Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(68)

Side by Side Diff: fusl/src/math/erf.c

Issue 1714623002: [fusl] clang-format fusl (Closed) Base URL: git@github.com:domokit/mojo.git@master
Patch Set: headers too Created 4 years, 10 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
1 /* origin: FreeBSD /usr/src/lib/msun/src/s_erf.c */ 1 /* origin: FreeBSD /usr/src/lib/msun/src/s_erf.c */
2 /* 2 /*
3 * ==================================================== 3 * ====================================================
4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5 * 5 *
6 * Developed at SunPro, a Sun Microsystems, Inc. business. 6 * Developed at SunPro, a Sun Microsystems, Inc. business.
7 * Permission to use, copy, modify, and distribute this 7 * Permission to use, copy, modify, and distribute this
8 * software is freely granted, provided that this notice 8 * software is freely granted, provided that this notice
9 * is preserved. 9 * is preserved.
10 * ==================================================== 10 * ====================================================
(...skipping 87 matching lines...) Expand 10 before | Expand all | Expand 10 after
98 * = 2 - tiny if x<0 98 * = 2 - tiny if x<0
99 * 99 *
100 * 7. Special case: 100 * 7. Special case:
101 * erf(0) = 0, erf(inf) = 1, erf(-inf) = -1, 101 * erf(0) = 0, erf(inf) = 1, erf(-inf) = -1,
102 * erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2, 102 * erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
103 * erfc/erf(NaN) is NaN 103 * erfc/erf(NaN) is NaN
104 */ 104 */
105 105
106 #include "libm.h" 106 #include "libm.h"
107 107
108 static const double 108 static const double erx =
109 erx = 8.45062911510467529297e-01, /* 0x3FEB0AC1, 0x60000000 */ 109 8.45062911510467529297e-01, /* 0x3FEB0AC1, 0x60000000 */
110 /* 110 /*
111 * Coefficients for approximation to erf on [0,0.84375] 111 * Coefficients for approxim ation to erf on [0,0.84375]
112 */ 112 */
113 efx8 = 1.02703333676410069053e+00, /* 0x3FF06EBA, 0x8214DB69 */ 113 efx8 = 1.02703333676410069053e+00, /* 0x3FF06EBA, 0x8214DB69 */
114 pp0 = 1.28379167095512558561e-01, /* 0x3FC06EBA, 0x8214DB68 */ 114 pp0 = 1.28379167095512558561e-01, /* 0x3FC06EBA, 0x8214DB68 */
115 pp1 = -3.25042107247001499370e-01, /* 0xBFD4CD7D, 0x691CB913 */ 115 pp1 = -3.25042107247001499370e-01, /* 0xBFD4CD7D, 0x691CB913 */
116 pp2 = -2.84817495755985104766e-02, /* 0xBF9D2A51, 0xDBD7194F */ 116 pp2 = -2.84817495755985104766e-02, /* 0xBF9D2A51, 0xDBD7194F */
117 pp3 = -5.77027029648944159157e-03, /* 0xBF77A291, 0x236668E4 */ 117 pp3 = -5.77027029648944159157e-03, /* 0xBF77A291, 0x236668E4 */
118 pp4 = -2.37630166566501626084e-05, /* 0xBEF8EAD6, 0x120016AC */ 118 pp4 = -2.37630166566501626084e-05, /* 0xBEF8EAD6, 0x120016AC */
119 qq1 = 3.97917223959155352819e-01, /* 0x3FD97779, 0xCDDADC09 */ 119 qq1 = 3.97917223959155352819e-01, /* 0x3FD97779, 0xCDDADC09 */
120 qq2 = 6.50222499887672944485e-02, /* 0x3FB0A54C, 0x5536CEBA */ 120 qq2 = 6.50222499887672944485e-02, /* 0x3FB0A54C, 0x5536CEBA */
121 qq3 = 5.08130628187576562776e-03, /* 0x3F74D022, 0xC4D36B0F */ 121 qq3 = 5.08130628187576562776e-03, /* 0x3F74D022, 0xC4D36B0F */
122 qq4 = 1.32494738004321644526e-04, /* 0x3F215DC9, 0x221C1A10 */ 122 qq4 = 1.32494738004321644526e-04, /* 0x3F215DC9, 0x221C1A10 */
123 qq5 = -3.96022827877536812320e-06, /* 0xBED09C43, 0x42A26120 */ 123 qq5 = -3.96022827877536812320e-06, /* 0xBED09C43, 0x42A26120 */
124 /* 124 /*
125 * Coefficients for approximation to erf in [0.84375,1.25] 125 * Coefficients for approxim ation to erf in [0.84375,1.25]
126 */ 126 */
127 pa0 = -2.36211856075265944077e-03, /* 0xBF6359B8, 0xBEF77538 */ 127 pa0 = -2.36211856075265944077e-03, /* 0xBF6359B8, 0xBEF77538 */
128 pa1 = 4.14856118683748331666e-01, /* 0x3FDA8D00, 0xAD92B34D */ 128 pa1 = 4.14856118683748331666e-01, /* 0x3FDA8D00, 0xAD92B34D */
129 pa2 = -3.72207876035701323847e-01, /* 0xBFD7D240, 0xFBB8C3F1 */ 129 pa2 = -3.72207876035701323847e-01, /* 0xBFD7D240, 0xFBB8C3F1 */
130 pa3 = 3.18346619901161753674e-01, /* 0x3FD45FCA, 0x805120E4 */ 130 pa3 = 3.18346619901161753674e-01, /* 0x3FD45FCA, 0x805120E4 */
131 pa4 = -1.10894694282396677476e-01, /* 0xBFBC6398, 0x3D3E28EC */ 131 pa4 = -1.10894694282396677476e-01, /* 0xBFBC6398, 0x3D3E28EC */
132 pa5 = 3.54783043256182359371e-02, /* 0x3FA22A36, 0x599795EB */ 132 pa5 = 3.54783043256182359371e-02, /* 0x3FA22A36, 0x599795EB */
133 pa6 = -2.16637559486879084300e-03, /* 0xBF61BF38, 0x0A96073F */ 133 pa6 = -2.16637559486879084300e-03, /* 0xBF61BF38, 0x0A96073F */
134 qa1 = 1.06420880400844228286e-01, /* 0x3FBB3E66, 0x18EEE323 */ 134 qa1 = 1.06420880400844228286e-01, /* 0x3FBB3E66, 0x18EEE323 */
135 qa2 = 5.40397917702171048937e-01, /* 0x3FE14AF0, 0x92EB6F33 */ 135 qa2 = 5.40397917702171048937e-01, /* 0x3FE14AF0, 0x92EB6F33 */
136 qa3 = 7.18286544141962662868e-02, /* 0x3FB2635C, 0xD99FE9A7 */ 136 qa3 = 7.18286544141962662868e-02, /* 0x3FB2635C, 0xD99FE9A7 */
137 qa4 = 1.26171219808761642112e-01, /* 0x3FC02660, 0xE763351F */ 137 qa4 = 1.26171219808761642112e-01, /* 0x3FC02660, 0xE763351F */
138 qa5 = 1.36370839120290507362e-02, /* 0x3F8BEDC2, 0x6B51DD1C */ 138 qa5 = 1.36370839120290507362e-02, /* 0x3F8BEDC2, 0x6B51DD1C */
139 qa6 = 1.19844998467991074170e-02, /* 0x3F888B54, 0x5735151D */ 139 qa6 = 1.19844998467991074170e-02, /* 0x3F888B54, 0x5735151D */
140 /* 140 /*
141 * Coefficients for approximation to erfc in [1.25,1/0.35] 141 * Coefficients for approxim ation to erfc in [1.25,1/0.35]
142 */ 142 */
143 ra0 = -9.86494403484714822705e-03, /* 0xBF843412, 0x600D6435 */ 143 ra0 = -9.86494403484714822705e-03, /* 0xBF843412, 0x600D6435 */
144 ra1 = -6.93858572707181764372e-01, /* 0xBFE63416, 0xE4BA7360 */ 144 ra1 = -6.93858572707181764372e-01, /* 0xBFE63416, 0xE4BA7360 */
145 ra2 = -1.05586262253232909814e+01, /* 0xC0251E04, 0x41B0E726 */ 145 ra2 = -1.05586262253232909814e+01, /* 0xC0251E04, 0x41B0E726 */
146 ra3 = -6.23753324503260060396e+01, /* 0xC04F300A, 0xE4CBA38D */ 146 ra3 = -6.23753324503260060396e+01, /* 0xC04F300A, 0xE4CBA38D */
147 ra4 = -1.62396669462573470355e+02, /* 0xC0644CB1, 0x84282266 */ 147 ra4 = -1.62396669462573470355e+02, /* 0xC0644CB1, 0x84282266 */
148 ra5 = -1.84605092906711035994e+02, /* 0xC067135C, 0xEBCCABB2 */ 148 ra5 = -1.84605092906711035994e+02, /* 0xC067135C, 0xEBCCABB2 */
149 ra6 = -8.12874355063065934246e+01, /* 0xC0545265, 0x57E4D2F2 */ 149 ra6 = -8.12874355063065934246e+01, /* 0xC0545265, 0x57E4D2F2 */
150 ra7 = -9.81432934416914548592e+00, /* 0xC023A0EF, 0xC69AC25C */ 150 ra7 = -9.81432934416914548592e+00, /* 0xC023A0EF, 0xC69AC25C */
151 sa1 = 1.96512716674392571292e+01, /* 0x4033A6B9, 0xBD707687 */ 151 sa1 = 1.96512716674392571292e+01, /* 0x4033A6B9, 0xBD707687 */
152 sa2 = 1.37657754143519042600e+02, /* 0x4061350C, 0x526AE721 */ 152 sa2 = 1.37657754143519042600e+02, /* 0x4061350C, 0x526AE721 */
153 sa3 = 4.34565877475229228821e+02, /* 0x407B290D, 0xD58A1A71 */ 153 sa3 = 4.34565877475229228821e+02, /* 0x407B290D, 0xD58A1A71 */
154 sa4 = 6.45387271733267880336e+02, /* 0x40842B19, 0x21EC2868 */ 154 sa4 = 6.45387271733267880336e+02, /* 0x40842B19, 0x21EC2868 */
155 sa5 = 4.29008140027567833386e+02, /* 0x407AD021, 0x57700314 */ 155 sa5 = 4.29008140027567833386e+02, /* 0x407AD021, 0x57700314 */
156 sa6 = 1.08635005541779435134e+02, /* 0x405B28A3, 0xEE48AE2C */ 156 sa6 = 1.08635005541779435134e+02, /* 0x405B28A3, 0xEE48AE2C */
157 sa7 = 6.57024977031928170135e+00, /* 0x401A47EF, 0x8E484A93 */ 157 sa7 = 6.57024977031928170135e+00, /* 0x401A47EF, 0x8E484A93 */
158 sa8 = -6.04244152148580987438e-02, /* 0xBFAEEFF2, 0xEE749A62 */ 158 sa8 = -6.04244152148580987438e-02, /* 0xBFAEEFF2, 0xEE749A62 */
159 /* 159 /*
160 * Coefficients for approximation to erfc in [1/.35,28] 160 * Coefficients for approxim ation to erfc in [1/.35,28]
161 */ 161 */
162 rb0 = -9.86494292470009928597e-03, /* 0xBF843412, 0x39E86F4A */ 162 rb0 = -9.86494292470009928597e-03, /* 0xBF843412, 0x39E86F4A */
163 rb1 = -7.99283237680523006574e-01, /* 0xBFE993BA, 0x70C285DE */ 163 rb1 = -7.99283237680523006574e-01, /* 0xBFE993BA, 0x70C285DE */
164 rb2 = -1.77579549177547519889e+01, /* 0xC031C209, 0x555F995A */ 164 rb2 = -1.77579549177547519889e+01, /* 0xC031C209, 0x555F995A */
165 rb3 = -1.60636384855821916062e+02, /* 0xC064145D, 0x43C5ED98 */ 165 rb3 = -1.60636384855821916062e+02, /* 0xC064145D, 0x43C5ED98 */
166 rb4 = -6.37566443368389627722e+02, /* 0xC083EC88, 0x1375F228 */ 166 rb4 = -6.37566443368389627722e+02, /* 0xC083EC88, 0x1375F228 */
167 rb5 = -1.02509513161107724954e+03, /* 0xC0900461, 0x6A2E5992 */ 167 rb5 = -1.02509513161107724954e+03, /* 0xC0900461, 0x6A2E5992 */
168 rb6 = -4.83519191608651397019e+02, /* 0xC07E384E, 0x9BDC383F */ 168 rb6 = -4.83519191608651397019e+02, /* 0xC07E384E, 0x9BDC383F */
169 sb1 = 3.03380607434824582924e+01, /* 0x403E568B, 0x261D5190 */ 169 sb1 = 3.03380607434824582924e+01, /* 0x403E568B, 0x261D5190 */
170 sb2 = 3.25792512996573918826e+02, /* 0x40745CAE, 0x221B9F0A */ 170 sb2 = 3.25792512996573918826e+02, /* 0x40745CAE, 0x221B9F0A */
171 sb3 = 1.53672958608443695994e+03, /* 0x409802EB, 0x189D5118 */ 171 sb3 = 1.53672958608443695994e+03, /* 0x409802EB, 0x189D5118 */
172 sb4 = 3.19985821950859553908e+03, /* 0x40A8FFB7, 0x688C246A */ 172 sb4 = 3.19985821950859553908e+03, /* 0x40A8FFB7, 0x688C246A */
173 sb5 = 2.55305040643316442583e+03, /* 0x40A3F219, 0xCEDF3BE6 */ 173 sb5 = 2.55305040643316442583e+03, /* 0x40A3F219, 0xCEDF3BE6 */
174 sb6 = 4.74528541206955367215e+02, /* 0x407DA874, 0xE79FE763 */ 174 sb6 = 4.74528541206955367215e+02, /* 0x407DA874, 0xE79FE763 */
175 sb7 = -2.24409524465858183362e+01; /* 0xC03670E2, 0x42712D62 */ 175 sb7 = -2.24409524465858183362e+01; /* 0xC03670E2, 0x42712D62 */
176 176
177 static double erfc1(double x) 177 static double erfc1(double x) {
178 { 178 double_t s, P, Q;
179 » double_t s,P,Q;
180 179
181 » s = fabs(x) - 1; 180 s = fabs(x) - 1;
182 » P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6))))); 181 P = pa0 + s * (pa1 + s * (pa2 + s * (pa3 + s * (pa4 + s * (pa5 + s * pa6)))));
183 » Q = 1+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6))))); 182 Q = 1 + s * (qa1 + s * (qa2 + s * (qa3 + s * (qa4 + s * (qa5 + s * qa6)))));
184 » return 1 - erx - P/Q; 183 return 1 - erx - P / Q;
185 } 184 }
186 185
187 static double erfc2(uint32_t ix, double x) 186 static double erfc2(uint32_t ix, double x) {
188 { 187 double_t s, R, S;
189 » double_t s,R,S; 188 double z;
190 » double z;
191 189
192 » if (ix < 0x3ff40000) /* |x| < 1.25 */ 190 if (ix < 0x3ff40000) /* |x| < 1.25 */
193 » » return erfc1(x); 191 return erfc1(x);
194 192
195 » x = fabs(x); 193 x = fabs(x);
196 » s = 1/(x*x); 194 s = 1 / (x * x);
197 » if (ix < 0x4006db6d) { /* |x| < 1/.35 ~ 2.85714 */ 195 if (ix < 0x4006db6d) { /* |x| < 1/.35 ~ 2.85714 */
198 » » R = ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*( 196 R = ra0 +
199 » » ra5+s*(ra6+s*ra7)))))); 197 s * (ra1 +
200 » » S = 1.0+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*( 198 s * (ra2 +
201 » » sa5+s*(sa6+s*(sa7+s*sa8))))))); 199 s * (ra3 + s * (ra4 + s * (ra5 + s * (ra6 + s * ra7))))));
202 » } else { /* |x| > 1/.35 */ 200 S = 1.0 +
203 » » R = rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*( 201 s * (sa1 +
204 » » rb5+s*rb6))))); 202 s * (sa2 +
205 » » S = 1.0+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*( 203 s * (sa3 +
206 » » sb5+s*(sb6+s*sb7)))))); 204 s * (sa4 +
207 » } 205 s * (sa5 + s * (sa6 + s * (sa7 + s * sa8)))))));
208 » z = x; 206 } else { /* |x| > 1/.35 */
209 » SET_LOW_WORD(z,0); 207 R = rb0 +
210 » return exp(-z*z-0.5625)*exp((z-x)*(z+x)+R/S)/x; 208 s * (rb1 + s * (rb2 + s * (rb3 + s * (rb4 + s * (rb5 + s * rb6)))));
209 S = 1.0 +
210 s * (sb1 +
211 s * (sb2 +
212 s * (sb3 + s * (sb4 + s * (sb5 + s * (sb6 + s * sb7))))));
213 }
214 z = x;
215 SET_LOW_WORD(z, 0);
216 return exp(-z * z - 0.5625) * exp((z - x) * (z + x) + R / S) / x;
211 } 217 }
212 218
213 double erf(double x) 219 double erf(double x) {
214 { 220 double r, s, z, y;
215 » double r,s,z,y; 221 uint32_t ix;
216 » uint32_t ix; 222 int sign;
217 » int sign;
218 223
219 » GET_HIGH_WORD(ix, x); 224 GET_HIGH_WORD(ix, x);
220 » sign = ix>>31; 225 sign = ix >> 31;
221 » ix &= 0x7fffffff; 226 ix &= 0x7fffffff;
222 » if (ix >= 0x7ff00000) { 227 if (ix >= 0x7ff00000) {
223 » » /* erf(nan)=nan, erf(+-inf)=+-1 */ 228 /* erf(nan)=nan, erf(+-inf)=+-1 */
224 » » return 1-2*sign + 1/x; 229 return 1 - 2 * sign + 1 / x;
225 » } 230 }
226 » if (ix < 0x3feb0000) { /* |x| < 0.84375 */ 231 if (ix < 0x3feb0000) { /* |x| < 0.84375 */
227 » » if (ix < 0x3e300000) { /* |x| < 2**-28 */ 232 if (ix < 0x3e300000) { /* |x| < 2**-28 */
228 » » » /* avoid underflow */ 233 /* avoid underflow */
229 » » » return 0.125*(8*x + efx8*x); 234 return 0.125 * (8 * x + efx8 * x);
230 » » } 235 }
231 » » z = x*x; 236 z = x * x;
232 » » r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4))); 237 r = pp0 + z * (pp1 + z * (pp2 + z * (pp3 + z * pp4)));
233 » » s = 1.0+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5)))); 238 s = 1.0 + z * (qq1 + z * (qq2 + z * (qq3 + z * (qq4 + z * qq5))));
234 » » y = r/s; 239 y = r / s;
235 » » return x + x*y; 240 return x + x * y;
236 » } 241 }
237 » if (ix < 0x40180000) /* 0.84375 <= |x| < 6 */ 242 if (ix < 0x40180000) /* 0.84375 <= |x| < 6 */
238 » » y = 1 - erfc2(ix,x); 243 y = 1 - erfc2(ix, x);
239 » else 244 else
240 » » y = 1 - 0x1p-1022; 245 y = 1 - 0x1p-1022;
241 » return sign ? -y : y; 246 return sign ? -y : y;
242 } 247 }
243 248
244 double erfc(double x) 249 double erfc(double x) {
245 { 250 double r, s, z, y;
246 » double r,s,z,y; 251 uint32_t ix;
247 » uint32_t ix; 252 int sign;
248 » int sign;
249 253
250 » GET_HIGH_WORD(ix, x); 254 GET_HIGH_WORD(ix, x);
251 » sign = ix>>31; 255 sign = ix >> 31;
252 » ix &= 0x7fffffff; 256 ix &= 0x7fffffff;
253 » if (ix >= 0x7ff00000) { 257 if (ix >= 0x7ff00000) {
254 » » /* erfc(nan)=nan, erfc(+-inf)=0,2 */ 258 /* erfc(nan)=nan, erfc(+-inf)=0,2 */
255 » » return 2*sign + 1/x; 259 return 2 * sign + 1 / x;
256 » } 260 }
257 » if (ix < 0x3feb0000) { /* |x| < 0.84375 */ 261 if (ix < 0x3feb0000) { /* |x| < 0.84375 */
258 » » if (ix < 0x3c700000) /* |x| < 2**-56 */ 262 if (ix < 0x3c700000) /* |x| < 2**-56 */
259 » » » return 1.0 - x; 263 return 1.0 - x;
260 » » z = x*x; 264 z = x * x;
261 » » r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4))); 265 r = pp0 + z * (pp1 + z * (pp2 + z * (pp3 + z * pp4)));
262 » » s = 1.0+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5)))); 266 s = 1.0 + z * (qq1 + z * (qq2 + z * (qq3 + z * (qq4 + z * qq5))));
263 » » y = r/s; 267 y = r / s;
264 » » if (sign || ix < 0x3fd00000) { /* x < 1/4 */ 268 if (sign || ix < 0x3fd00000) { /* x < 1/4 */
265 » » » return 1.0 - (x+x*y); 269 return 1.0 - (x + x * y);
266 » » } 270 }
267 » » return 0.5 - (x - 0.5 + x*y); 271 return 0.5 - (x - 0.5 + x * y);
268 » } 272 }
269 » if (ix < 0x403c0000) { /* 0.84375 <= |x| < 28 */ 273 if (ix < 0x403c0000) { /* 0.84375 <= |x| < 28 */
270 » » return sign ? 2 - erfc2(ix,x) : erfc2(ix,x); 274 return sign ? 2 - erfc2(ix, x) : erfc2(ix, x);
271 » } 275 }
272 » return sign ? 2 - 0x1p-1022 : 0x1p-1022*0x1p-1022; 276 return sign ? 2 - 0x1p-1022 : 0x1p-1022 * 0x1p-1022;
273 } 277 }
OLDNEW

Powered by Google App Engine
This is Rietveld 408576698