Index: third_party/libjpeg/jquant1.c |
diff --git a/third_party/libjpeg/jquant1.c b/third_party/libjpeg/jquant1.c |
deleted file mode 100644 |
index b2f96aa15d25dd722c55b955bf0e475eb3160c15..0000000000000000000000000000000000000000 |
--- a/third_party/libjpeg/jquant1.c |
+++ /dev/null |
@@ -1,856 +0,0 @@ |
-/* |
- * jquant1.c |
- * |
- * Copyright (C) 1991-1996, Thomas G. Lane. |
- * This file is part of the Independent JPEG Group's software. |
- * For conditions of distribution and use, see the accompanying README file. |
- * |
- * This file contains 1-pass color quantization (color mapping) routines. |
- * These routines provide mapping to a fixed color map using equally spaced |
- * color values. Optional Floyd-Steinberg or ordered dithering is available. |
- */ |
- |
-#define JPEG_INTERNALS |
-#include "jinclude.h" |
-#include "jpeglib.h" |
- |
-#ifdef QUANT_1PASS_SUPPORTED |
- |
- |
-/* |
- * The main purpose of 1-pass quantization is to provide a fast, if not very |
- * high quality, colormapped output capability. A 2-pass quantizer usually |
- * gives better visual quality; however, for quantized grayscale output this |
- * quantizer is perfectly adequate. Dithering is highly recommended with this |
- * quantizer, though you can turn it off if you really want to. |
- * |
- * In 1-pass quantization the colormap must be chosen in advance of seeing the |
- * image. We use a map consisting of all combinations of Ncolors[i] color |
- * values for the i'th component. The Ncolors[] values are chosen so that |
- * their product, the total number of colors, is no more than that requested. |
- * (In most cases, the product will be somewhat less.) |
- * |
- * Since the colormap is orthogonal, the representative value for each color |
- * component can be determined without considering the other components; |
- * then these indexes can be combined into a colormap index by a standard |
- * N-dimensional-array-subscript calculation. Most of the arithmetic involved |
- * can be precalculated and stored in the lookup table colorindex[]. |
- * colorindex[i][j] maps pixel value j in component i to the nearest |
- * representative value (grid plane) for that component; this index is |
- * multiplied by the array stride for component i, so that the |
- * index of the colormap entry closest to a given pixel value is just |
- * sum( colorindex[component-number][pixel-component-value] ) |
- * Aside from being fast, this scheme allows for variable spacing between |
- * representative values with no additional lookup cost. |
- * |
- * If gamma correction has been applied in color conversion, it might be wise |
- * to adjust the color grid spacing so that the representative colors are |
- * equidistant in linear space. At this writing, gamma correction is not |
- * implemented by jdcolor, so nothing is done here. |
- */ |
- |
- |
-/* Declarations for ordered dithering. |
- * |
- * We use a standard 16x16 ordered dither array. The basic concept of ordered |
- * dithering is described in many references, for instance Dale Schumacher's |
- * chapter II.2 of Graphics Gems II (James Arvo, ed. Academic Press, 1991). |
- * In place of Schumacher's comparisons against a "threshold" value, we add a |
- * "dither" value to the input pixel and then round the result to the nearest |
- * output value. The dither value is equivalent to (0.5 - threshold) times |
- * the distance between output values. For ordered dithering, we assume that |
- * the output colors are equally spaced; if not, results will probably be |
- * worse, since the dither may be too much or too little at a given point. |
- * |
- * The normal calculation would be to form pixel value + dither, range-limit |
- * this to 0..MAXJSAMPLE, and then index into the colorindex table as usual. |
- * We can skip the separate range-limiting step by extending the colorindex |
- * table in both directions. |
- */ |
- |
-#define ODITHER_SIZE 16 /* dimension of dither matrix */ |
-/* NB: if ODITHER_SIZE is not a power of 2, ODITHER_MASK uses will break */ |
-#define ODITHER_CELLS (ODITHER_SIZE*ODITHER_SIZE) /* # cells in matrix */ |
-#define ODITHER_MASK (ODITHER_SIZE-1) /* mask for wrapping around counters */ |
- |
-typedef int ODITHER_MATRIX[ODITHER_SIZE][ODITHER_SIZE]; |
-typedef int (*ODITHER_MATRIX_PTR)[ODITHER_SIZE]; |
- |
-static const UINT8 base_dither_matrix[ODITHER_SIZE][ODITHER_SIZE] = { |
- /* Bayer's order-4 dither array. Generated by the code given in |
- * Stephen Hawley's article "Ordered Dithering" in Graphics Gems I. |
- * The values in this array must range from 0 to ODITHER_CELLS-1. |
- */ |
- { 0,192, 48,240, 12,204, 60,252, 3,195, 51,243, 15,207, 63,255 }, |
- { 128, 64,176,112,140, 76,188,124,131, 67,179,115,143, 79,191,127 }, |
- { 32,224, 16,208, 44,236, 28,220, 35,227, 19,211, 47,239, 31,223 }, |
- { 160, 96,144, 80,172,108,156, 92,163, 99,147, 83,175,111,159, 95 }, |
- { 8,200, 56,248, 4,196, 52,244, 11,203, 59,251, 7,199, 55,247 }, |
- { 136, 72,184,120,132, 68,180,116,139, 75,187,123,135, 71,183,119 }, |
- { 40,232, 24,216, 36,228, 20,212, 43,235, 27,219, 39,231, 23,215 }, |
- { 168,104,152, 88,164,100,148, 84,171,107,155, 91,167,103,151, 87 }, |
- { 2,194, 50,242, 14,206, 62,254, 1,193, 49,241, 13,205, 61,253 }, |
- { 130, 66,178,114,142, 78,190,126,129, 65,177,113,141, 77,189,125 }, |
- { 34,226, 18,210, 46,238, 30,222, 33,225, 17,209, 45,237, 29,221 }, |
- { 162, 98,146, 82,174,110,158, 94,161, 97,145, 81,173,109,157, 93 }, |
- { 10,202, 58,250, 6,198, 54,246, 9,201, 57,249, 5,197, 53,245 }, |
- { 138, 74,186,122,134, 70,182,118,137, 73,185,121,133, 69,181,117 }, |
- { 42,234, 26,218, 38,230, 22,214, 41,233, 25,217, 37,229, 21,213 }, |
- { 170,106,154, 90,166,102,150, 86,169,105,153, 89,165,101,149, 85 } |
-}; |
- |
- |
-/* Declarations for Floyd-Steinberg dithering. |
- * |
- * Errors are accumulated into the array fserrors[], at a resolution of |
- * 1/16th of a pixel count. The error at a given pixel is propagated |
- * to its not-yet-processed neighbors using the standard F-S fractions, |
- * ... (here) 7/16 |
- * 3/16 5/16 1/16 |
- * We work left-to-right on even rows, right-to-left on odd rows. |
- * |
- * We can get away with a single array (holding one row's worth of errors) |
- * by using it to store the current row's errors at pixel columns not yet |
- * processed, but the next row's errors at columns already processed. We |
- * need only a few extra variables to hold the errors immediately around the |
- * current column. (If we are lucky, those variables are in registers, but |
- * even if not, they're probably cheaper to access than array elements are.) |
- * |
- * The fserrors[] array is indexed [component#][position]. |
- * We provide (#columns + 2) entries per component; the extra entry at each |
- * end saves us from special-casing the first and last pixels. |
- * |
- * Note: on a wide image, we might not have enough room in a PC's near data |
- * segment to hold the error array; so it is allocated with alloc_large. |
- */ |
- |
-#if BITS_IN_JSAMPLE == 8 |
-typedef INT16 FSERROR; /* 16 bits should be enough */ |
-typedef int LOCFSERROR; /* use 'int' for calculation temps */ |
-#else |
-typedef INT32 FSERROR; /* may need more than 16 bits */ |
-typedef INT32 LOCFSERROR; /* be sure calculation temps are big enough */ |
-#endif |
- |
-typedef FSERROR FAR *FSERRPTR; /* pointer to error array (in FAR storage!) */ |
- |
- |
-/* Private subobject */ |
- |
-#define MAX_Q_COMPS 4 /* max components I can handle */ |
- |
-typedef struct { |
- struct jpeg_color_quantizer pub; /* public fields */ |
- |
- /* Initially allocated colormap is saved here */ |
- JSAMPARRAY sv_colormap; /* The color map as a 2-D pixel array */ |
- int sv_actual; /* number of entries in use */ |
- |
- JSAMPARRAY colorindex; /* Precomputed mapping for speed */ |
- /* colorindex[i][j] = index of color closest to pixel value j in component i, |
- * premultiplied as described above. Since colormap indexes must fit into |
- * JSAMPLEs, the entries of this array will too. |
- */ |
- boolean is_padded; /* is the colorindex padded for odither? */ |
- |
- int Ncolors[MAX_Q_COMPS]; /* # of values alloced to each component */ |
- |
- /* Variables for ordered dithering */ |
- int row_index; /* cur row's vertical index in dither matrix */ |
- ODITHER_MATRIX_PTR odither[MAX_Q_COMPS]; /* one dither array per component */ |
- |
- /* Variables for Floyd-Steinberg dithering */ |
- FSERRPTR fserrors[MAX_Q_COMPS]; /* accumulated errors */ |
- boolean on_odd_row; /* flag to remember which row we are on */ |
-} my_cquantizer; |
- |
-typedef my_cquantizer * my_cquantize_ptr; |
- |
- |
-/* |
- * Policy-making subroutines for create_colormap and create_colorindex. |
- * These routines determine the colormap to be used. The rest of the module |
- * only assumes that the colormap is orthogonal. |
- * |
- * * select_ncolors decides how to divvy up the available colors |
- * among the components. |
- * * output_value defines the set of representative values for a component. |
- * * largest_input_value defines the mapping from input values to |
- * representative values for a component. |
- * Note that the latter two routines may impose different policies for |
- * different components, though this is not currently done. |
- */ |
- |
- |
-LOCAL(int) |
-select_ncolors (j_decompress_ptr cinfo, int Ncolors[]) |
-/* Determine allocation of desired colors to components, */ |
-/* and fill in Ncolors[] array to indicate choice. */ |
-/* Return value is total number of colors (product of Ncolors[] values). */ |
-{ |
- int nc = cinfo->out_color_components; /* number of color components */ |
- int max_colors = cinfo->desired_number_of_colors; |
- int total_colors, iroot, i, j; |
- boolean changed; |
- long temp; |
- static const int RGB_order[3] = { RGB_GREEN, RGB_RED, RGB_BLUE }; |
- |
- /* We can allocate at least the nc'th root of max_colors per component. */ |
- /* Compute floor(nc'th root of max_colors). */ |
- iroot = 1; |
- do { |
- iroot++; |
- temp = iroot; /* set temp = iroot ** nc */ |
- for (i = 1; i < nc; i++) |
- temp *= iroot; |
- } while (temp <= (long) max_colors); /* repeat till iroot exceeds root */ |
- iroot--; /* now iroot = floor(root) */ |
- |
- /* Must have at least 2 color values per component */ |
- if (iroot < 2) |
- ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, (int) temp); |
- |
- /* Initialize to iroot color values for each component */ |
- total_colors = 1; |
- for (i = 0; i < nc; i++) { |
- Ncolors[i] = iroot; |
- total_colors *= iroot; |
- } |
- /* We may be able to increment the count for one or more components without |
- * exceeding max_colors, though we know not all can be incremented. |
- * Sometimes, the first component can be incremented more than once! |
- * (Example: for 16 colors, we start at 2*2*2, go to 3*2*2, then 4*2*2.) |
- * In RGB colorspace, try to increment G first, then R, then B. |
- */ |
- do { |
- changed = FALSE; |
- for (i = 0; i < nc; i++) { |
- j = (cinfo->out_color_space == JCS_RGB ? RGB_order[i] : i); |
- /* calculate new total_colors if Ncolors[j] is incremented */ |
- temp = total_colors / Ncolors[j]; |
- temp *= Ncolors[j]+1; /* done in long arith to avoid oflo */ |
- if (temp > (long) max_colors) |
- break; /* won't fit, done with this pass */ |
- Ncolors[j]++; /* OK, apply the increment */ |
- total_colors = (int) temp; |
- changed = TRUE; |
- } |
- } while (changed); |
- |
- return total_colors; |
-} |
- |
- |
-LOCAL(int) |
-output_value (j_decompress_ptr cinfo, int ci, int j, int maxj) |
-/* Return j'th output value, where j will range from 0 to maxj */ |
-/* The output values must fall in 0..MAXJSAMPLE in increasing order */ |
-{ |
- /* We always provide values 0 and MAXJSAMPLE for each component; |
- * any additional values are equally spaced between these limits. |
- * (Forcing the upper and lower values to the limits ensures that |
- * dithering can't produce a color outside the selected gamut.) |
- */ |
- return (int) (((INT32) j * MAXJSAMPLE + maxj/2) / maxj); |
-} |
- |
- |
-LOCAL(int) |
-largest_input_value (j_decompress_ptr cinfo, int ci, int j, int maxj) |
-/* Return largest input value that should map to j'th output value */ |
-/* Must have largest(j=0) >= 0, and largest(j=maxj) >= MAXJSAMPLE */ |
-{ |
- /* Breakpoints are halfway between values returned by output_value */ |
- return (int) (((INT32) (2*j + 1) * MAXJSAMPLE + maxj) / (2*maxj)); |
-} |
- |
- |
-/* |
- * Create the colormap. |
- */ |
- |
-LOCAL(void) |
-create_colormap (j_decompress_ptr cinfo) |
-{ |
- my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
- JSAMPARRAY colormap; /* Created colormap */ |
- int total_colors; /* Number of distinct output colors */ |
- int i,j,k, nci, blksize, blkdist, ptr, val; |
- |
- /* Select number of colors for each component */ |
- total_colors = select_ncolors(cinfo, cquantize->Ncolors); |
- |
- /* Report selected color counts */ |
- if (cinfo->out_color_components == 3) |
- TRACEMS4(cinfo, 1, JTRC_QUANT_3_NCOLORS, |
- total_colors, cquantize->Ncolors[0], |
- cquantize->Ncolors[1], cquantize->Ncolors[2]); |
- else |
- TRACEMS1(cinfo, 1, JTRC_QUANT_NCOLORS, total_colors); |
- |
- /* Allocate and fill in the colormap. */ |
- /* The colors are ordered in the map in standard row-major order, */ |
- /* i.e. rightmost (highest-indexed) color changes most rapidly. */ |
- |
- colormap = (*cinfo->mem->alloc_sarray) |
- ((j_common_ptr) cinfo, JPOOL_IMAGE, |
- (JDIMENSION) total_colors, (JDIMENSION) cinfo->out_color_components); |
- |
- /* blksize is number of adjacent repeated entries for a component */ |
- /* blkdist is distance between groups of identical entries for a component */ |
- blkdist = total_colors; |
- |
- for (i = 0; i < cinfo->out_color_components; i++) { |
- /* fill in colormap entries for i'th color component */ |
- nci = cquantize->Ncolors[i]; /* # of distinct values for this color */ |
- blksize = blkdist / nci; |
- for (j = 0; j < nci; j++) { |
- /* Compute j'th output value (out of nci) for component */ |
- val = output_value(cinfo, i, j, nci-1); |
- /* Fill in all colormap entries that have this value of this component */ |
- for (ptr = j * blksize; ptr < total_colors; ptr += blkdist) { |
- /* fill in blksize entries beginning at ptr */ |
- for (k = 0; k < blksize; k++) |
- colormap[i][ptr+k] = (JSAMPLE) val; |
- } |
- } |
- blkdist = blksize; /* blksize of this color is blkdist of next */ |
- } |
- |
- /* Save the colormap in private storage, |
- * where it will survive color quantization mode changes. |
- */ |
- cquantize->sv_colormap = colormap; |
- cquantize->sv_actual = total_colors; |
-} |
- |
- |
-/* |
- * Create the color index table. |
- */ |
- |
-LOCAL(void) |
-create_colorindex (j_decompress_ptr cinfo) |
-{ |
- my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
- JSAMPROW indexptr; |
- int i,j,k, nci, blksize, val, pad; |
- |
- /* For ordered dither, we pad the color index tables by MAXJSAMPLE in |
- * each direction (input index values can be -MAXJSAMPLE .. 2*MAXJSAMPLE). |
- * This is not necessary in the other dithering modes. However, we |
- * flag whether it was done in case user changes dithering mode. |
- */ |
- if (cinfo->dither_mode == JDITHER_ORDERED) { |
- pad = MAXJSAMPLE*2; |
- cquantize->is_padded = TRUE; |
- } else { |
- pad = 0; |
- cquantize->is_padded = FALSE; |
- } |
- |
- cquantize->colorindex = (*cinfo->mem->alloc_sarray) |
- ((j_common_ptr) cinfo, JPOOL_IMAGE, |
- (JDIMENSION) (MAXJSAMPLE+1 + pad), |
- (JDIMENSION) cinfo->out_color_components); |
- |
- /* blksize is number of adjacent repeated entries for a component */ |
- blksize = cquantize->sv_actual; |
- |
- for (i = 0; i < cinfo->out_color_components; i++) { |
- /* fill in colorindex entries for i'th color component */ |
- nci = cquantize->Ncolors[i]; /* # of distinct values for this color */ |
- blksize = blksize / nci; |
- |
- /* adjust colorindex pointers to provide padding at negative indexes. */ |
- if (pad) |
- cquantize->colorindex[i] += MAXJSAMPLE; |
- |
- /* in loop, val = index of current output value, */ |
- /* and k = largest j that maps to current val */ |
- indexptr = cquantize->colorindex[i]; |
- val = 0; |
- k = largest_input_value(cinfo, i, 0, nci-1); |
- for (j = 0; j <= MAXJSAMPLE; j++) { |
- while (j > k) /* advance val if past boundary */ |
- k = largest_input_value(cinfo, i, ++val, nci-1); |
- /* premultiply so that no multiplication needed in main processing */ |
- indexptr[j] = (JSAMPLE) (val * blksize); |
- } |
- /* Pad at both ends if necessary */ |
- if (pad) |
- for (j = 1; j <= MAXJSAMPLE; j++) { |
- indexptr[-j] = indexptr[0]; |
- indexptr[MAXJSAMPLE+j] = indexptr[MAXJSAMPLE]; |
- } |
- } |
-} |
- |
- |
-/* |
- * Create an ordered-dither array for a component having ncolors |
- * distinct output values. |
- */ |
- |
-LOCAL(ODITHER_MATRIX_PTR) |
-make_odither_array (j_decompress_ptr cinfo, int ncolors) |
-{ |
- ODITHER_MATRIX_PTR odither; |
- int j,k; |
- INT32 num,den; |
- |
- odither = (ODITHER_MATRIX_PTR) |
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
- SIZEOF(ODITHER_MATRIX)); |
- /* The inter-value distance for this color is MAXJSAMPLE/(ncolors-1). |
- * Hence the dither value for the matrix cell with fill order f |
- * (f=0..N-1) should be (N-1-2*f)/(2*N) * MAXJSAMPLE/(ncolors-1). |
- * On 16-bit-int machine, be careful to avoid overflow. |
- */ |
- den = 2 * ODITHER_CELLS * ((INT32) (ncolors - 1)); |
- for (j = 0; j < ODITHER_SIZE; j++) { |
- for (k = 0; k < ODITHER_SIZE; k++) { |
- num = ((INT32) (ODITHER_CELLS-1 - 2*((int)base_dither_matrix[j][k]))) |
- * MAXJSAMPLE; |
- /* Ensure round towards zero despite C's lack of consistency |
- * about rounding negative values in integer division... |
- */ |
- odither[j][k] = (int) (num<0 ? -((-num)/den) : num/den); |
- } |
- } |
- return odither; |
-} |
- |
- |
-/* |
- * Create the ordered-dither tables. |
- * Components having the same number of representative colors may |
- * share a dither table. |
- */ |
- |
-LOCAL(void) |
-create_odither_tables (j_decompress_ptr cinfo) |
-{ |
- my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
- ODITHER_MATRIX_PTR odither; |
- int i, j, nci; |
- |
- for (i = 0; i < cinfo->out_color_components; i++) { |
- nci = cquantize->Ncolors[i]; /* # of distinct values for this color */ |
- odither = NULL; /* search for matching prior component */ |
- for (j = 0; j < i; j++) { |
- if (nci == cquantize->Ncolors[j]) { |
- odither = cquantize->odither[j]; |
- break; |
- } |
- } |
- if (odither == NULL) /* need a new table? */ |
- odither = make_odither_array(cinfo, nci); |
- cquantize->odither[i] = odither; |
- } |
-} |
- |
- |
-/* |
- * Map some rows of pixels to the output colormapped representation. |
- */ |
- |
-METHODDEF(void) |
-color_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf, |
- JSAMPARRAY output_buf, int num_rows) |
-/* General case, no dithering */ |
-{ |
- my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
- JSAMPARRAY colorindex = cquantize->colorindex; |
- register int pixcode, ci; |
- register JSAMPROW ptrin, ptrout; |
- int row; |
- JDIMENSION col; |
- JDIMENSION width = cinfo->output_width; |
- register int nc = cinfo->out_color_components; |
- |
- for (row = 0; row < num_rows; row++) { |
- ptrin = input_buf[row]; |
- ptrout = output_buf[row]; |
- for (col = width; col > 0; col--) { |
- pixcode = 0; |
- for (ci = 0; ci < nc; ci++) { |
- pixcode += GETJSAMPLE(colorindex[ci][GETJSAMPLE(*ptrin++)]); |
- } |
- *ptrout++ = (JSAMPLE) pixcode; |
- } |
- } |
-} |
- |
- |
-METHODDEF(void) |
-color_quantize3 (j_decompress_ptr cinfo, JSAMPARRAY input_buf, |
- JSAMPARRAY output_buf, int num_rows) |
-/* Fast path for out_color_components==3, no dithering */ |
-{ |
- my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
- register int pixcode; |
- register JSAMPROW ptrin, ptrout; |
- JSAMPROW colorindex0 = cquantize->colorindex[0]; |
- JSAMPROW colorindex1 = cquantize->colorindex[1]; |
- JSAMPROW colorindex2 = cquantize->colorindex[2]; |
- int row; |
- JDIMENSION col; |
- JDIMENSION width = cinfo->output_width; |
- |
- for (row = 0; row < num_rows; row++) { |
- ptrin = input_buf[row]; |
- ptrout = output_buf[row]; |
- for (col = width; col > 0; col--) { |
- pixcode = GETJSAMPLE(colorindex0[GETJSAMPLE(*ptrin++)]); |
- pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*ptrin++)]); |
- pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*ptrin++)]); |
- *ptrout++ = (JSAMPLE) pixcode; |
- } |
- } |
-} |
- |
- |
-METHODDEF(void) |
-quantize_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf, |
- JSAMPARRAY output_buf, int num_rows) |
-/* General case, with ordered dithering */ |
-{ |
- my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
- register JSAMPROW input_ptr; |
- register JSAMPROW output_ptr; |
- JSAMPROW colorindex_ci; |
- int * dither; /* points to active row of dither matrix */ |
- int row_index, col_index; /* current indexes into dither matrix */ |
- int nc = cinfo->out_color_components; |
- int ci; |
- int row; |
- JDIMENSION col; |
- JDIMENSION width = cinfo->output_width; |
- |
- for (row = 0; row < num_rows; row++) { |
- /* Initialize output values to 0 so can process components separately */ |
- jzero_far((void FAR *) output_buf[row], |
- (size_t) (width * SIZEOF(JSAMPLE))); |
- row_index = cquantize->row_index; |
- for (ci = 0; ci < nc; ci++) { |
- input_ptr = input_buf[row] + ci; |
- output_ptr = output_buf[row]; |
- colorindex_ci = cquantize->colorindex[ci]; |
- dither = cquantize->odither[ci][row_index]; |
- col_index = 0; |
- |
- for (col = width; col > 0; col--) { |
- /* Form pixel value + dither, range-limit to 0..MAXJSAMPLE, |
- * select output value, accumulate into output code for this pixel. |
- * Range-limiting need not be done explicitly, as we have extended |
- * the colorindex table to produce the right answers for out-of-range |
- * inputs. The maximum dither is +- MAXJSAMPLE; this sets the |
- * required amount of padding. |
- */ |
- *output_ptr += colorindex_ci[GETJSAMPLE(*input_ptr)+dither[col_index]]; |
- input_ptr += nc; |
- output_ptr++; |
- col_index = (col_index + 1) & ODITHER_MASK; |
- } |
- } |
- /* Advance row index for next row */ |
- row_index = (row_index + 1) & ODITHER_MASK; |
- cquantize->row_index = row_index; |
- } |
-} |
- |
- |
-METHODDEF(void) |
-quantize3_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf, |
- JSAMPARRAY output_buf, int num_rows) |
-/* Fast path for out_color_components==3, with ordered dithering */ |
-{ |
- my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
- register int pixcode; |
- register JSAMPROW input_ptr; |
- register JSAMPROW output_ptr; |
- JSAMPROW colorindex0 = cquantize->colorindex[0]; |
- JSAMPROW colorindex1 = cquantize->colorindex[1]; |
- JSAMPROW colorindex2 = cquantize->colorindex[2]; |
- int * dither0; /* points to active row of dither matrix */ |
- int * dither1; |
- int * dither2; |
- int row_index, col_index; /* current indexes into dither matrix */ |
- int row; |
- JDIMENSION col; |
- JDIMENSION width = cinfo->output_width; |
- |
- for (row = 0; row < num_rows; row++) { |
- row_index = cquantize->row_index; |
- input_ptr = input_buf[row]; |
- output_ptr = output_buf[row]; |
- dither0 = cquantize->odither[0][row_index]; |
- dither1 = cquantize->odither[1][row_index]; |
- dither2 = cquantize->odither[2][row_index]; |
- col_index = 0; |
- |
- for (col = width; col > 0; col--) { |
- pixcode = GETJSAMPLE(colorindex0[GETJSAMPLE(*input_ptr++) + |
- dither0[col_index]]); |
- pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*input_ptr++) + |
- dither1[col_index]]); |
- pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*input_ptr++) + |
- dither2[col_index]]); |
- *output_ptr++ = (JSAMPLE) pixcode; |
- col_index = (col_index + 1) & ODITHER_MASK; |
- } |
- row_index = (row_index + 1) & ODITHER_MASK; |
- cquantize->row_index = row_index; |
- } |
-} |
- |
- |
-METHODDEF(void) |
-quantize_fs_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf, |
- JSAMPARRAY output_buf, int num_rows) |
-/* General case, with Floyd-Steinberg dithering */ |
-{ |
- my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
- register LOCFSERROR cur; /* current error or pixel value */ |
- LOCFSERROR belowerr; /* error for pixel below cur */ |
- LOCFSERROR bpreverr; /* error for below/prev col */ |
- LOCFSERROR bnexterr; /* error for below/next col */ |
- LOCFSERROR delta; |
- register FSERRPTR errorptr; /* => fserrors[] at column before current */ |
- register JSAMPROW input_ptr; |
- register JSAMPROW output_ptr; |
- JSAMPROW colorindex_ci; |
- JSAMPROW colormap_ci; |
- int pixcode; |
- int nc = cinfo->out_color_components; |
- int dir; /* 1 for left-to-right, -1 for right-to-left */ |
- int dirnc; /* dir * nc */ |
- int ci; |
- int row; |
- JDIMENSION col; |
- JDIMENSION width = cinfo->output_width; |
- JSAMPLE *range_limit = cinfo->sample_range_limit; |
- SHIFT_TEMPS |
- |
- for (row = 0; row < num_rows; row++) { |
- /* Initialize output values to 0 so can process components separately */ |
- jzero_far((void FAR *) output_buf[row], |
- (size_t) (width * SIZEOF(JSAMPLE))); |
- for (ci = 0; ci < nc; ci++) { |
- input_ptr = input_buf[row] + ci; |
- output_ptr = output_buf[row]; |
- if (cquantize->on_odd_row) { |
- /* work right to left in this row */ |
- input_ptr += (width-1) * nc; /* so point to rightmost pixel */ |
- output_ptr += width-1; |
- dir = -1; |
- dirnc = -nc; |
- errorptr = cquantize->fserrors[ci] + (width+1); /* => entry after last column */ |
- } else { |
- /* work left to right in this row */ |
- dir = 1; |
- dirnc = nc; |
- errorptr = cquantize->fserrors[ci]; /* => entry before first column */ |
- } |
- colorindex_ci = cquantize->colorindex[ci]; |
- colormap_ci = cquantize->sv_colormap[ci]; |
- /* Preset error values: no error propagated to first pixel from left */ |
- cur = 0; |
- /* and no error propagated to row below yet */ |
- belowerr = bpreverr = 0; |
- |
- for (col = width; col > 0; col--) { |
- /* cur holds the error propagated from the previous pixel on the |
- * current line. Add the error propagated from the previous line |
- * to form the complete error correction term for this pixel, and |
- * round the error term (which is expressed * 16) to an integer. |
- * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct |
- * for either sign of the error value. |
- * Note: errorptr points to *previous* column's array entry. |
- */ |
- cur = RIGHT_SHIFT(cur + errorptr[dir] + 8, 4); |
- /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE. |
- * The maximum error is +- MAXJSAMPLE; this sets the required size |
- * of the range_limit array. |
- */ |
- cur += GETJSAMPLE(*input_ptr); |
- cur = GETJSAMPLE(range_limit[cur]); |
- /* Select output value, accumulate into output code for this pixel */ |
- pixcode = GETJSAMPLE(colorindex_ci[cur]); |
- *output_ptr += (JSAMPLE) pixcode; |
- /* Compute actual representation error at this pixel */ |
- /* Note: we can do this even though we don't have the final */ |
- /* pixel code, because the colormap is orthogonal. */ |
- cur -= GETJSAMPLE(colormap_ci[pixcode]); |
- /* Compute error fractions to be propagated to adjacent pixels. |
- * Add these into the running sums, and simultaneously shift the |
- * next-line error sums left by 1 column. |
- */ |
- bnexterr = cur; |
- delta = cur * 2; |
- cur += delta; /* form error * 3 */ |
- errorptr[0] = (FSERROR) (bpreverr + cur); |
- cur += delta; /* form error * 5 */ |
- bpreverr = belowerr + cur; |
- belowerr = bnexterr; |
- cur += delta; /* form error * 7 */ |
- /* At this point cur contains the 7/16 error value to be propagated |
- * to the next pixel on the current line, and all the errors for the |
- * next line have been shifted over. We are therefore ready to move on. |
- */ |
- input_ptr += dirnc; /* advance input ptr to next column */ |
- output_ptr += dir; /* advance output ptr to next column */ |
- errorptr += dir; /* advance errorptr to current column */ |
- } |
- /* Post-loop cleanup: we must unload the final error value into the |
- * final fserrors[] entry. Note we need not unload belowerr because |
- * it is for the dummy column before or after the actual array. |
- */ |
- errorptr[0] = (FSERROR) bpreverr; /* unload prev err into array */ |
- } |
- cquantize->on_odd_row = (cquantize->on_odd_row ? FALSE : TRUE); |
- } |
-} |
- |
- |
-/* |
- * Allocate workspace for Floyd-Steinberg errors. |
- */ |
- |
-LOCAL(void) |
-alloc_fs_workspace (j_decompress_ptr cinfo) |
-{ |
- my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
- size_t arraysize; |
- int i; |
- |
- arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR)); |
- for (i = 0; i < cinfo->out_color_components; i++) { |
- cquantize->fserrors[i] = (FSERRPTR) |
- (*cinfo->mem->alloc_large)((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize); |
- } |
-} |
- |
- |
-/* |
- * Initialize for one-pass color quantization. |
- */ |
- |
-METHODDEF(void) |
-start_pass_1_quant (j_decompress_ptr cinfo, boolean is_pre_scan) |
-{ |
- my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
- size_t arraysize; |
- int i; |
- |
- /* Install my colormap. */ |
- cinfo->colormap = cquantize->sv_colormap; |
- cinfo->actual_number_of_colors = cquantize->sv_actual; |
- |
- /* Initialize for desired dithering mode. */ |
- switch (cinfo->dither_mode) { |
- case JDITHER_NONE: |
- if (cinfo->out_color_components == 3) |
- cquantize->pub.color_quantize = color_quantize3; |
- else |
- cquantize->pub.color_quantize = color_quantize; |
- break; |
- case JDITHER_ORDERED: |
- if (cinfo->out_color_components == 3) |
- cquantize->pub.color_quantize = quantize3_ord_dither; |
- else |
- cquantize->pub.color_quantize = quantize_ord_dither; |
- cquantize->row_index = 0; /* initialize state for ordered dither */ |
- /* If user changed to ordered dither from another mode, |
- * we must recreate the color index table with padding. |
- * This will cost extra space, but probably isn't very likely. |
- */ |
- if (! cquantize->is_padded) |
- create_colorindex(cinfo); |
- /* Create ordered-dither tables if we didn't already. */ |
- if (cquantize->odither[0] == NULL) |
- create_odither_tables(cinfo); |
- break; |
- case JDITHER_FS: |
- cquantize->pub.color_quantize = quantize_fs_dither; |
- cquantize->on_odd_row = FALSE; /* initialize state for F-S dither */ |
- /* Allocate Floyd-Steinberg workspace if didn't already. */ |
- if (cquantize->fserrors[0] == NULL) |
- alloc_fs_workspace(cinfo); |
- /* Initialize the propagated errors to zero. */ |
- arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR)); |
- for (i = 0; i < cinfo->out_color_components; i++) |
- jzero_far((void FAR *) cquantize->fserrors[i], arraysize); |
- break; |
- default: |
- ERREXIT(cinfo, JERR_NOT_COMPILED); |
- break; |
- } |
-} |
- |
- |
-/* |
- * Finish up at the end of the pass. |
- */ |
- |
-METHODDEF(void) |
-finish_pass_1_quant (j_decompress_ptr cinfo) |
-{ |
- /* no work in 1-pass case */ |
-} |
- |
- |
-/* |
- * Switch to a new external colormap between output passes. |
- * Shouldn't get to this module! |
- */ |
- |
-METHODDEF(void) |
-new_color_map_1_quant (j_decompress_ptr cinfo) |
-{ |
- ERREXIT(cinfo, JERR_MODE_CHANGE); |
-} |
- |
- |
-/* |
- * Module initialization routine for 1-pass color quantization. |
- */ |
- |
-GLOBAL(void) |
-jinit_1pass_quantizer (j_decompress_ptr cinfo) |
-{ |
- my_cquantize_ptr cquantize; |
- |
- cquantize = (my_cquantize_ptr) |
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
- SIZEOF(my_cquantizer)); |
- cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize; |
- cquantize->pub.start_pass = start_pass_1_quant; |
- cquantize->pub.finish_pass = finish_pass_1_quant; |
- cquantize->pub.new_color_map = new_color_map_1_quant; |
- cquantize->fserrors[0] = NULL; /* Flag FS workspace not allocated */ |
- cquantize->odither[0] = NULL; /* Also flag odither arrays not allocated */ |
- |
- /* Make sure my internal arrays won't overflow */ |
- if (cinfo->out_color_components > MAX_Q_COMPS) |
- ERREXIT1(cinfo, JERR_QUANT_COMPONENTS, MAX_Q_COMPS); |
- /* Make sure colormap indexes can be represented by JSAMPLEs */ |
- if (cinfo->desired_number_of_colors > (MAXJSAMPLE+1)) |
- ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXJSAMPLE+1); |
- |
- /* Create the colormap and color index table. */ |
- create_colormap(cinfo); |
- create_colorindex(cinfo); |
- |
- /* Allocate Floyd-Steinberg workspace now if requested. |
- * We do this now since it is FAR storage and may affect the memory |
- * manager's space calculations. If the user changes to FS dither |
- * mode in a later pass, we will allocate the space then, and will |
- * possibly overrun the max_memory_to_use setting. |
- */ |
- if (cinfo->dither_mode == JDITHER_FS) |
- alloc_fs_workspace(cinfo); |
-} |
- |
-#endif /* QUANT_1PASS_SUPPORTED */ |