900357484e-02, /* 0xBFB1FFFF, 0xFFFFFD32 */ 199 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
202 -8.08167041275349795626e+00, /* 0xC02029D0, 0xB44FA779 */ 200 -7.03124999999900357484e-02, /* 0xBFB1FFFF, 0xFFFFFD32 */
203 -2.57063105679704847262e+02, /* 0xC0701102, 0x7B19E863 */ 201 -8.08167041275349795626e+00, /* 0xC02029D0, 0xB44FA779 */
204 -2.48521641009428822144e+03, /* 0xC0A36A6E, 0xCD4DCAFC */ 202 -2.57063105679704847262e+02, /* 0xC0701102, 0x7B19E863 */
205 -5.25304380490729545272e+03, /* 0xC0B4850B, 0x36CC643D */ 203 -2.48521641009428822144e+03, /* 0xC0A36A6E, 0xCD4DCAFC */
204 -5.25304380490729545272e+03, /* 0xC0B4850B, 0x36CC643D */
206 }; 205 };
207 static const double pS8[5] = { 206 static const double pS8[5] = {
208 1.16534364619668181717e+02, /* 0x405D2233, 0x07A96751 */ 207 1.16534364619668181717e+02, /* 0x405D2233, 0x07A96751 */
209 3.83374475364121826715e+03, /* 0x40ADF37D, 0x50596938 */ 208 3.83374475364121826715e+03, /* 0x40ADF37D, 0x50596938 */
210 4.05978572648472545552e+04, /* 0x40E3D2BB, 0x6EB6B05F */ 209 4.05978572648472545552e+04, /* 0x40E3D2BB, 0x6EB6B05F */
211 1.16752972564375915681e+05, /* 0x40FC810F, 0x8F9FA9BD */ 210 1.16752972564375915681e+05, /* 0x40FC810F, 0x8F9FA9BD */
212 4.76277284146730962675e+04, /* 0x40E74177, 0x4F2C49DC */ 211 4.76277284146730962675e+04, /* 0x40E74177, 0x4F2C49DC */
213 }; 212 };
214 213
215 static const double pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ 214 static const double pR5[6] = {
216 -1.14125464691894502584e-11, /* 0xBDA918B1, 0x47E495CC */ 215 /* for x in [8,4.5454]=1/[0.125,0.22001] */
217 -7.03124940873599280078e-02, /* 0xBFB1FFFF, 0xE69AFBC6 */ 216 -1.14125464691894502584e-11, /* 0xBDA918B1, 0x47E495CC */
218 -4.15961064470587782438e+00, /* 0xC010A370, 0xF90C6BBF */ 217 -7.03124940873599280078e-02, /* 0xBFB1FFFF, 0xE69AFBC6 */
219 -6.76747652265167261021e+01, /* 0xC050EB2F, 0x5A7D1783 */ 218 -4.15961064470587782438e+00, /* 0xC010A370, 0xF90C6BBF */
220 -3.31231299649172967747e+02, /* 0xC074B3B3, 0x6742CC63 */ 219 -6.76747652265167261021e+01, /* 0xC050EB2F, 0x5A7D1783 */
221 -3.46433388365604912451e+02, /* 0xC075A6EF, 0x28A38BD7 */ 220 -3.31231299649172967747e+02, /* 0xC074B3B3, 0x6742CC63 */
221 -3.46433388365604912451e+02, /* 0xC075A6EF, 0x28A38BD7 */
222 }; 222 };
223 static const double pS5[5] = { 223 static const double pS5[5] = {
224 6.07539382692300335975e+01, /* 0x404E6081, 0x0C98C5DE */ 224 6.07539382692300335975e+01, /* 0x404E6081, 0x0C98C5DE */
225 1.05125230595704579173e+03, /* 0x40906D02, 0x5C7E2864 */ 225 1.05125230595704579173e+03, /* 0x40906D02, 0x5C7E2864 */
226 5.97897094333855784498e+03, /* 0x40B75AF8, 0x8FBE1D60 */ 226 5.97897094333855784498e+03, /* 0x40B75AF8, 0x8FBE1D60 */
227 9.62544514357774460223e+03, /* 0x40C2CCB8, 0xFA76FA38 */ 227 9.62544514357774460223e+03, /* 0x40C2CCB8, 0xFA76FA38 */
228 2.40605815922939109441e+03, /* 0x40A2CC1D, 0xC70BE864 */ 228 2.40605815922939109441e+03, /* 0x40A2CC1D, 0xC70BE864 */
229 }; 229 };
230 230
231 static const double pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ 231 static const double pR3[6] = {
232 -2.54704601771951915620e-09, /* 0xBE25E103, 0x6FE1AA86 */ 232 /* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
233 -7.03119616381481654654e-02, /* 0xBFB1FFF6, 0xF7C0E24B */ 233 -2.54704601771951915620e-09, /* 0xBE25E103, 0x6FE1AA86 */
234 -2.40903221549529611423e+00, /* 0xC00345B2, 0xAEA48074 */ 234 -7.03119616381481654654e-02, /* 0xBFB1FFF6, 0xF7C0E24B */
235 -2.19659774734883086467e+01, /* 0xC035F74A, 0x4CB94E14 */ 235 -2.40903221549529611423e+00, /* 0xC00345B2, 0xAEA48074 */
236 -5.80791704701737572236e+01, /* 0xC04D0A22, 0x420A1A45 */ 236 -2.19659774734883086467e+01, /* 0xC035F74A, 0x4CB94E14 */
237 -3.14479470594888503854e+01, /* 0xC03F72AC, 0xA892D80F */ 237 -5.80791704701737572236e+01, /* 0xC04D0A22, 0x420A1A45 */
238 -3.14479470594888503854e+01, /* 0xC03F72AC, 0xA892D80F */
238 }; 239 };
239 static const double pS3[5] = { 240 static const double pS3[5] = {
240 3.58560338055209726349e+01, /* 0x4041ED92, 0x84077DD3 */ 241 3.58560338055209726349e+01, /* 0x4041ED92, 0x84077DD3 */
241 3.61513983050303863820e+02, /* 0x40769839, 0x464A7C0E */ 242 3.61513983050303863820e+02, /* 0x40769839, 0x464A7C0E */
242 1.19360783792111533330e+03, /* 0x4092A66E, 0x6D1061D6 */ 243 1.19360783792111533330e+03, /* 0x4092A66E, 0x6D1061D6 */
243 1.12799679856907414432e+03, /* 0x40919FFC, 0xB8C39B7E */ 244 1.12799679856907414432e+03, /* 0x40919FFC, 0xB8C39B7E */
244 1.73580930813335754692e+02, /* 0x4065B296, 0xFC379081 */ 245 1.73580930813335754692e+02, /* 0x4065B296, 0xFC379081 */
245 }; 246 };
246 247
247 static const double pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ 248 static const double pR2[6] = {
248 -8.87534333032526411254e-08, /* 0xBE77D316, 0xE927026D */ 249 /* for x in [2.8570,2]=1/[0.3499,0.5] */
249 -7.03030995483624743247e-02, /* 0xBFB1FF62, 0x495E1E42 */ 250 -8.87534333032526411254e-08, /* 0xBE77D316, 0xE927026D */
250 -1.45073846780952986357e+00, /* 0xBFF73639, 0x8A24A843 */ 251 -7.03030995483624743247e-02, /* 0xBFB1FF62, 0x495E1E42 */
251 -7.63569613823527770791e+00, /* 0xC01E8AF3, 0xEDAFA7F3 */ 252 -1.45073846780952986357e+00, /* 0xBFF73639, 0x8A24A843 */
252 -1.11931668860356747786e+01, /* 0xC02662E6, 0xC5246303 */ 253 -7.63569613823527770791e+00, /* 0xC01E8AF3, 0xEDAFA7F3 */
253 -3.23364579351335335033e+00, /* 0xC009DE81, 0xAF8FE70F */ 254 -1.11931668860356747786e+01, /* 0xC02662E6, 0xC5246303 */
255 -3.23364579351335335033e+00, /* 0xC009DE81, 0xAF8FE70F */
254 }; 256 };
255 static const double pS2[5] = { 257 static const double pS2[5] = {
256 2.22202997532088808441e+01, /* 0x40363865, 0x908B5959 */ 258 2.22202997532088808441e+01, /* 0x40363865, 0x908B5959 */
257 1.36206794218215208048e+02, /* 0x4061069E, 0x0EE8878F */ 259 1.36206794218215208048e+02, /* 0x4061069E, 0x0EE8878F */
258 2.70470278658083486789e+02, /* 0x4070E786, 0x42EA079B */ 260 2.70470278658083486789e+02, /* 0x4070E786, 0x42EA079B */
259 1.53875394208320329881e+02, /* 0x40633C03, 0x3AB6FAFF */ 261 1.53875394208320329881e+02, /* 0x40633C03, 0x3AB6FAFF */
260 1.46576176948256193810e+01, /* 0x402D50B3, 0x44391809 */ 262 1.46576176948256193810e+01, /* 0x402D50B3, 0x44391809 */
261 }; 263 };
262 264
263 static double pzero(double x) 265 static double pzero(double x) {
264 { 266 const double *p, *q;
265 » const double *p,*q; 267 double_t z, r, s;
266 » double_t z,r,s; 268 uint32_t ix;
267 » uint32_t ix;
268 269
269 » GET_HIGH_WORD(ix, x); 270 GET_HIGH_WORD(ix, x);
270 » ix &= 0x7fffffff; 271 ix &= 0x7fffffff;
271 » if (ix >= 0x40200000){p = pR8; q = pS8;} 272 if (ix >= 0x40200000) {
272 » else if (ix >= 0x40122E8B){p = pR5; q = pS5;} 273 p = pR8;
273 » else if (ix >= 0x4006DB6D){p = pR3; q = pS3;} 274 q = pS8;
274 » else /*ix >= 0x40000000*/ {p = pR2; q = pS2;} 275 } else if (ix >= 0x40122E8B) {
275 » z = 1.0/(x*x); 276 p = pR5;
276 » r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5])))); 277 q = pS5;
277 » s = 1.0+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4])))); 278 } else if (ix >= 0x4006DB6D) {
278 » return 1.0 + r/s; 279 p = pR3;
280 q = pS3;
281 } else /*ix >= 0x40000000*/ {
282 p = pR2;
283 q = pS2;
284 }
285 z = 1.0 / (x * x);
286 r = p[0] + z * (p[1] + z * (p[2] + z * (p[3] + z * (p[4] + z * p[5]))));
287 s = 1.0 + z * (q[0] + z * (q[1] + z * (q[2] + z * (q[3] + z * q[4]))));
288 return 1.0 + r / s;
279 } 289 }
280 290
281
282 /* For x >= 8, the asymptotic expansions of qzero is 291 /* For x >= 8, the asymptotic expansions of qzero is
283 * -1/8 s + 75/1024 s^3 - ..., where s = 1/x. 292 * -1/8 s + 75/1024 s^3 - ..., where s = 1/x.
284 * We approximate pzero by 293 * We approximate pzero by
285 * qzero(x) = s*(-1.25 + (R/S)) 294 * qzero(x) = s*(-1.25 + (R/S))
286 * where R = qR0 + qR1*s^2 + qR2*s^4 + ... + qR5*s^10 295 * where R = qR0 + qR1*s^2 + qR2*s^4 + ... + qR5*s^10
287 * S = 1 + qS0*s^2 + ... + qS5*s^12 296 * S = 1 + qS0*s^2 + ... + qS5*s^12
288 * and 297 * and
289 * | qzero(x)/s +1.25-R/S | <= 2 ** ( -61.22) 298 * | qzero(x)/s +1.25-R/S | <= 2 ** ( -61.22)
290 */ 299 */
291 static const double qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ 300 static const double qR8[6] = {
292 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */ 301 /* for x in [inf, 8]=1/[0,0.125] */
293 7.32421874999935051953e-02, /* 0x3FB2BFFF, 0xFFFFFE2C */ 302 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
294 1.17682064682252693899e+01, /* 0x40278952, 0x5BB334D6 */ 303 7.32421874999935051953e-02, /* 0x3FB2BFFF, 0xFFFFFE2C */
295 5.57673380256401856059e+02, /* 0x40816D63, 0x15301825 */ 304 1.17682064682252693899e+01, /* 0x40278952, 0x5BB334D6 */
296 8.85919720756468632317e+03, /* 0x40C14D99, 0x3E18F46D */ 305 5.57673380256401856059e+02, /* 0x40816D63, 0x15301825 */
297 3.70146267776887834771e+04, /* 0x40E212D4, 0x0E901566 */ 306 8.85919720756468632317e+03, /* 0x40C14D99, 0x3E18F46D */
307 3.70146267776887834771e+04, /* 0x40E212D4, 0x0E901566 */
298 }; 308 };
299 static const double qS8[6] = { 309 static const double qS8[6] = {
300 1.63776026895689824414e+02, /* 0x406478D5, 0x365B39BC */ 310 1.63776026895689824414e+02, /* 0x406478D5, 0x365B39BC */
301 8.09834494656449805916e+03, /* 0x40BFA258, 0x4E6B0563 */ 311 8.09834494656449805916e+03, /* 0x40BFA258, 0x4E6B0563 */
302 1.42538291419120476348e+05, /* 0x41016652, 0x54D38C3F */ 312 1.42538291419120476348e+05, /* 0x41016652, 0x54D38C3F */
303 8.03309257119514397345e+05, /* 0x412883DA, 0x83A52B43 */ 313 8.03309257119514397345e+05, /* 0x412883DA, 0x83A52B43 */
304 8.40501579819060512818e+05, /* 0x4129A66B, 0x28DE0B3D */ 314 8.40501579819060512818e+05, /* 0x4129A66B, 0x28DE0B3D */
305 -3.43899293537866615225e+05, /* 0xC114FD6D, 0x2C9530C5 */ 315 -3.43899293537866615225e+05, /* 0xC114FD6D, 0x2C9530C5 */
306 }; 316 };
307 317
308 static const double qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ 318 static const double qR5[6] = {
309 1.84085963594515531381e-11, /* 0x3DB43D8F, 0x29CC8CD9 */ 319 /* for x in [8,4.5454]=1/[0.125,0.22001] */
310 7.32421766612684765896e-02, /* 0x3FB2BFFF, 0xD172B04C */ 320 1.84085963594515531381e-11, /* 0x3DB43D8F, 0x29CC8CD9 */
311 5.83563508962056953777e+00, /* 0x401757B0, 0xB9953DD3 */ 321 7.32421766612684765896e-02, /* 0x3FB2BFFF, 0xD172B04C */
312 1.35111577286449829671e+02, /* 0x4060E392, 0x0A8788E9 */ 322 5.83563508962056953777e+00, /* 0x401757B0, 0xB9953DD3 */
313 1.02724376596164097464e+03, /* 0x40900CF9, 0x9DC8C481 */ 323 1.35111577286449829671e+02, /* 0x4060E392, 0x0A8788E9 */
314 1.98997785864605384631e+03, /* 0x409F17E9, 0x53C6E3A6 */ 324 1.02724376596164097464e+03, /* 0x40900CF9, 0x9DC8C481 */
325 1.98997785864605384631e+03, /* 0x409F17E9, 0x53C6E3A6 */
315 }; 326 };
316 static const double qS5[6] = { 327 static const double qS5[6] = {
317 8.27766102236537761883e+01, /* 0x4054B1B3, 0xFB5E1543 */ 328 8.27766102236537761883e+01, /* 0x4054B1B3, 0xFB5E1543 */
318 2.07781416421392987104e+03, /* 0x40A03BA0, 0xDA21C0CE */ 329 2.07781416421392987104e+03, /* 0x40A03BA0, 0xDA21C0CE */
319 1.88472887785718085070e+04, /* 0x40D267D2, 0x7B591E6D */ 330 1.88472887785718085070e+04, /* 0x40D267D2, 0x7B591E6D */
320 5.67511122894947329769e+04, /* 0x40EBB5E3, 0x97E02372 */ 331 5.67511122894947329769e+04, /* 0x40EBB5E3, 0x97E02372 */
321 3.59767538425114471465e+04, /* 0x40E19118, 0x1F7A54A0 */ 332 3.59767538425114471465e+04, /* 0x40E19118, 0x1F7A54A0 */
322 -5.35434275601944773371e+03, /* 0xC0B4EA57, 0xBEDBC609 */ 333 -5.35434275601944773371e+03, /* 0xC0B4EA57, 0xBEDBC609 */
323 }; 334 };
324 335
325 static const double qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ 336 static const double qR3[6] = {
326 4.37741014089738620906e-09, /* 0x3E32CD03, 0x6ADECB82 */ 337 /* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
327 7.32411180042911447163e-02, /* 0x3FB2BFEE, 0x0E8D0842 */ 338 4.37741014089738620906e-09, /* 0x3E32CD03, 0x6ADECB82 */
328 3.34423137516170720929e+00, /* 0x400AC0FC, 0x61149CF5 */ 339 7.32411180042911447163e-02, /* 0x3FB2BFEE, 0x0E8D0842 */
329 4.26218440745412650017e+01, /* 0x40454F98, 0x962DAEDD */ 340 3.34423137516170720929e+00, /* 0x400AC0FC, 0x61149CF5 */
330 1.70808091340565596283e+02, /* 0x406559DB, 0xE25EFD1F */ 341 4.26218440745412650017e+01, /* 0x40454F98, 0x962DAEDD */
331 1.66733948696651168575e+02, /* 0x4064D77C, 0x81FA21E0 */ 342 1.70808091340565596283e+02, /* 0x406559DB, 0xE25EFD1F */
343 1.66733948696651168575e+02, /* 0x4064D77C, 0x81FA21E0 */
332 }; 344 };
333 static const double qS3[6] = { 345 static const double qS3[6] = {
334 4.87588729724587182091e+01, /* 0x40486122, 0xBFE343A6 */ 346 4.87588729724587182091e+01, /* 0x40486122, 0xBFE343A6 */
335 7.09689221056606015736e+02, /* 0x40862D83, 0x86544EB3 */ 347 7.09689221056606015736e+02, /* 0x40862D83, 0x86544EB3 */
336 3.70414822620111362994e+03, /* 0x40ACF04B, 0xE44DFC63 */ 348 3.70414822620111362994e+03, /* 0x40ACF04B, 0xE44DFC63 */
337 6.46042516752568917582e+03, /* 0x40B93C6C, 0xD7C76A28 */ 349 6.46042516752568917582e+03, /* 0x40B93C6C, 0xD7C76A28 */
338 2.51633368920368957333e+03, /* 0x40A3A8AA, 0xD94FB1C0 */ 350 2.51633368920368957333e+03, /* 0x40A3A8AA, 0xD94FB1C0 */
339 -1.49247451836156386662e+02, /* 0xC062A7EB, 0x201CF40F */ 351 -1.49247451836156386662e+02, /* 0xC062A7EB, 0x201CF40F */
340 }; 352 };
341 353
342 static const double qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ 354 static const double qR2[6] = {
343 1.50444444886983272379e-07, /* 0x3E84313B, 0x54F76BDB */ 355 /* for x in [2.8570,2]=1/[0.3499,0.5] */
344 7.32234265963079278272e-02, /* 0x3FB2BEC5, 0x3E883E34 */ 356 1.50444444886983272379e-07, /* 0x3E84313B, 0x54F76BDB */
345 1.99819174093815998816e+00, /* 0x3FFFF897, 0xE727779C */ 357 7.32234265963079278272e-02, /* 0x3FB2BEC5, 0x3E883E34 */
346 1.44956029347885735348e+01, /* 0x402CFDBF, 0xAAF96FE5 */ 358 1.99819174093815998816e+00, /* 0x3FFFF897, 0xE727779C */
347 3.16662317504781540833e+01, /* 0x403FAA8E, 0x29FBDC4A */ 359 1.44956029347885735348e+01, /* 0x402CFDBF, 0xAAF96FE5 */
348 1.62527075710929267416e+01, /* 0x403040B1, 0x71814BB4 */ 360 3.16662317504781540833e+01, /* 0x403FAA8E, 0x29FBDC4A */
361 1.62527075710929267416e+01, /* 0x403040B1, 0x71814BB4 */
349 }; 362 };
350 static const double qS2[6] = { 363 static const double qS2[6] = {
351 3.03655848355219184498e+01, /* 0x403E5D96, 0xF7C07AED */ 364 3.03655848355219184498e+01, /* 0x403E5D96, 0xF7C07AED */
352 2.69348118608049844624e+02, /* 0x4070D591, 0xE4D14B40 */ 365 2.69348118608049844624e+02, /* 0x4070D591, 0xE4D14B40 */
353 8.44783757595320139444e+02, /* 0x408A6645, 0x22B3BF22 */ 366 8.44783757595320139444e+02, /* 0x408A6645, 0x22B3BF22 */
354 8.82935845112488550512e+02, /* 0x408B977C, 0x9C5CC214 */ 367 8.82935845112488550512e+02, /* 0x408B977C, 0x9C5CC214 */
355 2.12666388511798828631e+02, /* 0x406A9553, 0x0E001365 */ 368 2.12666388511798828631e+02, /* 0x406A9553, 0x0E001365 */
356 -5.31095493882666946917e+00, /* 0xC0153E6A, 0xF8B32931 */ 369 -5.31095493882666946917e+00, /* 0xC0153E6A, 0xF8B32931 */
357 }; 370 };
358 371
359 static double qzero(double x) 372 static double qzero(double x) {
360 { 373 const double *p, *q;
361 » const double *p,*q; 374 double_t s, r, z;
362 » double_t s,r,z; 375 uint32_t ix;
363 » uint32_t ix;
364 376
365 » GET_HIGH_WORD(ix, x); 377 GET_HIGH_WORD(ix, x);
366 » ix &= 0x7fffffff; 378 ix &= 0x7fffffff;
367 » if (ix >= 0x40200000){p = qR8; q = qS8;} 379 if (ix >= 0x40200000) {
368 » else if (ix >= 0x40122E8B){p = qR5; q = qS5;} 380 p = qR8;
369 » else if (ix >= 0x4006DB6D){p = qR3; q = qS3;} 381 q = qS8;
370 » else /*ix >= 0x40000000*/ {p = qR2; q = qS2;} 382 } else if (ix >= 0x40122E8B) {
371 » z = 1.0/(x*x); 383 p = qR5;
372 » r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5])))); 384 q = qS5;
373 » s = 1.0+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5]))))); 385 } else if (ix >= 0x4006DB6D) {
374 » return (-.125 + r/s)/x; 386 p = qR3;
387 q = qS3;
388 } else /*ix >= 0x40000000*/ {
389 p = qR2;
390 q = qS2;
391 }
392 z = 1.0 / (x * x);
393 r = p[0] + z * (p[1] + z * (p[2] + z * (p[3] + z * (p[4] + z * p[5]))));
394 s = 1.0 +
395 z * (q[0] + z * (q[1] + z * (q[2] + z * (q[3] + z * (q[4] + z * q[5])))));
396 return (-.125 + r / s) / x;
375 } 397 }
OLDNEW

Powered by Google App Engine
This is Rietveld 408576698