Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(402)

Side by Side Diff: fusl/src/math/erfl.c

Issue 1714623002: [fusl] clang-format fusl (Closed) Base URL: git@github.com:domokit/mojo.git@master
Patch Set: headers too Created 4 years, 10 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
1 /* origin: OpenBSD /usr/src/lib/libm/src/ld80/e_erfl.c */ 1 /* origin: OpenBSD /usr/src/lib/libm/src/ld80/e_erfl.c */
2 /* 2 /*
3 * ==================================================== 3 * ====================================================
4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5 * 5 *
6 * Developed at SunPro, a Sun Microsystems, Inc. business. 6 * Developed at SunPro, a Sun Microsystems, Inc. business.
7 * Permission to use, copy, modify, and distribute this 7 * Permission to use, copy, modify, and distribute this
8 * software is freely granted, provided that this notice 8 * software is freely granted, provided that this notice
9 * is preserved. 9 * is preserved.
10 * ==================================================== 10 * ====================================================
(...skipping 79 matching lines...) Expand 10 before | Expand all | Expand 10 after
90 * erf(x) = sign(x) *(1 - tiny) (raise inexact) 90 * erf(x) = sign(x) *(1 - tiny) (raise inexact)
91 * erfc(x) = tiny*tiny (raise underflow) if x > 0 91 * erfc(x) = tiny*tiny (raise underflow) if x > 0
92 * = 2 - tiny if x<0 92 * = 2 - tiny if x<0
93 * 93 *
94 * 7. Special case: 94 * 7. Special case:
95 * erf(0) = 0, erf(inf) = 1, erf(-inf) = -1, 95 * erf(0) = 0, erf(inf) = 1, erf(-inf) = -1,
96 * erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2, 96 * erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
97 * erfc/erf(NaN) is NaN 97 * erfc/erf(NaN) is NaN
98 */ 98 */
99 99
100
101 #include "libm.h" 100 #include "libm.h"
102 101
103 #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024 102 #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
104 long double erfl(long double x) 103 long double erfl(long double x) {
105 { 104 return erf(x);
106 » return erf(x); 105 }
107 } 106 long double erfcl(long double x) {
108 long double erfcl(long double x) 107 return erfc(x);
109 {
110 » return erfc(x);
111 } 108 }
112 #elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384 109 #elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
113 static const long double 110 static const long double
114 erx = 0.845062911510467529296875L, 111 erx = 0.845062911510467529296875L,
115 112
116 /* 113 /*
117 * Coefficients for approximation to erf on [0,0.84375] 114 * Coefficients for approximation to erf on [0,0.84375]
118 */ 115 */
119 /* 8 * (2/sqrt(pi) - 1) */ 116 /* 8 * (2/sqrt(pi) - 1) */
120 efx8 = 1.0270333367641005911692712249723613735048E0L, 117 efx8 = 1.0270333367641005911692712249723613735048E0L,
121 pp[6] = { 118 pp[6] =
122 1.122751350964552113068262337278335028553E6L, 119 {
123 -2.808533301997696164408397079650699163276E6L, 120 1.122751350964552113068262337278335028553E6L,
124 -3.314325479115357458197119660818768924100E5L, 121 -2.808533301997696164408397079650699163276E6L,
125 -6.848684465326256109712135497895525446398E4L, 122 -3.314325479115357458197119660818768924100E5L,
126 -2.657817695110739185591505062971929859314E3L, 123 -6.848684465326256109712135497895525446398E4L,
127 -1.655310302737837556654146291646499062882E2L, 124 -2.657817695110739185591505062971929859314E3L,
128 }, 125 -1.655310302737837556654146291646499062882E2L,
129 qq[6] = { 126 },
130 8.745588372054466262548908189000448124232E6L, 127 qq[6] =
131 3.746038264792471129367533128637019611485E6L, 128 {
132 7.066358783162407559861156173539693900031E5L, 129 8.745588372054466262548908189000448124232E6L,
133 7.448928604824620999413120955705448117056E4L, 130 3.746038264792471129367533128637019611485E6L,
134 4.511583986730994111992253980546131408924E3L, 131 7.066358783162407559861156173539693900031E5L,
135 1.368902937933296323345610240009071254014E2L, 132 7.448928604824620999413120955705448117056E4L,
136 /* 1.000000000000000000000000000000000000000E0 */ 133 4.511583986730994111992253980546131408924E3L,
137 }, 134 1.368902937933296323345610240009071254014E2L,
138 135 /* 1.000000000000000000000000000000000000000E0 */
139 /* 136 },
140 * Coefficients for approximation to erf in [0.84375,1.25] 137
141 */ 138 /*
142 /* erf(x+1) = 0.845062911510467529296875 + pa(x)/qa(x) 139 * Coefficients for approximation to erf in [0.84375,1.25]
143 -0.15625 <= x <= +.25 140 */
144 Peak relative error 8.5e-22 */ 141 /* erf(x+1) = 0.845062911510467529296875 + pa(x)/qa(x)
145 pa[8] = { 142 -0.15625 <= x <= +.25
146 -1.076952146179812072156734957705102256059E0L, 143 Peak relative error 8.5e-22 */
147 1.884814957770385593365179835059971587220E2L, 144 pa[8] =
148 -5.339153975012804282890066622962070115606E1L, 145 {
149 4.435910679869176625928504532109635632618E1L, 146 -1.076952146179812072156734957705102256059E0L,
150 1.683219516032328828278557309642929135179E1L, 147 1.884814957770385593365179835059971587220E2L,
151 -2.360236618396952560064259585299045804293E0L, 148 -5.339153975012804282890066622962070115606E1L,
152 1.852230047861891953244413872297940938041E0L, 149 4.435910679869176625928504532109635632618E1L,
153 9.394994446747752308256773044667843200719E-2L, 150 1.683219516032328828278557309642929135179E1L,
154 }, 151 -2.360236618396952560064259585299045804293E0L,
155 qa[7] = { 152 1.852230047861891953244413872297940938041E0L,
156 4.559263722294508998149925774781887811255E2L, 153 9.394994446747752308256773044667843200719E-2L,
157 3.289248982200800575749795055149780689738E2L, 154 },
158 2.846070965875643009598627918383314457912E2L, 155 qa[7] =
159 1.398715859064535039433275722017479994465E2L, 156 {
160 6.060190733759793706299079050985358190726E1L, 157 4.559263722294508998149925774781887811255E2L,
161 2.078695677795422351040502569964299664233E1L, 158 3.289248982200800575749795055149780689738E2L,
162 4.641271134150895940966798357442234498546E0L, 159 2.846070965875643009598627918383314457912E2L,
163 /* 1.000000000000000000000000000000000000000E0 */ 160 1.398715859064535039433275722017479994465E2L,
164 }, 161 6.060190733759793706299079050985358190726E1L,
165 162 2.078695677795422351040502569964299664233E1L,
166 /* 163 4.641271134150895940966798357442234498546E0L,
167 * Coefficients for approximation to erfc in [1.25,1/0.35] 164 /* 1.000000000000000000000000000000000000000E0 */
168 */ 165 },
169 /* erfc(1/x) = x exp (-1/x^2 - 0.5625 + ra(x^2)/sa(x^2)) 166
170 1/2.85711669921875 < 1/x < 1/1.25 167 /*
171 Peak relative error 3.1e-21 */ 168 * Coefficients for approximation to erfc in [1.25,1/0.35]
172 ra[] = { 169 */
173 1.363566591833846324191000679620738857234E-1L, 170 /* erfc(1/x) = x exp (-1/x^2 - 0.5625 + ra(x^2)/sa(x^2))
174 1.018203167219873573808450274314658434507E1L, 171 1/2.85711669921875 < 1/x < 1/1.25
175 1.862359362334248675526472871224778045594E2L, 172 Peak relative error 3.1e-21 */
176 1.411622588180721285284945138667933330348E3L, 173 ra[] =
177 5.088538459741511988784440103218342840478E3L, 174 {
178 8.928251553922176506858267311750789273656E3L, 175 1.363566591833846324191000679620738857234E-1L,
179 7.264436000148052545243018622742770549982E3L, 176 1.018203167219873573808450274314658434507E1L,
180 2.387492459664548651671894725748959751119E3L, 177 1.862359362334248675526472871224778045594E2L,
181 2.220916652813908085449221282808458466556E2L, 178 1.411622588180721285284945138667933330348E3L,
182 }, 179 5.088538459741511988784440103218342840478E3L,
183 sa[] = { 180 8.928251553922176506858267311750789273656E3L,
184 -1.382234625202480685182526402169222331847E1L, 181 7.264436000148052545243018622742770549982E3L,
185 -3.315638835627950255832519203687435946482E2L, 182 2.387492459664548651671894725748959751119E3L,
186 -2.949124863912936259747237164260785326692E3L, 183 2.220916652813908085449221282808458466556E2L,
187 -1.246622099070875940506391433635999693661E4L, 184 },
188 -2.673079795851665428695842853070996219632E4L, 185 sa[] =
189 -2.880269786660559337358397106518918220991E4L, 186 {
190 -1.450600228493968044773354186390390823713E4L, 187 -1.382234625202480685182526402169222331847E1L,
191 -2.874539731125893533960680525192064277816E3L, 188 -3.315638835627950255832519203687435946482E2L,
192 -1.402241261419067750237395034116942296027E2L, 189 -2.949124863912936259747237164260785326692E3L,
193 /* 1.000000000000000000000000000000000000000E0 */ 190 -1.246622099070875940506391433635999693661E4L,
194 }, 191 -2.673079795851665428695842853070996219632E4L,
195 192 -2.880269786660559337358397106518918220991E4L,
196 /* 193 -1.450600228493968044773354186390390823713E4L,
197 * Coefficients for approximation to erfc in [1/.35,107] 194 -2.874539731125893533960680525192064277816E3L,
198 */ 195 -1.402241261419067750237395034116942296027E2L,
199 /* erfc(1/x) = x exp (-1/x^2 - 0.5625 + rb(x^2)/sb(x^2)) 196 /* 1.000000000000000000000000000000000000000E0 */
200 1/6.6666259765625 < 1/x < 1/2.85711669921875 197 },
201 Peak relative error 4.2e-22 */ 198
202 rb[] = { 199 /*
203 -4.869587348270494309550558460786501252369E-5L, 200 * Coefficients for approximation to erfc in [1/.35,107]
204 -4.030199390527997378549161722412466959403E-3L, 201 */
205 -9.434425866377037610206443566288917589122E-2L, 202 /* erfc(1/x) = x exp (-1/x^2 - 0.5625 + rb(x^2)/sb(x^2))
206 -9.319032754357658601200655161585539404155E-1L, 203 1/6.6666259765625 < 1/x < 1/2.85711669921875
207 -4.273788174307459947350256581445442062291E0L, 204 Peak relative error 4.2e-22 */
208 -8.842289940696150508373541814064198259278E0L, 205 rb[] =
209 -7.069215249419887403187988144752613025255E0L, 206 {
210 -1.401228723639514787920274427443330704764E0L, 207 -4.869587348270494309550558460786501252369E-5L,
211 }, 208 -4.030199390527997378549161722412466959403E-3L,
212 sb[] = { 209 -9.434425866377037610206443566288917589122E-2L,
213 4.936254964107175160157544545879293019085E-3L, 210 -9.319032754357658601200655161585539404155E-1L,
214 1.583457624037795744377163924895349412015E-1L, 211 -4.273788174307459947350256581445442062291E0L,
215 1.850647991850328356622940552450636420484E0L, 212 -8.842289940696150508373541814064198259278E0L,
216 9.927611557279019463768050710008450625415E0L, 213 -7.069215249419887403187988144752613025255E0L,
217 2.531667257649436709617165336779212114570E1L, 214 -1.401228723639514787920274427443330704764E0L,
218 2.869752886406743386458304052862814690045E1L, 215 },
219 1.182059497870819562441683560749192539345E1L, 216 sb[] =
220 /* 1.000000000000000000000000000000000000000E0 */ 217 {
221 }, 218 4.936254964107175160157544545879293019085E-3L,
222 /* erfc(1/x) = x exp (-1/x^2 - 0.5625 + rc(x^2)/sc(x^2)) 219 1.583457624037795744377163924895349412015E-1L,
223 1/107 <= 1/x <= 1/6.6666259765625 220 1.850647991850328356622940552450636420484E0L,
224 Peak relative error 1.1e-21 */ 221 9.927611557279019463768050710008450625415E0L,
225 rc[] = { 222 2.531667257649436709617165336779212114570E1L,
226 -8.299617545269701963973537248996670806850E-5L, 223 2.869752886406743386458304052862814690045E1L,
227 -6.243845685115818513578933902532056244108E-3L, 224 1.182059497870819562441683560749192539345E1L,
228 -1.141667210620380223113693474478394397230E-1L, 225 /* 1.000000000000000000000000000000000000000E0 */
229 -7.521343797212024245375240432734425789409E-1L, 226 },
230 -1.765321928311155824664963633786967602934E0L, 227 /* erfc(1/x) = x exp (-1/x^2 - 0.5625 + rc(x^2)/sc(x^2))
231 -1.029403473103215800456761180695263439188E0L, 228 1/107 <= 1/x <= 1/6.6666259765625
232 }, 229 Peak relative error 1.1e-21 */
233 sc[] = { 230 rc[] =
234 8.413244363014929493035952542677768808601E-3L, 231 {
235 2.065114333816877479753334599639158060979E-1L, 232 -8.299617545269701963973537248996670806850E-5L,
236 1.639064941530797583766364412782135680148E0L, 233 -6.243845685115818513578933902532056244108E-3L,
237 4.936788463787115555582319302981666347450E0L, 234 -1.141667210620380223113693474478394397230E-1L,
238 5.005177727208955487404729933261347679090E0L, 235 -7.521343797212024245375240432734425789409E-1L,
239 /* 1.000000000000000000000000000000000000000E0 */ 236 -1.765321928311155824664963633786967602934E0L,
237 -1.029403473103215800456761180695263439188E0L,
238 },
239 sc[] = {
240 8.413244363014929493035952542677768808601E-3L,
241 2.065114333816877479753334599639158060979E-1L,
242 1.639064941530797583766364412782135680148E0L,
243 4.936788463787115555582319302981666347450E0L,
244 5.005177727208955487404729933261347679090E0L,
245 /* 1.000000000000000000000000000000000000000E0 */
240 }; 246 };
241 247
242 static long double erfc1(long double x) 248 static long double erfc1(long double x) {
243 { 249 long double s, P, Q;
244 » long double s,P,Q; 250
245 251 s = fabsl(x) - 1;
246 » s = fabsl(x) - 1; 252 P = pa[0] +
247 » P = pa[0] + s * (pa[1] + s * (pa[2] + 253 s * (pa[1] +
248 » s * (pa[3] + s * (pa[4] + s * (pa[5] + s * (pa[6] + s * pa[7])))))) ; 254 s * (pa[2] +
249 » Q = qa[0] + s * (qa[1] + s * (qa[2] + 255 s * (pa[3] +
250 » s * (qa[3] + s * (qa[4] + s * (qa[5] + s * (qa[6] + s)))))); 256 s * (pa[4] + s * (pa[5] + s * (pa[6] + s * pa[7]))))));
251 » return 1 - erx - P / Q; 257 Q = qa[0] +
252 } 258 s * (qa[1] +
253 259 s * (qa[2] +
254 static long double erfc2(uint32_t ix, long double x) 260 s * (qa[3] + s * (qa[4] + s * (qa[5] + s * (qa[6] + s))))));
255 { 261 return 1 - erx - P / Q;
256 » union ldshape u; 262 }
257 » long double s,z,R,S; 263
258 264 static long double erfc2(uint32_t ix, long double x) {
259 » if (ix < 0x3fffa000) /* 0.84375 <= |x| < 1.25 */ 265 union ldshape u;
260 » » return erfc1(x); 266 long double s, z, R, S;
261 267
262 » x = fabsl(x); 268 if (ix < 0x3fffa000) /* 0.84375 <= |x| < 1.25 */
263 » s = 1 / (x * x); 269 return erfc1(x);
264 » if (ix < 0x4000b6db) { /* 1.25 <= |x| < 2.857 ~ 1/.35 */ 270
265 » » R = ra[0] + s * (ra[1] + s * (ra[2] + s * (ra[3] + s * (ra[4] + 271 x = fabsl(x);
266 » » s * (ra[5] + s * (ra[6] + s * (ra[7] + s * ra[8]))))))); 272 s = 1 / (x * x);
267 » » S = sa[0] + s * (sa[1] + s * (sa[2] + s * (sa[3] + s * (sa[4] + 273 if (ix < 0x4000b6db) { /* 1.25 <= |x| < 2.857 ~ 1/.35 */
268 » » s * (sa[5] + s * (sa[6] + s * (sa[7] + s * (sa[8] + s)))))) )); 274 R = ra[0] +
269 » } else if (ix < 0x4001d555) { /* 2.857 <= |x| < 6.6666259765625 */ 275 s * (ra[1] +
270 » » R = rb[0] + s * (rb[1] + s * (rb[2] + s * (rb[3] + s * (rb[4] + 276 s * (ra[2] +
271 » » s * (rb[5] + s * (rb[6] + s * rb[7])))))); 277 s * (ra[3] +
272 » » S = sb[0] + s * (sb[1] + s * (sb[2] + s * (sb[3] + s * (sb[4] + 278 s * (ra[4] +
273 » » s * (sb[5] + s * (sb[6] + s)))))); 279 s * (ra[5] +
274 » } else { /* 6.666 <= |x| < 107 (erfc only) */ 280 s * (ra[6] + s * (ra[7] + s * ra[8])))))));
275 » » R = rc[0] + s * (rc[1] + s * (rc[2] + s * (rc[3] + 281 S = sa[0] +
276 » » s * (rc[4] + s * rc[5])))); 282 s * (sa[1] +
277 » » S = sc[0] + s * (sc[1] + s * (sc[2] + s * (sc[3] + 283 s * (sa[2] +
278 » » s * (sc[4] + s)))); 284 s * (sa[3] +
279 » } 285 s * (sa[4] +
280 » u.f = x; 286 s * (sa[5] +
281 » u.i.m &= -1ULL << 40; 287 s * (sa[6] +
282 » z = u.f; 288 s * (sa[7] + s * (sa[8] + s))))))));
283 » return expl(-z*z - 0.5625) * expl((z - x) * (z + x) + R / S) / x; 289 } else if (ix < 0x4001d555) { /* 2.857 <= |x| < 6.6666259765625 */
284 } 290 R = rb[0] +
285 291 s * (rb[1] +
286 long double erfl(long double x) 292 s * (rb[2] +
287 { 293 s * (rb[3] +
288 » long double r, s, z, y; 294 s * (rb[4] + s * (rb[5] + s * (rb[6] + s * rb[7]))))));
289 » union ldshape u = {x}; 295 S = sb[0] +
290 » uint32_t ix = (u.i.se & 0x7fffU)<<16 | u.i.m>>48; 296 s * (sb[1] +
291 » int sign = u.i.se >> 15; 297 s * (sb[2] +
292 298 s * (sb[3] + s * (sb[4] + s * (sb[5] + s * (sb[6] + s))))));
293 » if (ix >= 0x7fff0000) 299 } else { /* 6.666 <= |x| < 107 (erfc only) */
294 » » /* erf(nan)=nan, erf(+-inf)=+-1 */ 300 R = rc[0] +
295 » » return 1 - 2*sign + 1/x; 301 s * (rc[1] + s * (rc[2] + s * (rc[3] + s * (rc[4] + s * rc[5]))));
296 » if (ix < 0x3ffed800) { /* |x| < 0.84375 */ 302 S = sc[0] + s * (sc[1] + s * (sc[2] + s * (sc[3] + s * (sc[4] + s))));
297 » » if (ix < 0x3fde8000) { /* |x| < 2**-33 */ 303 }
298 » » » return 0.125 * (8 * x + efx8 * x); /* avoid underflow * / 304 u.f = x;
299 » » } 305 u.i.m &= -1ULL << 40;
300 » » z = x * x; 306 z = u.f;
301 » » r = pp[0] + z * (pp[1] + 307 return expl(-z * z - 0.5625) * expl((z - x) * (z + x) + R / S) / x;
302 » » z * (pp[2] + z * (pp[3] + z * (pp[4] + z * pp[5])))); 308 }
303 » » s = qq[0] + z * (qq[1] + 309
304 » » z * (qq[2] + z * (qq[3] + z * (qq[4] + z * (qq[5] + z))))); 310 long double erfl(long double x) {
305 » » y = r / s; 311 long double r, s, z, y;
306 » » return x + x * y; 312 union ldshape u = {x};
307 » } 313 uint32_t ix = (u.i.se & 0x7fffU) << 16 | u.i.m >> 48;
308 » if (ix < 0x4001d555) /* |x| < 6.6666259765625 */ 314 int sign = u.i.se >> 15;
309 » » y = 1 - erfc2(ix,x); 315
310 » else 316 if (ix >= 0x7fff0000)
311 » » y = 1 - 0x1p-16382L; 317 /* erf(nan)=nan, erf(+-inf)=+-1 */
312 » return sign ? -y : y; 318 return 1 - 2 * sign + 1 / x;
313 } 319 if (ix < 0x3ffed800) { /* |x| < 0.84375 */
314 320 if (ix < 0x3fde8000) { /* |x| < 2**-33 */
315 long double erfcl(long double x) 321 return 0.125 * (8 * x + efx8 * x); /* avoid underflow */
316 { 322 }
317 » long double r, s, z, y; 323 z = x * x;
318 » union ldshape u = {x}; 324 r = pp[0] +
319 » uint32_t ix = (u.i.se & 0x7fffU)<<16 | u.i.m>>48; 325 z * (pp[1] + z * (pp[2] + z * (pp[3] + z * (pp[4] + z * pp[5]))));
320 » int sign = u.i.se >> 15; 326 s = qq[0] +
321 327 z * (qq[1] + z * (qq[2] + z * (qq[3] + z * (qq[4] + z * (qq[5] + z)))));
322 » if (ix >= 0x7fff0000) 328 y = r / s;
323 » » /* erfc(nan) = nan, erfc(+-inf) = 0,2 */ 329 return x + x * y;
324 » » return 2*sign + 1/x; 330 }
325 » if (ix < 0x3ffed800) { /* |x| < 0.84375 */ 331 if (ix < 0x4001d555) /* |x| < 6.6666259765625 */
326 » » if (ix < 0x3fbe0000) /* |x| < 2**-65 */ 332 y = 1 - erfc2(ix, x);
327 » » » return 1.0 - x; 333 else
328 » » z = x * x; 334 y = 1 - 0x1p-16382L;
329 » » r = pp[0] + z * (pp[1] + 335 return sign ? -y : y;
330 » » z * (pp[2] + z * (pp[3] + z * (pp[4] + z * pp[5])))); 336 }
331 » » s = qq[0] + z * (qq[1] + 337
332 » » z * (qq[2] + z * (qq[3] + z * (qq[4] + z * (qq[5] + z))))); 338 long double erfcl(long double x) {
333 » » y = r / s; 339 long double r, s, z, y;
334 » » if (ix < 0x3ffd8000) /* x < 1/4 */ 340 union ldshape u = {x};
335 » » » return 1.0 - (x + x * y); 341 uint32_t ix = (u.i.se & 0x7fffU) << 16 | u.i.m >> 48;
336 » » return 0.5 - (x - 0.5 + x * y); 342 int sign = u.i.se >> 15;
337 » } 343
338 » if (ix < 0x4005d600) /* |x| < 107 */ 344 if (ix >= 0x7fff0000)
339 » » return sign ? 2 - erfc2(ix,x) : erfc2(ix,x); 345 /* erfc(nan) = nan, erfc(+-inf) = 0,2 */
340 » y = 0x1p-16382L; 346 return 2 * sign + 1 / x;
341 » return sign ? 2 - y : y*y; 347 if (ix < 0x3ffed800) { /* |x| < 0.84375 */
348 if (ix < 0x3fbe0000) /* |x| < 2**-65 */
349 return 1.0 - x;
350 z = x * x;
351 r = pp[0] +
352 z * (pp[1] + z * (pp[2] + z * (pp[3] + z * (pp[4] + z * pp[5]))));
353 s = qq[0] +
354 z * (qq[1] + z * (qq[2] + z * (qq[3] + z * (qq[4] + z * (qq[5] + z)))));
355 y = r / s;
356 if (ix < 0x3ffd8000) /* x < 1/4 */
357 return 1.0 - (x + x * y);
358 return 0.5 - (x - 0.5 + x * y);
359 }
360 if (ix < 0x4005d600) /* |x| < 107 */
361 return sign ? 2 - erfc2(ix, x) : erfc2(ix, x);
362 y = 0x1p-16382L;
363 return sign ? 2 - y : y * y;
342 } 364 }
343 #elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384 365 #elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384
344 // TODO: broken implementation to make things compile 366 // TODO: broken implementation to make things compile
345 long double erfl(long double x) 367 long double erfl(long double x) {
346 { 368 return erf(x);
347 » return erf(x); 369 }
348 } 370 long double erfcl(long double x) {
349 long double erfcl(long double x) 371 return erfc(x);
350 {
351 » return erfc(x);
352 } 372 }
353 #endif 373 #endif
OLDNEW
« fusl/arch/aarch64/atomic_arch.h ('K') | « fusl/src/math/erff.c ('k') | fusl/src/math/exp.c » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698