OLD | NEW |
1 /* origin: FreeBSD /usr/src/lib/msun/src/s_erf.c */ | 1 /* origin: FreeBSD /usr/src/lib/msun/src/s_erf.c */ |
2 /* | 2 /* |
3 * ==================================================== | 3 * ==================================================== |
4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. | 4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
5 * | 5 * |
6 * Developed at SunPro, a Sun Microsystems, Inc. business. | 6 * Developed at SunPro, a Sun Microsystems, Inc. business. |
7 * Permission to use, copy, modify, and distribute this | 7 * Permission to use, copy, modify, and distribute this |
8 * software is freely granted, provided that this notice | 8 * software is freely granted, provided that this notice |
9 * is preserved. | 9 * is preserved. |
10 * ==================================================== | 10 * ==================================================== |
(...skipping 87 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
98 * = 2 - tiny if x<0 | 98 * = 2 - tiny if x<0 |
99 * | 99 * |
100 * 7. Special case: | 100 * 7. Special case: |
101 * erf(0) = 0, erf(inf) = 1, erf(-inf) = -1, | 101 * erf(0) = 0, erf(inf) = 1, erf(-inf) = -1, |
102 * erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2, | 102 * erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2, |
103 * erfc/erf(NaN) is NaN | 103 * erfc/erf(NaN) is NaN |
104 */ | 104 */ |
105 | 105 |
106 #include "libm.h" | 106 #include "libm.h" |
107 | 107 |
108 static const double | 108 static const double erx = |
109 erx = 8.45062911510467529297e-01, /* 0x3FEB0AC1, 0x60000000 */ | 109 8.45062911510467529297e-01, /* 0x3FEB0AC1, 0x60000000 */ |
110 /* | 110 /* |
111 * Coefficients for approximation to erf on [0,0.84375] | 111 * Coefficients for approxim
ation to erf on [0,0.84375] |
112 */ | 112 */ |
113 efx8 = 1.02703333676410069053e+00, /* 0x3FF06EBA, 0x8214DB69 */ | 113 efx8 = 1.02703333676410069053e+00, /* 0x3FF06EBA, 0x8214DB69 */ |
114 pp0 = 1.28379167095512558561e-01, /* 0x3FC06EBA, 0x8214DB68 */ | 114 pp0 = 1.28379167095512558561e-01, /* 0x3FC06EBA, 0x8214DB68 */ |
115 pp1 = -3.25042107247001499370e-01, /* 0xBFD4CD7D, 0x691CB913 */ | 115 pp1 = -3.25042107247001499370e-01, /* 0xBFD4CD7D, 0x691CB913 */ |
116 pp2 = -2.84817495755985104766e-02, /* 0xBF9D2A51, 0xDBD7194F */ | 116 pp2 = -2.84817495755985104766e-02, /* 0xBF9D2A51, 0xDBD7194F */ |
117 pp3 = -5.77027029648944159157e-03, /* 0xBF77A291, 0x236668E4 */ | 117 pp3 = -5.77027029648944159157e-03, /* 0xBF77A291, 0x236668E4 */ |
118 pp4 = -2.37630166566501626084e-05, /* 0xBEF8EAD6, 0x120016AC */ | 118 pp4 = -2.37630166566501626084e-05, /* 0xBEF8EAD6, 0x120016AC */ |
119 qq1 = 3.97917223959155352819e-01, /* 0x3FD97779, 0xCDDADC09 */ | 119 qq1 = 3.97917223959155352819e-01, /* 0x3FD97779, 0xCDDADC09 */ |
120 qq2 = 6.50222499887672944485e-02, /* 0x3FB0A54C, 0x5536CEBA */ | 120 qq2 = 6.50222499887672944485e-02, /* 0x3FB0A54C, 0x5536CEBA */ |
121 qq3 = 5.08130628187576562776e-03, /* 0x3F74D022, 0xC4D36B0F */ | 121 qq3 = 5.08130628187576562776e-03, /* 0x3F74D022, 0xC4D36B0F */ |
122 qq4 = 1.32494738004321644526e-04, /* 0x3F215DC9, 0x221C1A10 */ | 122 qq4 = 1.32494738004321644526e-04, /* 0x3F215DC9, 0x221C1A10 */ |
123 qq5 = -3.96022827877536812320e-06, /* 0xBED09C43, 0x42A26120 */ | 123 qq5 = -3.96022827877536812320e-06, /* 0xBED09C43, 0x42A26120 */ |
124 /* | 124 /* |
125 * Coefficients for approximation to erf in [0.84375,1.25] | 125 * Coefficients for approxim
ation to erf in [0.84375,1.25] |
126 */ | 126 */ |
127 pa0 = -2.36211856075265944077e-03, /* 0xBF6359B8, 0xBEF77538 */ | 127 pa0 = -2.36211856075265944077e-03, /* 0xBF6359B8, 0xBEF77538 */ |
128 pa1 = 4.14856118683748331666e-01, /* 0x3FDA8D00, 0xAD92B34D */ | 128 pa1 = 4.14856118683748331666e-01, /* 0x3FDA8D00, 0xAD92B34D */ |
129 pa2 = -3.72207876035701323847e-01, /* 0xBFD7D240, 0xFBB8C3F1 */ | 129 pa2 = -3.72207876035701323847e-01, /* 0xBFD7D240, 0xFBB8C3F1 */ |
130 pa3 = 3.18346619901161753674e-01, /* 0x3FD45FCA, 0x805120E4 */ | 130 pa3 = 3.18346619901161753674e-01, /* 0x3FD45FCA, 0x805120E4 */ |
131 pa4 = -1.10894694282396677476e-01, /* 0xBFBC6398, 0x3D3E28EC */ | 131 pa4 = -1.10894694282396677476e-01, /* 0xBFBC6398, 0x3D3E28EC */ |
132 pa5 = 3.54783043256182359371e-02, /* 0x3FA22A36, 0x599795EB */ | 132 pa5 = 3.54783043256182359371e-02, /* 0x3FA22A36, 0x599795EB */ |
133 pa6 = -2.16637559486879084300e-03, /* 0xBF61BF38, 0x0A96073F */ | 133 pa6 = -2.16637559486879084300e-03, /* 0xBF61BF38, 0x0A96073F */ |
134 qa1 = 1.06420880400844228286e-01, /* 0x3FBB3E66, 0x18EEE323 */ | 134 qa1 = 1.06420880400844228286e-01, /* 0x3FBB3E66, 0x18EEE323 */ |
135 qa2 = 5.40397917702171048937e-01, /* 0x3FE14AF0, 0x92EB6F33 */ | 135 qa2 = 5.40397917702171048937e-01, /* 0x3FE14AF0, 0x92EB6F33 */ |
136 qa3 = 7.18286544141962662868e-02, /* 0x3FB2635C, 0xD99FE9A7 */ | 136 qa3 = 7.18286544141962662868e-02, /* 0x3FB2635C, 0xD99FE9A7 */ |
137 qa4 = 1.26171219808761642112e-01, /* 0x3FC02660, 0xE763351F */ | 137 qa4 = 1.26171219808761642112e-01, /* 0x3FC02660, 0xE763351F */ |
138 qa5 = 1.36370839120290507362e-02, /* 0x3F8BEDC2, 0x6B51DD1C */ | 138 qa5 = 1.36370839120290507362e-02, /* 0x3F8BEDC2, 0x6B51DD1C */ |
139 qa6 = 1.19844998467991074170e-02, /* 0x3F888B54, 0x5735151D */ | 139 qa6 = 1.19844998467991074170e-02, /* 0x3F888B54, 0x5735151D */ |
140 /* | 140 /* |
141 * Coefficients for approximation to erfc in [1.25,1/0.35] | 141 * Coefficients for approxim
ation to erfc in [1.25,1/0.35] |
142 */ | 142 */ |
143 ra0 = -9.86494403484714822705e-03, /* 0xBF843412, 0x600D6435 */ | 143 ra0 = -9.86494403484714822705e-03, /* 0xBF843412, 0x600D6435 */ |
144 ra1 = -6.93858572707181764372e-01, /* 0xBFE63416, 0xE4BA7360 */ | 144 ra1 = -6.93858572707181764372e-01, /* 0xBFE63416, 0xE4BA7360 */ |
145 ra2 = -1.05586262253232909814e+01, /* 0xC0251E04, 0x41B0E726 */ | 145 ra2 = -1.05586262253232909814e+01, /* 0xC0251E04, 0x41B0E726 */ |
146 ra3 = -6.23753324503260060396e+01, /* 0xC04F300A, 0xE4CBA38D */ | 146 ra3 = -6.23753324503260060396e+01, /* 0xC04F300A, 0xE4CBA38D */ |
147 ra4 = -1.62396669462573470355e+02, /* 0xC0644CB1, 0x84282266 */ | 147 ra4 = -1.62396669462573470355e+02, /* 0xC0644CB1, 0x84282266 */ |
148 ra5 = -1.84605092906711035994e+02, /* 0xC067135C, 0xEBCCABB2 */ | 148 ra5 = -1.84605092906711035994e+02, /* 0xC067135C, 0xEBCCABB2 */ |
149 ra6 = -8.12874355063065934246e+01, /* 0xC0545265, 0x57E4D2F2 */ | 149 ra6 = -8.12874355063065934246e+01, /* 0xC0545265, 0x57E4D2F2 */ |
150 ra7 = -9.81432934416914548592e+00, /* 0xC023A0EF, 0xC69AC25C */ | 150 ra7 = -9.81432934416914548592e+00, /* 0xC023A0EF, 0xC69AC25C */ |
151 sa1 = 1.96512716674392571292e+01, /* 0x4033A6B9, 0xBD707687 */ | 151 sa1 = 1.96512716674392571292e+01, /* 0x4033A6B9, 0xBD707687 */ |
152 sa2 = 1.37657754143519042600e+02, /* 0x4061350C, 0x526AE721 */ | 152 sa2 = 1.37657754143519042600e+02, /* 0x4061350C, 0x526AE721 */ |
153 sa3 = 4.34565877475229228821e+02, /* 0x407B290D, 0xD58A1A71 */ | 153 sa3 = 4.34565877475229228821e+02, /* 0x407B290D, 0xD58A1A71 */ |
154 sa4 = 6.45387271733267880336e+02, /* 0x40842B19, 0x21EC2868 */ | 154 sa4 = 6.45387271733267880336e+02, /* 0x40842B19, 0x21EC2868 */ |
155 sa5 = 4.29008140027567833386e+02, /* 0x407AD021, 0x57700314 */ | 155 sa5 = 4.29008140027567833386e+02, /* 0x407AD021, 0x57700314 */ |
156 sa6 = 1.08635005541779435134e+02, /* 0x405B28A3, 0xEE48AE2C */ | 156 sa6 = 1.08635005541779435134e+02, /* 0x405B28A3, 0xEE48AE2C */ |
157 sa7 = 6.57024977031928170135e+00, /* 0x401A47EF, 0x8E484A93 */ | 157 sa7 = 6.57024977031928170135e+00, /* 0x401A47EF, 0x8E484A93 */ |
158 sa8 = -6.04244152148580987438e-02, /* 0xBFAEEFF2, 0xEE749A62 */ | 158 sa8 = -6.04244152148580987438e-02, /* 0xBFAEEFF2, 0xEE749A62 */ |
159 /* | 159 /* |
160 * Coefficients for approximation to erfc in [1/.35,28] | 160 * Coefficients for approxim
ation to erfc in [1/.35,28] |
161 */ | 161 */ |
162 rb0 = -9.86494292470009928597e-03, /* 0xBF843412, 0x39E86F4A */ | 162 rb0 = -9.86494292470009928597e-03, /* 0xBF843412, 0x39E86F4A */ |
163 rb1 = -7.99283237680523006574e-01, /* 0xBFE993BA, 0x70C285DE */ | 163 rb1 = -7.99283237680523006574e-01, /* 0xBFE993BA, 0x70C285DE */ |
164 rb2 = -1.77579549177547519889e+01, /* 0xC031C209, 0x555F995A */ | 164 rb2 = -1.77579549177547519889e+01, /* 0xC031C209, 0x555F995A */ |
165 rb3 = -1.60636384855821916062e+02, /* 0xC064145D, 0x43C5ED98 */ | 165 rb3 = -1.60636384855821916062e+02, /* 0xC064145D, 0x43C5ED98 */ |
166 rb4 = -6.37566443368389627722e+02, /* 0xC083EC88, 0x1375F228 */ | 166 rb4 = -6.37566443368389627722e+02, /* 0xC083EC88, 0x1375F228 */ |
167 rb5 = -1.02509513161107724954e+03, /* 0xC0900461, 0x6A2E5992 */ | 167 rb5 = -1.02509513161107724954e+03, /* 0xC0900461, 0x6A2E5992 */ |
168 rb6 = -4.83519191608651397019e+02, /* 0xC07E384E, 0x9BDC383F */ | 168 rb6 = -4.83519191608651397019e+02, /* 0xC07E384E, 0x9BDC383F */ |
169 sb1 = 3.03380607434824582924e+01, /* 0x403E568B, 0x261D5190 */ | 169 sb1 = 3.03380607434824582924e+01, /* 0x403E568B, 0x261D5190 */ |
170 sb2 = 3.25792512996573918826e+02, /* 0x40745CAE, 0x221B9F0A */ | 170 sb2 = 3.25792512996573918826e+02, /* 0x40745CAE, 0x221B9F0A */ |
171 sb3 = 1.53672958608443695994e+03, /* 0x409802EB, 0x189D5118 */ | 171 sb3 = 1.53672958608443695994e+03, /* 0x409802EB, 0x189D5118 */ |
172 sb4 = 3.19985821950859553908e+03, /* 0x40A8FFB7, 0x688C246A */ | 172 sb4 = 3.19985821950859553908e+03, /* 0x40A8FFB7, 0x688C246A */ |
173 sb5 = 2.55305040643316442583e+03, /* 0x40A3F219, 0xCEDF3BE6 */ | 173 sb5 = 2.55305040643316442583e+03, /* 0x40A3F219, 0xCEDF3BE6 */ |
174 sb6 = 4.74528541206955367215e+02, /* 0x407DA874, 0xE79FE763 */ | 174 sb6 = 4.74528541206955367215e+02, /* 0x407DA874, 0xE79FE763 */ |
175 sb7 = -2.24409524465858183362e+01; /* 0xC03670E2, 0x42712D62 */ | 175 sb7 = -2.24409524465858183362e+01; /* 0xC03670E2, 0x42712D62 */ |
176 | 176 |
177 static double erfc1(double x) | 177 static double erfc1(double x) { |
178 { | 178 double_t s, P, Q; |
179 » double_t s,P,Q; | |
180 | 179 |
181 » s = fabs(x) - 1; | 180 s = fabs(x) - 1; |
182 » P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6))))); | 181 P = pa0 + s * (pa1 + s * (pa2 + s * (pa3 + s * (pa4 + s * (pa5 + s * pa6))))); |
183 » Q = 1+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6))))); | 182 Q = 1 + s * (qa1 + s * (qa2 + s * (qa3 + s * (qa4 + s * (qa5 + s * qa6))))); |
184 » return 1 - erx - P/Q; | 183 return 1 - erx - P / Q; |
185 } | 184 } |
186 | 185 |
187 static double erfc2(uint32_t ix, double x) | 186 static double erfc2(uint32_t ix, double x) { |
188 { | 187 double_t s, R, S; |
189 » double_t s,R,S; | 188 double z; |
190 » double z; | |
191 | 189 |
192 » if (ix < 0x3ff40000) /* |x| < 1.25 */ | 190 if (ix < 0x3ff40000) /* |x| < 1.25 */ |
193 » » return erfc1(x); | 191 return erfc1(x); |
194 | 192 |
195 » x = fabs(x); | 193 x = fabs(x); |
196 » s = 1/(x*x); | 194 s = 1 / (x * x); |
197 » if (ix < 0x4006db6d) { /* |x| < 1/.35 ~ 2.85714 */ | 195 if (ix < 0x4006db6d) { /* |x| < 1/.35 ~ 2.85714 */ |
198 » » R = ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*( | 196 R = ra0 + |
199 » » ra5+s*(ra6+s*ra7)))))); | 197 s * (ra1 + |
200 » » S = 1.0+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*( | 198 s * (ra2 + |
201 » » sa5+s*(sa6+s*(sa7+s*sa8))))))); | 199 s * (ra3 + s * (ra4 + s * (ra5 + s * (ra6 + s * ra7)))))); |
202 » } else { /* |x| > 1/.35 */ | 200 S = 1.0 + |
203 » » R = rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*( | 201 s * (sa1 + |
204 » » rb5+s*rb6))))); | 202 s * (sa2 + |
205 » » S = 1.0+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*( | 203 s * (sa3 + |
206 » » sb5+s*(sb6+s*sb7)))))); | 204 s * (sa4 + |
207 » } | 205 s * (sa5 + s * (sa6 + s * (sa7 + s * sa8))))))); |
208 » z = x; | 206 } else { /* |x| > 1/.35 */ |
209 » SET_LOW_WORD(z,0); | 207 R = rb0 + |
210 » return exp(-z*z-0.5625)*exp((z-x)*(z+x)+R/S)/x; | 208 s * (rb1 + s * (rb2 + s * (rb3 + s * (rb4 + s * (rb5 + s * rb6))))); |
| 209 S = 1.0 + |
| 210 s * (sb1 + |
| 211 s * (sb2 + |
| 212 s * (sb3 + s * (sb4 + s * (sb5 + s * (sb6 + s * sb7)))))); |
| 213 } |
| 214 z = x; |
| 215 SET_LOW_WORD(z, 0); |
| 216 return exp(-z * z - 0.5625) * exp((z - x) * (z + x) + R / S) / x; |
211 } | 217 } |
212 | 218 |
213 double erf(double x) | 219 double erf(double x) { |
214 { | 220 double r, s, z, y; |
215 » double r,s,z,y; | 221 uint32_t ix; |
216 » uint32_t ix; | 222 int sign; |
217 » int sign; | |
218 | 223 |
219 » GET_HIGH_WORD(ix, x); | 224 GET_HIGH_WORD(ix, x); |
220 » sign = ix>>31; | 225 sign = ix >> 31; |
221 » ix &= 0x7fffffff; | 226 ix &= 0x7fffffff; |
222 » if (ix >= 0x7ff00000) { | 227 if (ix >= 0x7ff00000) { |
223 » » /* erf(nan)=nan, erf(+-inf)=+-1 */ | 228 /* erf(nan)=nan, erf(+-inf)=+-1 */ |
224 » » return 1-2*sign + 1/x; | 229 return 1 - 2 * sign + 1 / x; |
225 » } | 230 } |
226 » if (ix < 0x3feb0000) { /* |x| < 0.84375 */ | 231 if (ix < 0x3feb0000) { /* |x| < 0.84375 */ |
227 » » if (ix < 0x3e300000) { /* |x| < 2**-28 */ | 232 if (ix < 0x3e300000) { /* |x| < 2**-28 */ |
228 » » » /* avoid underflow */ | 233 /* avoid underflow */ |
229 » » » return 0.125*(8*x + efx8*x); | 234 return 0.125 * (8 * x + efx8 * x); |
230 » » } | 235 } |
231 » » z = x*x; | 236 z = x * x; |
232 » » r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4))); | 237 r = pp0 + z * (pp1 + z * (pp2 + z * (pp3 + z * pp4))); |
233 » » s = 1.0+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5)))); | 238 s = 1.0 + z * (qq1 + z * (qq2 + z * (qq3 + z * (qq4 + z * qq5)))); |
234 » » y = r/s; | 239 y = r / s; |
235 » » return x + x*y; | 240 return x + x * y; |
236 » } | 241 } |
237 » if (ix < 0x40180000) /* 0.84375 <= |x| < 6 */ | 242 if (ix < 0x40180000) /* 0.84375 <= |x| < 6 */ |
238 » » y = 1 - erfc2(ix,x); | 243 y = 1 - erfc2(ix, x); |
239 » else | 244 else |
240 » » y = 1 - 0x1p-1022; | 245 y = 1 - 0x1p-1022; |
241 » return sign ? -y : y; | 246 return sign ? -y : y; |
242 } | 247 } |
243 | 248 |
244 double erfc(double x) | 249 double erfc(double x) { |
245 { | 250 double r, s, z, y; |
246 » double r,s,z,y; | 251 uint32_t ix; |
247 » uint32_t ix; | 252 int sign; |
248 » int sign; | |
249 | 253 |
250 » GET_HIGH_WORD(ix, x); | 254 GET_HIGH_WORD(ix, x); |
251 » sign = ix>>31; | 255 sign = ix >> 31; |
252 » ix &= 0x7fffffff; | 256 ix &= 0x7fffffff; |
253 » if (ix >= 0x7ff00000) { | 257 if (ix >= 0x7ff00000) { |
254 » » /* erfc(nan)=nan, erfc(+-inf)=0,2 */ | 258 /* erfc(nan)=nan, erfc(+-inf)=0,2 */ |
255 » » return 2*sign + 1/x; | 259 return 2 * sign + 1 / x; |
256 » } | 260 } |
257 » if (ix < 0x3feb0000) { /* |x| < 0.84375 */ | 261 if (ix < 0x3feb0000) { /* |x| < 0.84375 */ |
258 » » if (ix < 0x3c700000) /* |x| < 2**-56 */ | 262 if (ix < 0x3c700000) /* |x| < 2**-56 */ |
259 » » » return 1.0 - x; | 263 return 1.0 - x; |
260 » » z = x*x; | 264 z = x * x; |
261 » » r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4))); | 265 r = pp0 + z * (pp1 + z * (pp2 + z * (pp3 + z * pp4))); |
262 » » s = 1.0+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5)))); | 266 s = 1.0 + z * (qq1 + z * (qq2 + z * (qq3 + z * (qq4 + z * qq5)))); |
263 » » y = r/s; | 267 y = r / s; |
264 » » if (sign || ix < 0x3fd00000) { /* x < 1/4 */ | 268 if (sign || ix < 0x3fd00000) { /* x < 1/4 */ |
265 » » » return 1.0 - (x+x*y); | 269 return 1.0 - (x + x * y); |
266 » » } | 270 } |
267 » » return 0.5 - (x - 0.5 + x*y); | 271 return 0.5 - (x - 0.5 + x * y); |
268 » } | 272 } |
269 » if (ix < 0x403c0000) { /* 0.84375 <= |x| < 28 */ | 273 if (ix < 0x403c0000) { /* 0.84375 <= |x| < 28 */ |
270 » » return sign ? 2 - erfc2(ix,x) : erfc2(ix,x); | 274 return sign ? 2 - erfc2(ix, x) : erfc2(ix, x); |
271 » } | 275 } |
272 » return sign ? 2 - 0x1p-1022 : 0x1p-1022*0x1p-1022; | 276 return sign ? 2 - 0x1p-1022 : 0x1p-1022 * 0x1p-1022; |
273 } | 277 } |
OLD | NEW |