OLD | NEW |
| (Empty) |
1 /* | |
2 * Copyright 2013 Google Inc. | |
3 * | |
4 * Use of this source code is governed by a BSD-style license that can be | |
5 * found in the LICENSE file. | |
6 * | |
7 * The following code is based on the description in RFC 3174. | |
8 * http://www.ietf.org/rfc/rfc3174.txt | |
9 */ | |
10 | |
11 #include "SkTypes.h" | |
12 #include "SkSHA1.h" | |
13 #include <string.h> | |
14 | |
15 /** SHA1 basic transformation. Transforms state based on block. */ | |
16 static void transform(uint32_t state[5], const uint8_t block[64]); | |
17 | |
18 /** Encodes input into output (5 big endian 32 bit values). */ | |
19 static void encode(uint8_t output[20], const uint32_t input[5]); | |
20 | |
21 /** Encodes input into output (big endian 64 bit value). */ | |
22 static void encode(uint8_t output[8], const uint64_t input); | |
23 | |
24 SkSHA1::SkSHA1() : byteCount(0) { | |
25 // These are magic numbers from the specification. The first four are the sa
me as MD5. | |
26 this->state[0] = 0x67452301; | |
27 this->state[1] = 0xefcdab89; | |
28 this->state[2] = 0x98badcfe; | |
29 this->state[3] = 0x10325476; | |
30 this->state[4] = 0xc3d2e1f0; | |
31 } | |
32 | |
33 void SkSHA1::update(const uint8_t* input, size_t inputLength) { | |
34 unsigned int bufferIndex = (unsigned int)(this->byteCount & 0x3F); | |
35 unsigned int bufferAvailable = 64 - bufferIndex; | |
36 | |
37 unsigned int inputIndex; | |
38 if (inputLength >= bufferAvailable) { | |
39 if (bufferIndex) { | |
40 memcpy(&this->buffer[bufferIndex], input, bufferAvailable); | |
41 transform(this->state, this->buffer); | |
42 inputIndex = bufferAvailable; | |
43 } else { | |
44 inputIndex = 0; | |
45 } | |
46 | |
47 for (; inputIndex + 63 < inputLength; inputIndex += 64) { | |
48 transform(this->state, &input[inputIndex]); | |
49 } | |
50 | |
51 bufferIndex = 0; | |
52 } else { | |
53 inputIndex = 0; | |
54 } | |
55 | |
56 memcpy(&this->buffer[bufferIndex], &input[inputIndex], inputLength - inputIn
dex); | |
57 | |
58 this->byteCount += inputLength; | |
59 } | |
60 | |
61 void SkSHA1::finish(Digest& digest) { | |
62 // Get the number of bits before padding. | |
63 uint8_t bits[8]; | |
64 encode(bits, this->byteCount << 3); | |
65 | |
66 // Pad out to 56 mod 64. | |
67 unsigned int bufferIndex = (unsigned int)(this->byteCount & 0x3F); | |
68 unsigned int paddingLength = (bufferIndex < 56) ? (56 - bufferIndex) : (120
- bufferIndex); | |
69 static uint8_t PADDING[64] = { | |
70 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |
71 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |
72 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |
73 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |
74 }; | |
75 this->update(PADDING, paddingLength); | |
76 | |
77 // Append length (length before padding, will cause final update). | |
78 this->update(bits, 8); | |
79 | |
80 // Write out digest. | |
81 encode(digest.data, this->state); | |
82 | |
83 #if defined(SK_SHA1_CLEAR_DATA) | |
84 // Clear state. | |
85 memset(this, 0, sizeof(*this)); | |
86 #endif | |
87 } | |
88 | |
89 struct F1 { uint32_t operator()(uint32_t B, uint32_t C, uint32_t D) { | |
90 return (B & C) | ((~B) & D); | |
91 //return D ^ (B & (C ^ D)); | |
92 //return (B & C) ^ ((~B) & D); | |
93 //return (B & C) + ((~B) & D); | |
94 //return _mm_or_ps(_mm_andnot_ps(B, D), _mm_and_ps(B, C)); //SSE2 | |
95 //return vec_sel(D, C, B); //PPC | |
96 }}; | |
97 | |
98 struct F2 { uint32_t operator()(uint32_t B, uint32_t C, uint32_t D) { | |
99 return B ^ C ^ D; | |
100 }}; | |
101 | |
102 struct F3 { uint32_t operator()(uint32_t B, uint32_t C, uint32_t D) { | |
103 return (B & C) | (B & D) | (C & D); | |
104 //return (B & C) | (D & (B | C)); | |
105 //return (B & C) | (D & (B ^ C)); | |
106 //return (B & C) + (D & (B ^ C)); | |
107 //return (B & C) ^ (B & D) ^ (C & D); | |
108 }}; | |
109 | |
110 /** Rotates x left n bits. */ | |
111 static inline uint32_t rotate_left(uint32_t x, uint8_t n) { | |
112 return (x << n) | (x >> (32 - n)); | |
113 } | |
114 | |
115 template <typename T> | |
116 static inline void operation(T operation, | |
117 uint32_t A, uint32_t& B, uint32_t C, uint32_t D, ui
nt32_t& E, | |
118 uint32_t w, uint32_t k) { | |
119 E += rotate_left(A, 5) + operation(B, C, D) + w + k; | |
120 B = rotate_left(B, 30); | |
121 } | |
122 | |
123 static void transform(uint32_t state[5], const uint8_t block[64]) { | |
124 uint32_t A = state[0], B = state[1], C = state[2], D = state[3], E = state[4
]; | |
125 | |
126 // Round constants defined in SHA-1. | |
127 static const uint32_t K[] = { | |
128 0x5A827999, //sqrt(2) * 2^30 | |
129 0x6ED9EBA1, //sqrt(3) * 2^30 | |
130 0x8F1BBCDC, //sqrt(5) * 2^30 | |
131 0xCA62C1D6, //sqrt(10) * 2^30 | |
132 }; | |
133 | |
134 uint32_t W[80]; | |
135 | |
136 // Initialize the array W. | |
137 size_t i = 0; | |
138 for (size_t j = 0; i < 16; ++i, j += 4) { | |
139 W[i] = (((uint32_t)block[j ]) << 24) | | |
140 (((uint32_t)block[j+1]) << 16) | | |
141 (((uint32_t)block[j+2]) << 8) | | |
142 (((uint32_t)block[j+3]) ); | |
143 } | |
144 for (; i < 80; ++i) { | |
145 W[i] = rotate_left(W[i-3] ^ W[i-8] ^ W[i-14] ^ W[i-16], 1); | |
146 //The following is equivelent and speeds up SSE implementations, but slow
s non-SSE. | |
147 //W[i] = rotate_left(W[i-6] ^ W[i-16] ^ W[i-28] ^ W[i-32], 2); | |
148 } | |
149 | |
150 // Round 1 | |
151 operation(F1(), A, B, C, D, E, W[ 0], K[0]); | |
152 operation(F1(), E, A, B, C, D, W[ 1], K[0]); | |
153 operation(F1(), D, E, A, B, C, W[ 2], K[0]); | |
154 operation(F1(), C, D, E, A, B, W[ 3], K[0]); | |
155 operation(F1(), B, C, D, E, A, W[ 4], K[0]); | |
156 operation(F1(), A, B, C, D, E, W[ 5], K[0]); | |
157 operation(F1(), E, A, B, C, D, W[ 6], K[0]); | |
158 operation(F1(), D, E, A, B, C, W[ 7], K[0]); | |
159 operation(F1(), C, D, E, A, B, W[ 8], K[0]); | |
160 operation(F1(), B, C, D, E, A, W[ 9], K[0]); | |
161 operation(F1(), A, B, C, D, E, W[10], K[0]); | |
162 operation(F1(), E, A, B, C, D, W[11], K[0]); | |
163 operation(F1(), D, E, A, B, C, W[12], K[0]); | |
164 operation(F1(), C, D, E, A, B, W[13], K[0]); | |
165 operation(F1(), B, C, D, E, A, W[14], K[0]); | |
166 operation(F1(), A, B, C, D, E, W[15], K[0]); | |
167 operation(F1(), E, A, B, C, D, W[16], K[0]); | |
168 operation(F1(), D, E, A, B, C, W[17], K[0]); | |
169 operation(F1(), C, D, E, A, B, W[18], K[0]); | |
170 operation(F1(), B, C, D, E, A, W[19], K[0]); | |
171 | |
172 // Round 2 | |
173 operation(F2(), A, B, C, D, E, W[20], K[1]); | |
174 operation(F2(), E, A, B, C, D, W[21], K[1]); | |
175 operation(F2(), D, E, A, B, C, W[22], K[1]); | |
176 operation(F2(), C, D, E, A, B, W[23], K[1]); | |
177 operation(F2(), B, C, D, E, A, W[24], K[1]); | |
178 operation(F2(), A, B, C, D, E, W[25], K[1]); | |
179 operation(F2(), E, A, B, C, D, W[26], K[1]); | |
180 operation(F2(), D, E, A, B, C, W[27], K[1]); | |
181 operation(F2(), C, D, E, A, B, W[28], K[1]); | |
182 operation(F2(), B, C, D, E, A, W[29], K[1]); | |
183 operation(F2(), A, B, C, D, E, W[30], K[1]); | |
184 operation(F2(), E, A, B, C, D, W[31], K[1]); | |
185 operation(F2(), D, E, A, B, C, W[32], K[1]); | |
186 operation(F2(), C, D, E, A, B, W[33], K[1]); | |
187 operation(F2(), B, C, D, E, A, W[34], K[1]); | |
188 operation(F2(), A, B, C, D, E, W[35], K[1]); | |
189 operation(F2(), E, A, B, C, D, W[36], K[1]); | |
190 operation(F2(), D, E, A, B, C, W[37], K[1]); | |
191 operation(F2(), C, D, E, A, B, W[38], K[1]); | |
192 operation(F2(), B, C, D, E, A, W[39], K[1]); | |
193 | |
194 // Round 3 | |
195 operation(F3(), A, B, C, D, E, W[40], K[2]); | |
196 operation(F3(), E, A, B, C, D, W[41], K[2]); | |
197 operation(F3(), D, E, A, B, C, W[42], K[2]); | |
198 operation(F3(), C, D, E, A, B, W[43], K[2]); | |
199 operation(F3(), B, C, D, E, A, W[44], K[2]); | |
200 operation(F3(), A, B, C, D, E, W[45], K[2]); | |
201 operation(F3(), E, A, B, C, D, W[46], K[2]); | |
202 operation(F3(), D, E, A, B, C, W[47], K[2]); | |
203 operation(F3(), C, D, E, A, B, W[48], K[2]); | |
204 operation(F3(), B, C, D, E, A, W[49], K[2]); | |
205 operation(F3(), A, B, C, D, E, W[50], K[2]); | |
206 operation(F3(), E, A, B, C, D, W[51], K[2]); | |
207 operation(F3(), D, E, A, B, C, W[52], K[2]); | |
208 operation(F3(), C, D, E, A, B, W[53], K[2]); | |
209 operation(F3(), B, C, D, E, A, W[54], K[2]); | |
210 operation(F3(), A, B, C, D, E, W[55], K[2]); | |
211 operation(F3(), E, A, B, C, D, W[56], K[2]); | |
212 operation(F3(), D, E, A, B, C, W[57], K[2]); | |
213 operation(F3(), C, D, E, A, B, W[58], K[2]); | |
214 operation(F3(), B, C, D, E, A, W[59], K[2]); | |
215 | |
216 // Round 4 | |
217 operation(F2(), A, B, C, D, E, W[60], K[3]); | |
218 operation(F2(), E, A, B, C, D, W[61], K[3]); | |
219 operation(F2(), D, E, A, B, C, W[62], K[3]); | |
220 operation(F2(), C, D, E, A, B, W[63], K[3]); | |
221 operation(F2(), B, C, D, E, A, W[64], K[3]); | |
222 operation(F2(), A, B, C, D, E, W[65], K[3]); | |
223 operation(F2(), E, A, B, C, D, W[66], K[3]); | |
224 operation(F2(), D, E, A, B, C, W[67], K[3]); | |
225 operation(F2(), C, D, E, A, B, W[68], K[3]); | |
226 operation(F2(), B, C, D, E, A, W[69], K[3]); | |
227 operation(F2(), A, B, C, D, E, W[70], K[3]); | |
228 operation(F2(), E, A, B, C, D, W[71], K[3]); | |
229 operation(F2(), D, E, A, B, C, W[72], K[3]); | |
230 operation(F2(), C, D, E, A, B, W[73], K[3]); | |
231 operation(F2(), B, C, D, E, A, W[74], K[3]); | |
232 operation(F2(), A, B, C, D, E, W[75], K[3]); | |
233 operation(F2(), E, A, B, C, D, W[76], K[3]); | |
234 operation(F2(), D, E, A, B, C, W[77], K[3]); | |
235 operation(F2(), C, D, E, A, B, W[78], K[3]); | |
236 operation(F2(), B, C, D, E, A, W[79], K[3]); | |
237 | |
238 state[0] += A; | |
239 state[1] += B; | |
240 state[2] += C; | |
241 state[3] += D; | |
242 state[4] += E; | |
243 | |
244 #if defined(SK_SHA1_CLEAR_DATA) | |
245 // Clear sensitive information. | |
246 memset(W, 0, sizeof(W)); | |
247 #endif | |
248 } | |
249 | |
250 static void encode(uint8_t output[20], const uint32_t input[5]) { | |
251 for (size_t i = 0, j = 0; i < 5; i++, j += 4) { | |
252 output[j ] = (uint8_t)((input[i] >> 24) & 0xff); | |
253 output[j+1] = (uint8_t)((input[i] >> 16) & 0xff); | |
254 output[j+2] = (uint8_t)((input[i] >> 8) & 0xff); | |
255 output[j+3] = (uint8_t)((input[i] ) & 0xff); | |
256 } | |
257 } | |
258 | |
259 static void encode(uint8_t output[8], const uint64_t input) { | |
260 output[0] = (uint8_t)((input >> 56) & 0xff); | |
261 output[1] = (uint8_t)((input >> 48) & 0xff); | |
262 output[2] = (uint8_t)((input >> 40) & 0xff); | |
263 output[3] = (uint8_t)((input >> 32) & 0xff); | |
264 output[4] = (uint8_t)((input >> 24) & 0xff); | |
265 output[5] = (uint8_t)((input >> 16) & 0xff); | |
266 output[6] = (uint8_t)((input >> 8) & 0xff); | |
267 output[7] = (uint8_t)((input ) & 0xff); | |
268 } | |
OLD | NEW |