Index: third_party/libjpeg/jmemmgr.c |
diff --git a/third_party/libjpeg/jmemmgr.c b/third_party/libjpeg/jmemmgr.c |
deleted file mode 100644 |
index d801b322da05e0cd033159ba973676e4305101ef..0000000000000000000000000000000000000000 |
--- a/third_party/libjpeg/jmemmgr.c |
+++ /dev/null |
@@ -1,1118 +0,0 @@ |
-/* |
- * jmemmgr.c |
- * |
- * Copyright (C) 1991-1997, Thomas G. Lane. |
- * This file is part of the Independent JPEG Group's software. |
- * For conditions of distribution and use, see the accompanying README file. |
- * |
- * This file contains the JPEG system-independent memory management |
- * routines. This code is usable across a wide variety of machines; most |
- * of the system dependencies have been isolated in a separate file. |
- * The major functions provided here are: |
- * * pool-based allocation and freeing of memory; |
- * * policy decisions about how to divide available memory among the |
- * virtual arrays; |
- * * control logic for swapping virtual arrays between main memory and |
- * backing storage. |
- * The separate system-dependent file provides the actual backing-storage |
- * access code, and it contains the policy decision about how much total |
- * main memory to use. |
- * This file is system-dependent in the sense that some of its functions |
- * are unnecessary in some systems. For example, if there is enough virtual |
- * memory so that backing storage will never be used, much of the virtual |
- * array control logic could be removed. (Of course, if you have that much |
- * memory then you shouldn't care about a little bit of unused code...) |
- */ |
- |
-#define JPEG_INTERNALS |
-#define AM_MEMORY_MANAGER /* we define jvirt_Xarray_control structs */ |
-#include "jinclude.h" |
-#include "jpeglib.h" |
-#include "jmemsys.h" /* import the system-dependent declarations */ |
- |
-#ifndef NO_GETENV |
-#ifndef HAVE_STDLIB_H /* <stdlib.h> should declare getenv() */ |
-extern char * getenv JPP((const char * name)); |
-#endif |
-#endif |
- |
- |
-/* |
- * Some important notes: |
- * The allocation routines provided here must never return NULL. |
- * They should exit to error_exit if unsuccessful. |
- * |
- * It's not a good idea to try to merge the sarray and barray routines, |
- * even though they are textually almost the same, because samples are |
- * usually stored as bytes while coefficients are shorts or ints. Thus, |
- * in machines where byte pointers have a different representation from |
- * word pointers, the resulting machine code could not be the same. |
- */ |
- |
- |
-/* |
- * Many machines require storage alignment: longs must start on 4-byte |
- * boundaries, doubles on 8-byte boundaries, etc. On such machines, malloc() |
- * always returns pointers that are multiples of the worst-case alignment |
- * requirement, and we had better do so too. |
- * There isn't any really portable way to determine the worst-case alignment |
- * requirement. This module assumes that the alignment requirement is |
- * multiples of sizeof(ALIGN_TYPE). |
- * By default, we define ALIGN_TYPE as double. This is necessary on some |
- * workstations (where doubles really do need 8-byte alignment) and will work |
- * fine on nearly everything. If your machine has lesser alignment needs, |
- * you can save a few bytes by making ALIGN_TYPE smaller. |
- * The only place I know of where this will NOT work is certain Macintosh |
- * 680x0 compilers that define double as a 10-byte IEEE extended float. |
- * Doing 10-byte alignment is counterproductive because longwords won't be |
- * aligned well. Put "#define ALIGN_TYPE long" in jconfig.h if you have |
- * such a compiler. |
- */ |
- |
-#ifndef ALIGN_TYPE /* so can override from jconfig.h */ |
-#define ALIGN_TYPE double |
-#endif |
- |
- |
-/* |
- * We allocate objects from "pools", where each pool is gotten with a single |
- * request to jpeg_get_small() or jpeg_get_large(). There is no per-object |
- * overhead within a pool, except for alignment padding. Each pool has a |
- * header with a link to the next pool of the same class. |
- * Small and large pool headers are identical except that the latter's |
- * link pointer must be FAR on 80x86 machines. |
- * Notice that the "real" header fields are union'ed with a dummy ALIGN_TYPE |
- * field. This forces the compiler to make SIZEOF(small_pool_hdr) a multiple |
- * of the alignment requirement of ALIGN_TYPE. |
- */ |
- |
-typedef union small_pool_struct * small_pool_ptr; |
- |
-typedef union small_pool_struct { |
- struct { |
- small_pool_ptr next; /* next in list of pools */ |
- size_t bytes_used; /* how many bytes already used within pool */ |
- size_t bytes_left; /* bytes still available in this pool */ |
- } hdr; |
- ALIGN_TYPE dummy; /* included in union to ensure alignment */ |
-} small_pool_hdr; |
- |
-typedef union large_pool_struct FAR * large_pool_ptr; |
- |
-typedef union large_pool_struct { |
- struct { |
- large_pool_ptr next; /* next in list of pools */ |
- size_t bytes_used; /* how many bytes already used within pool */ |
- size_t bytes_left; /* bytes still available in this pool */ |
- } hdr; |
- ALIGN_TYPE dummy; /* included in union to ensure alignment */ |
-} large_pool_hdr; |
- |
- |
-/* |
- * Here is the full definition of a memory manager object. |
- */ |
- |
-typedef struct { |
- struct jpeg_memory_mgr pub; /* public fields */ |
- |
- /* Each pool identifier (lifetime class) names a linked list of pools. */ |
- small_pool_ptr small_list[JPOOL_NUMPOOLS]; |
- large_pool_ptr large_list[JPOOL_NUMPOOLS]; |
- |
- /* Since we only have one lifetime class of virtual arrays, only one |
- * linked list is necessary (for each datatype). Note that the virtual |
- * array control blocks being linked together are actually stored somewhere |
- * in the small-pool list. |
- */ |
- jvirt_sarray_ptr virt_sarray_list; |
- jvirt_barray_ptr virt_barray_list; |
- |
- /* This counts total space obtained from jpeg_get_small/large */ |
- long total_space_allocated; |
- |
- /* alloc_sarray and alloc_barray set this value for use by virtual |
- * array routines. |
- */ |
- JDIMENSION last_rowsperchunk; /* from most recent alloc_sarray/barray */ |
-} my_memory_mgr; |
- |
-typedef my_memory_mgr * my_mem_ptr; |
- |
- |
-/* |
- * The control blocks for virtual arrays. |
- * Note that these blocks are allocated in the "small" pool area. |
- * System-dependent info for the associated backing store (if any) is hidden |
- * inside the backing_store_info struct. |
- */ |
- |
-struct jvirt_sarray_control { |
- JSAMPARRAY mem_buffer; /* => the in-memory buffer */ |
- JDIMENSION rows_in_array; /* total virtual array height */ |
- JDIMENSION samplesperrow; /* width of array (and of memory buffer) */ |
- JDIMENSION maxaccess; /* max rows accessed by access_virt_sarray */ |
- JDIMENSION rows_in_mem; /* height of memory buffer */ |
- JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */ |
- JDIMENSION cur_start_row; /* first logical row # in the buffer */ |
- JDIMENSION first_undef_row; /* row # of first uninitialized row */ |
- boolean pre_zero; /* pre-zero mode requested? */ |
- boolean dirty; /* do current buffer contents need written? */ |
- boolean b_s_open; /* is backing-store data valid? */ |
- jvirt_sarray_ptr next; /* link to next virtual sarray control block */ |
- backing_store_info b_s_info; /* System-dependent control info */ |
-}; |
- |
-struct jvirt_barray_control { |
- JBLOCKARRAY mem_buffer; /* => the in-memory buffer */ |
- JDIMENSION rows_in_array; /* total virtual array height */ |
- JDIMENSION blocksperrow; /* width of array (and of memory buffer) */ |
- JDIMENSION maxaccess; /* max rows accessed by access_virt_barray */ |
- JDIMENSION rows_in_mem; /* height of memory buffer */ |
- JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */ |
- JDIMENSION cur_start_row; /* first logical row # in the buffer */ |
- JDIMENSION first_undef_row; /* row # of first uninitialized row */ |
- boolean pre_zero; /* pre-zero mode requested? */ |
- boolean dirty; /* do current buffer contents need written? */ |
- boolean b_s_open; /* is backing-store data valid? */ |
- jvirt_barray_ptr next; /* link to next virtual barray control block */ |
- backing_store_info b_s_info; /* System-dependent control info */ |
-}; |
- |
- |
-#ifdef MEM_STATS /* optional extra stuff for statistics */ |
- |
-LOCAL(void) |
-print_mem_stats (j_common_ptr cinfo, int pool_id) |
-{ |
- my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
- small_pool_ptr shdr_ptr; |
- large_pool_ptr lhdr_ptr; |
- |
- /* Since this is only a debugging stub, we can cheat a little by using |
- * fprintf directly rather than going through the trace message code. |
- * This is helpful because message parm array can't handle longs. |
- */ |
- fprintf(stderr, "Freeing pool %d, total space = %ld\n", |
- pool_id, mem->total_space_allocated); |
- |
- for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL; |
- lhdr_ptr = lhdr_ptr->hdr.next) { |
- fprintf(stderr, " Large chunk used %ld\n", |
- (long) lhdr_ptr->hdr.bytes_used); |
- } |
- |
- for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL; |
- shdr_ptr = shdr_ptr->hdr.next) { |
- fprintf(stderr, " Small chunk used %ld free %ld\n", |
- (long) shdr_ptr->hdr.bytes_used, |
- (long) shdr_ptr->hdr.bytes_left); |
- } |
-} |
- |
-#endif /* MEM_STATS */ |
- |
- |
-LOCAL(void) |
-out_of_memory (j_common_ptr cinfo, int which) |
-/* Report an out-of-memory error and stop execution */ |
-/* If we compiled MEM_STATS support, report alloc requests before dying */ |
-{ |
-#ifdef MEM_STATS |
- cinfo->err->trace_level = 2; /* force self_destruct to report stats */ |
-#endif |
- ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which); |
-} |
- |
- |
-/* |
- * Allocation of "small" objects. |
- * |
- * For these, we use pooled storage. When a new pool must be created, |
- * we try to get enough space for the current request plus a "slop" factor, |
- * where the slop will be the amount of leftover space in the new pool. |
- * The speed vs. space tradeoff is largely determined by the slop values. |
- * A different slop value is provided for each pool class (lifetime), |
- * and we also distinguish the first pool of a class from later ones. |
- * NOTE: the values given work fairly well on both 16- and 32-bit-int |
- * machines, but may be too small if longs are 64 bits or more. |
- */ |
- |
-static const size_t first_pool_slop[JPOOL_NUMPOOLS] = |
-{ |
- 1600, /* first PERMANENT pool */ |
- 16000 /* first IMAGE pool */ |
-}; |
- |
-static const size_t extra_pool_slop[JPOOL_NUMPOOLS] = |
-{ |
- 0, /* additional PERMANENT pools */ |
- 5000 /* additional IMAGE pools */ |
-}; |
- |
-#define MIN_SLOP 50 /* greater than 0 to avoid futile looping */ |
- |
- |
-METHODDEF(void *) |
-alloc_small (j_common_ptr cinfo, int pool_id, size_t sizeofobject) |
-/* Allocate a "small" object */ |
-{ |
- my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
- small_pool_ptr hdr_ptr, prev_hdr_ptr; |
- char * data_ptr; |
- size_t odd_bytes, min_request, slop; |
- |
- /* Check for unsatisfiable request (do now to ensure no overflow below) */ |
- if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(small_pool_hdr))) |
- out_of_memory(cinfo, 1); /* request exceeds malloc's ability */ |
- |
- /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */ |
- odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE); |
- if (odd_bytes > 0) |
- sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes; |
- |
- /* See if space is available in any existing pool */ |
- if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS) |
- ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ |
- prev_hdr_ptr = NULL; |
- hdr_ptr = mem->small_list[pool_id]; |
- while (hdr_ptr != NULL) { |
- if (hdr_ptr->hdr.bytes_left >= sizeofobject) |
- break; /* found pool with enough space */ |
- prev_hdr_ptr = hdr_ptr; |
- hdr_ptr = hdr_ptr->hdr.next; |
- } |
- |
- /* Time to make a new pool? */ |
- if (hdr_ptr == NULL) { |
- /* min_request is what we need now, slop is what will be leftover */ |
- min_request = sizeofobject + SIZEOF(small_pool_hdr); |
- if (prev_hdr_ptr == NULL) /* first pool in class? */ |
- slop = first_pool_slop[pool_id]; |
- else |
- slop = extra_pool_slop[pool_id]; |
- /* Don't ask for more than MAX_ALLOC_CHUNK */ |
- if (slop > (size_t) (MAX_ALLOC_CHUNK-min_request)) |
- slop = (size_t) (MAX_ALLOC_CHUNK-min_request); |
- /* Try to get space, if fail reduce slop and try again */ |
- for (;;) { |
- hdr_ptr = (small_pool_ptr) jpeg_get_small(cinfo, min_request + slop); |
- if (hdr_ptr != NULL) |
- break; |
- slop /= 2; |
- if (slop < MIN_SLOP) /* give up when it gets real small */ |
- out_of_memory(cinfo, 2); /* jpeg_get_small failed */ |
- } |
- mem->total_space_allocated += min_request + slop; |
- /* Success, initialize the new pool header and add to end of list */ |
- hdr_ptr->hdr.next = NULL; |
- hdr_ptr->hdr.bytes_used = 0; |
- hdr_ptr->hdr.bytes_left = sizeofobject + slop; |
- if (prev_hdr_ptr == NULL) /* first pool in class? */ |
- mem->small_list[pool_id] = hdr_ptr; |
- else |
- prev_hdr_ptr->hdr.next = hdr_ptr; |
- } |
- |
- /* OK, allocate the object from the current pool */ |
- data_ptr = (char *) (hdr_ptr + 1); /* point to first data byte in pool */ |
- data_ptr += hdr_ptr->hdr.bytes_used; /* point to place for object */ |
- hdr_ptr->hdr.bytes_used += sizeofobject; |
- hdr_ptr->hdr.bytes_left -= sizeofobject; |
- |
- return (void *) data_ptr; |
-} |
- |
- |
-/* |
- * Allocation of "large" objects. |
- * |
- * The external semantics of these are the same as "small" objects, |
- * except that FAR pointers are used on 80x86. However the pool |
- * management heuristics are quite different. We assume that each |
- * request is large enough that it may as well be passed directly to |
- * jpeg_get_large; the pool management just links everything together |
- * so that we can free it all on demand. |
- * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY |
- * structures. The routines that create these structures (see below) |
- * deliberately bunch rows together to ensure a large request size. |
- */ |
- |
-METHODDEF(void FAR *) |
-alloc_large (j_common_ptr cinfo, int pool_id, size_t sizeofobject) |
-/* Allocate a "large" object */ |
-{ |
- my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
- large_pool_ptr hdr_ptr; |
- size_t odd_bytes; |
- |
- /* Check for unsatisfiable request (do now to ensure no overflow below) */ |
- if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr))) |
- out_of_memory(cinfo, 3); /* request exceeds malloc's ability */ |
- |
- /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */ |
- odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE); |
- if (odd_bytes > 0) |
- sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes; |
- |
- /* Always make a new pool */ |
- if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS) |
- ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ |
- |
- hdr_ptr = (large_pool_ptr) jpeg_get_large(cinfo, sizeofobject + |
- SIZEOF(large_pool_hdr)); |
- if (hdr_ptr == NULL) |
- out_of_memory(cinfo, 4); /* jpeg_get_large failed */ |
- mem->total_space_allocated += sizeofobject + SIZEOF(large_pool_hdr); |
- |
- /* Success, initialize the new pool header and add to list */ |
- hdr_ptr->hdr.next = mem->large_list[pool_id]; |
- /* We maintain space counts in each pool header for statistical purposes, |
- * even though they are not needed for allocation. |
- */ |
- hdr_ptr->hdr.bytes_used = sizeofobject; |
- hdr_ptr->hdr.bytes_left = 0; |
- mem->large_list[pool_id] = hdr_ptr; |
- |
- return (void FAR *) (hdr_ptr + 1); /* point to first data byte in pool */ |
-} |
- |
- |
-/* |
- * Creation of 2-D sample arrays. |
- * The pointers are in near heap, the samples themselves in FAR heap. |
- * |
- * To minimize allocation overhead and to allow I/O of large contiguous |
- * blocks, we allocate the sample rows in groups of as many rows as possible |
- * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request. |
- * NB: the virtual array control routines, later in this file, know about |
- * this chunking of rows. The rowsperchunk value is left in the mem manager |
- * object so that it can be saved away if this sarray is the workspace for |
- * a virtual array. |
- */ |
- |
-METHODDEF(JSAMPARRAY) |
-alloc_sarray (j_common_ptr cinfo, int pool_id, |
- JDIMENSION samplesperrow, JDIMENSION numrows) |
-/* Allocate a 2-D sample array */ |
-{ |
- my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
- JSAMPARRAY result; |
- JSAMPROW workspace; |
- JDIMENSION rowsperchunk, currow, i; |
- long ltemp; |
- |
- /* Calculate max # of rows allowed in one allocation chunk */ |
- ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) / |
- ((long) samplesperrow * SIZEOF(JSAMPLE)); |
- if (ltemp <= 0) |
- ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); |
- if (ltemp < (long) numrows) |
- rowsperchunk = (JDIMENSION) ltemp; |
- else |
- rowsperchunk = numrows; |
- mem->last_rowsperchunk = rowsperchunk; |
- |
- /* Get space for row pointers (small object) */ |
- result = (JSAMPARRAY) alloc_small(cinfo, pool_id, |
- (size_t) (numrows * SIZEOF(JSAMPROW))); |
- |
- /* Get the rows themselves (large objects) */ |
- currow = 0; |
- while (currow < numrows) { |
- rowsperchunk = MIN(rowsperchunk, numrows - currow); |
- workspace = (JSAMPROW) alloc_large(cinfo, pool_id, |
- (size_t) ((size_t) rowsperchunk * (size_t) samplesperrow |
- * SIZEOF(JSAMPLE))); |
- for (i = rowsperchunk; i > 0; i--) { |
- result[currow++] = workspace; |
- workspace += samplesperrow; |
- } |
- } |
- |
- return result; |
-} |
- |
- |
-/* |
- * Creation of 2-D coefficient-block arrays. |
- * This is essentially the same as the code for sample arrays, above. |
- */ |
- |
-METHODDEF(JBLOCKARRAY) |
-alloc_barray (j_common_ptr cinfo, int pool_id, |
- JDIMENSION blocksperrow, JDIMENSION numrows) |
-/* Allocate a 2-D coefficient-block array */ |
-{ |
- my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
- JBLOCKARRAY result; |
- JBLOCKROW workspace; |
- JDIMENSION rowsperchunk, currow, i; |
- long ltemp; |
- |
- /* Calculate max # of rows allowed in one allocation chunk */ |
- ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) / |
- ((long) blocksperrow * SIZEOF(JBLOCK)); |
- if (ltemp <= 0) |
- ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); |
- if (ltemp < (long) numrows) |
- rowsperchunk = (JDIMENSION) ltemp; |
- else |
- rowsperchunk = numrows; |
- mem->last_rowsperchunk = rowsperchunk; |
- |
- /* Get space for row pointers (small object) */ |
- result = (JBLOCKARRAY) alloc_small(cinfo, pool_id, |
- (size_t) (numrows * SIZEOF(JBLOCKROW))); |
- |
- /* Get the rows themselves (large objects) */ |
- currow = 0; |
- while (currow < numrows) { |
- rowsperchunk = MIN(rowsperchunk, numrows - currow); |
- workspace = (JBLOCKROW) alloc_large(cinfo, pool_id, |
- (size_t) ((size_t) rowsperchunk * (size_t) blocksperrow |
- * SIZEOF(JBLOCK))); |
- for (i = rowsperchunk; i > 0; i--) { |
- result[currow++] = workspace; |
- workspace += blocksperrow; |
- } |
- } |
- |
- return result; |
-} |
- |
- |
-/* |
- * About virtual array management: |
- * |
- * The above "normal" array routines are only used to allocate strip buffers |
- * (as wide as the image, but just a few rows high). Full-image-sized buffers |
- * are handled as "virtual" arrays. The array is still accessed a strip at a |
- * time, but the memory manager must save the whole array for repeated |
- * accesses. The intended implementation is that there is a strip buffer in |
- * memory (as high as is possible given the desired memory limit), plus a |
- * backing file that holds the rest of the array. |
- * |
- * The request_virt_array routines are told the total size of the image and |
- * the maximum number of rows that will be accessed at once. The in-memory |
- * buffer must be at least as large as the maxaccess value. |
- * |
- * The request routines create control blocks but not the in-memory buffers. |
- * That is postponed until realize_virt_arrays is called. At that time the |
- * total amount of space needed is known (approximately, anyway), so free |
- * memory can be divided up fairly. |
- * |
- * The access_virt_array routines are responsible for making a specific strip |
- * area accessible (after reading or writing the backing file, if necessary). |
- * Note that the access routines are told whether the caller intends to modify |
- * the accessed strip; during a read-only pass this saves having to rewrite |
- * data to disk. The access routines are also responsible for pre-zeroing |
- * any newly accessed rows, if pre-zeroing was requested. |
- * |
- * In current usage, the access requests are usually for nonoverlapping |
- * strips; that is, successive access start_row numbers differ by exactly |
- * num_rows = maxaccess. This means we can get good performance with simple |
- * buffer dump/reload logic, by making the in-memory buffer be a multiple |
- * of the access height; then there will never be accesses across bufferload |
- * boundaries. The code will still work with overlapping access requests, |
- * but it doesn't handle bufferload overlaps very efficiently. |
- */ |
- |
- |
-METHODDEF(jvirt_sarray_ptr) |
-request_virt_sarray (j_common_ptr cinfo, int pool_id, boolean pre_zero, |
- JDIMENSION samplesperrow, JDIMENSION numrows, |
- JDIMENSION maxaccess) |
-/* Request a virtual 2-D sample array */ |
-{ |
- my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
- jvirt_sarray_ptr result; |
- |
- /* Only IMAGE-lifetime virtual arrays are currently supported */ |
- if (pool_id != JPOOL_IMAGE) |
- ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ |
- |
- /* get control block */ |
- result = (jvirt_sarray_ptr) alloc_small(cinfo, pool_id, |
- SIZEOF(struct jvirt_sarray_control)); |
- |
- result->mem_buffer = NULL; /* marks array not yet realized */ |
- result->rows_in_array = numrows; |
- result->samplesperrow = samplesperrow; |
- result->maxaccess = maxaccess; |
- result->pre_zero = pre_zero; |
- result->b_s_open = FALSE; /* no associated backing-store object */ |
- result->next = mem->virt_sarray_list; /* add to list of virtual arrays */ |
- mem->virt_sarray_list = result; |
- |
- return result; |
-} |
- |
- |
-METHODDEF(jvirt_barray_ptr) |
-request_virt_barray (j_common_ptr cinfo, int pool_id, boolean pre_zero, |
- JDIMENSION blocksperrow, JDIMENSION numrows, |
- JDIMENSION maxaccess) |
-/* Request a virtual 2-D coefficient-block array */ |
-{ |
- my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
- jvirt_barray_ptr result; |
- |
- /* Only IMAGE-lifetime virtual arrays are currently supported */ |
- if (pool_id != JPOOL_IMAGE) |
- ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ |
- |
- /* get control block */ |
- result = (jvirt_barray_ptr) alloc_small(cinfo, pool_id, |
- SIZEOF(struct jvirt_barray_control)); |
- |
- result->mem_buffer = NULL; /* marks array not yet realized */ |
- result->rows_in_array = numrows; |
- result->blocksperrow = blocksperrow; |
- result->maxaccess = maxaccess; |
- result->pre_zero = pre_zero; |
- result->b_s_open = FALSE; /* no associated backing-store object */ |
- result->next = mem->virt_barray_list; /* add to list of virtual arrays */ |
- mem->virt_barray_list = result; |
- |
- return result; |
-} |
- |
- |
-METHODDEF(void) |
-realize_virt_arrays (j_common_ptr cinfo) |
-/* Allocate the in-memory buffers for any unrealized virtual arrays */ |
-{ |
- my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
- long space_per_minheight, maximum_space, avail_mem; |
- long minheights, max_minheights; |
- jvirt_sarray_ptr sptr; |
- jvirt_barray_ptr bptr; |
- |
- /* Compute the minimum space needed (maxaccess rows in each buffer) |
- * and the maximum space needed (full image height in each buffer). |
- * These may be of use to the system-dependent jpeg_mem_available routine. |
- */ |
- space_per_minheight = 0; |
- maximum_space = 0; |
- for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { |
- if (sptr->mem_buffer == NULL) { /* if not realized yet */ |
- space_per_minheight += (long) sptr->maxaccess * |
- (long) sptr->samplesperrow * SIZEOF(JSAMPLE); |
- maximum_space += (long) sptr->rows_in_array * |
- (long) sptr->samplesperrow * SIZEOF(JSAMPLE); |
- } |
- } |
- for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { |
- if (bptr->mem_buffer == NULL) { /* if not realized yet */ |
- space_per_minheight += (long) bptr->maxaccess * |
- (long) bptr->blocksperrow * SIZEOF(JBLOCK); |
- maximum_space += (long) bptr->rows_in_array * |
- (long) bptr->blocksperrow * SIZEOF(JBLOCK); |
- } |
- } |
- |
- if (space_per_minheight <= 0) |
- return; /* no unrealized arrays, no work */ |
- |
- /* Determine amount of memory to actually use; this is system-dependent. */ |
- avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space, |
- mem->total_space_allocated); |
- |
- /* If the maximum space needed is available, make all the buffers full |
- * height; otherwise parcel it out with the same number of minheights |
- * in each buffer. |
- */ |
- if (avail_mem >= maximum_space) |
- max_minheights = 1000000000L; |
- else { |
- max_minheights = avail_mem / space_per_minheight; |
- /* If there doesn't seem to be enough space, try to get the minimum |
- * anyway. This allows a "stub" implementation of jpeg_mem_available(). |
- */ |
- if (max_minheights <= 0) |
- max_minheights = 1; |
- } |
- |
- /* Allocate the in-memory buffers and initialize backing store as needed. */ |
- |
- for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { |
- if (sptr->mem_buffer == NULL) { /* if not realized yet */ |
- minheights = ((long) sptr->rows_in_array - 1L) / sptr->maxaccess + 1L; |
- if (minheights <= max_minheights) { |
- /* This buffer fits in memory */ |
- sptr->rows_in_mem = sptr->rows_in_array; |
- } else { |
- /* It doesn't fit in memory, create backing store. */ |
- sptr->rows_in_mem = (JDIMENSION) (max_minheights * sptr->maxaccess); |
- jpeg_open_backing_store(cinfo, & sptr->b_s_info, |
- (long) sptr->rows_in_array * |
- (long) sptr->samplesperrow * |
- (long) SIZEOF(JSAMPLE)); |
- sptr->b_s_open = TRUE; |
- } |
- sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE, |
- sptr->samplesperrow, sptr->rows_in_mem); |
- sptr->rowsperchunk = mem->last_rowsperchunk; |
- sptr->cur_start_row = 0; |
- sptr->first_undef_row = 0; |
- sptr->dirty = FALSE; |
- } |
- } |
- |
- for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { |
- if (bptr->mem_buffer == NULL) { /* if not realized yet */ |
- minheights = ((long) bptr->rows_in_array - 1L) / bptr->maxaccess + 1L; |
- if (minheights <= max_minheights) { |
- /* This buffer fits in memory */ |
- bptr->rows_in_mem = bptr->rows_in_array; |
- } else { |
- /* It doesn't fit in memory, create backing store. */ |
- bptr->rows_in_mem = (JDIMENSION) (max_minheights * bptr->maxaccess); |
- jpeg_open_backing_store(cinfo, & bptr->b_s_info, |
- (long) bptr->rows_in_array * |
- (long) bptr->blocksperrow * |
- (long) SIZEOF(JBLOCK)); |
- bptr->b_s_open = TRUE; |
- } |
- bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE, |
- bptr->blocksperrow, bptr->rows_in_mem); |
- bptr->rowsperchunk = mem->last_rowsperchunk; |
- bptr->cur_start_row = 0; |
- bptr->first_undef_row = 0; |
- bptr->dirty = FALSE; |
- } |
- } |
-} |
- |
- |
-LOCAL(void) |
-do_sarray_io (j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing) |
-/* Do backing store read or write of a virtual sample array */ |
-{ |
- long bytesperrow, file_offset, byte_count, rows, thisrow, i; |
- |
- bytesperrow = (long) ptr->samplesperrow * SIZEOF(JSAMPLE); |
- file_offset = ptr->cur_start_row * bytesperrow; |
- /* Loop to read or write each allocation chunk in mem_buffer */ |
- for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) { |
- /* One chunk, but check for short chunk at end of buffer */ |
- rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i); |
- /* Transfer no more than is currently defined */ |
- thisrow = (long) ptr->cur_start_row + i; |
- rows = MIN(rows, (long) ptr->first_undef_row - thisrow); |
- /* Transfer no more than fits in file */ |
- rows = MIN(rows, (long) ptr->rows_in_array - thisrow); |
- if (rows <= 0) /* this chunk might be past end of file! */ |
- break; |
- byte_count = rows * bytesperrow; |
- if (writing) |
- (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info, |
- (void FAR *) ptr->mem_buffer[i], |
- file_offset, byte_count); |
- else |
- (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info, |
- (void FAR *) ptr->mem_buffer[i], |
- file_offset, byte_count); |
- file_offset += byte_count; |
- } |
-} |
- |
- |
-LOCAL(void) |
-do_barray_io (j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing) |
-/* Do backing store read or write of a virtual coefficient-block array */ |
-{ |
- long bytesperrow, file_offset, byte_count, rows, thisrow, i; |
- |
- bytesperrow = (long) ptr->blocksperrow * SIZEOF(JBLOCK); |
- file_offset = ptr->cur_start_row * bytesperrow; |
- /* Loop to read or write each allocation chunk in mem_buffer */ |
- for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) { |
- /* One chunk, but check for short chunk at end of buffer */ |
- rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i); |
- /* Transfer no more than is currently defined */ |
- thisrow = (long) ptr->cur_start_row + i; |
- rows = MIN(rows, (long) ptr->first_undef_row - thisrow); |
- /* Transfer no more than fits in file */ |
- rows = MIN(rows, (long) ptr->rows_in_array - thisrow); |
- if (rows <= 0) /* this chunk might be past end of file! */ |
- break; |
- byte_count = rows * bytesperrow; |
- if (writing) |
- (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info, |
- (void FAR *) ptr->mem_buffer[i], |
- file_offset, byte_count); |
- else |
- (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info, |
- (void FAR *) ptr->mem_buffer[i], |
- file_offset, byte_count); |
- file_offset += byte_count; |
- } |
-} |
- |
- |
-METHODDEF(JSAMPARRAY) |
-access_virt_sarray (j_common_ptr cinfo, jvirt_sarray_ptr ptr, |
- JDIMENSION start_row, JDIMENSION num_rows, |
- boolean writable) |
-/* Access the part of a virtual sample array starting at start_row */ |
-/* and extending for num_rows rows. writable is true if */ |
-/* caller intends to modify the accessed area. */ |
-{ |
- JDIMENSION end_row = start_row + num_rows; |
- JDIMENSION undef_row; |
- |
- /* debugging check */ |
- if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess || |
- ptr->mem_buffer == NULL) |
- ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); |
- |
- /* Make the desired part of the virtual array accessible */ |
- if (start_row < ptr->cur_start_row || |
- end_row > ptr->cur_start_row+ptr->rows_in_mem) { |
- if (! ptr->b_s_open) |
- ERREXIT(cinfo, JERR_VIRTUAL_BUG); |
- /* Flush old buffer contents if necessary */ |
- if (ptr->dirty) { |
- do_sarray_io(cinfo, ptr, TRUE); |
- ptr->dirty = FALSE; |
- } |
- /* Decide what part of virtual array to access. |
- * Algorithm: if target address > current window, assume forward scan, |
- * load starting at target address. If target address < current window, |
- * assume backward scan, load so that target area is top of window. |
- * Note that when switching from forward write to forward read, will have |
- * start_row = 0, so the limiting case applies and we load from 0 anyway. |
- */ |
- if (start_row > ptr->cur_start_row) { |
- ptr->cur_start_row = start_row; |
- } else { |
- /* use long arithmetic here to avoid overflow & unsigned problems */ |
- long ltemp; |
- |
- ltemp = (long) end_row - (long) ptr->rows_in_mem; |
- if (ltemp < 0) |
- ltemp = 0; /* don't fall off front end of file */ |
- ptr->cur_start_row = (JDIMENSION) ltemp; |
- } |
- /* Read in the selected part of the array. |
- * During the initial write pass, we will do no actual read |
- * because the selected part is all undefined. |
- */ |
- do_sarray_io(cinfo, ptr, FALSE); |
- } |
- /* Ensure the accessed part of the array is defined; prezero if needed. |
- * To improve locality of access, we only prezero the part of the array |
- * that the caller is about to access, not the entire in-memory array. |
- */ |
- if (ptr->first_undef_row < end_row) { |
- if (ptr->first_undef_row < start_row) { |
- if (writable) /* writer skipped over a section of array */ |
- ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); |
- undef_row = start_row; /* but reader is allowed to read ahead */ |
- } else { |
- undef_row = ptr->first_undef_row; |
- } |
- if (writable) |
- ptr->first_undef_row = end_row; |
- if (ptr->pre_zero) { |
- size_t bytesperrow = (size_t) ptr->samplesperrow * SIZEOF(JSAMPLE); |
- undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */ |
- end_row -= ptr->cur_start_row; |
- while (undef_row < end_row) { |
- jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow); |
- undef_row++; |
- } |
- } else { |
- if (! writable) /* reader looking at undefined data */ |
- ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); |
- } |
- } |
- /* Flag the buffer dirty if caller will write in it */ |
- if (writable) |
- ptr->dirty = TRUE; |
- /* Return address of proper part of the buffer */ |
- return ptr->mem_buffer + (start_row - ptr->cur_start_row); |
-} |
- |
- |
-METHODDEF(JBLOCKARRAY) |
-access_virt_barray (j_common_ptr cinfo, jvirt_barray_ptr ptr, |
- JDIMENSION start_row, JDIMENSION num_rows, |
- boolean writable) |
-/* Access the part of a virtual block array starting at start_row */ |
-/* and extending for num_rows rows. writable is true if */ |
-/* caller intends to modify the accessed area. */ |
-{ |
- JDIMENSION end_row = start_row + num_rows; |
- JDIMENSION undef_row; |
- |
- /* debugging check */ |
- if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess || |
- ptr->mem_buffer == NULL) |
- ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); |
- |
- /* Make the desired part of the virtual array accessible */ |
- if (start_row < ptr->cur_start_row || |
- end_row > ptr->cur_start_row+ptr->rows_in_mem) { |
- if (! ptr->b_s_open) |
- ERREXIT(cinfo, JERR_VIRTUAL_BUG); |
- /* Flush old buffer contents if necessary */ |
- if (ptr->dirty) { |
- do_barray_io(cinfo, ptr, TRUE); |
- ptr->dirty = FALSE; |
- } |
- /* Decide what part of virtual array to access. |
- * Algorithm: if target address > current window, assume forward scan, |
- * load starting at target address. If target address < current window, |
- * assume backward scan, load so that target area is top of window. |
- * Note that when switching from forward write to forward read, will have |
- * start_row = 0, so the limiting case applies and we load from 0 anyway. |
- */ |
- if (start_row > ptr->cur_start_row) { |
- ptr->cur_start_row = start_row; |
- } else { |
- /* use long arithmetic here to avoid overflow & unsigned problems */ |
- long ltemp; |
- |
- ltemp = (long) end_row - (long) ptr->rows_in_mem; |
- if (ltemp < 0) |
- ltemp = 0; /* don't fall off front end of file */ |
- ptr->cur_start_row = (JDIMENSION) ltemp; |
- } |
- /* Read in the selected part of the array. |
- * During the initial write pass, we will do no actual read |
- * because the selected part is all undefined. |
- */ |
- do_barray_io(cinfo, ptr, FALSE); |
- } |
- /* Ensure the accessed part of the array is defined; prezero if needed. |
- * To improve locality of access, we only prezero the part of the array |
- * that the caller is about to access, not the entire in-memory array. |
- */ |
- if (ptr->first_undef_row < end_row) { |
- if (ptr->first_undef_row < start_row) { |
- if (writable) /* writer skipped over a section of array */ |
- ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); |
- undef_row = start_row; /* but reader is allowed to read ahead */ |
- } else { |
- undef_row = ptr->first_undef_row; |
- } |
- if (writable) |
- ptr->first_undef_row = end_row; |
- if (ptr->pre_zero) { |
- size_t bytesperrow = (size_t) ptr->blocksperrow * SIZEOF(JBLOCK); |
- undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */ |
- end_row -= ptr->cur_start_row; |
- while (undef_row < end_row) { |
- jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow); |
- undef_row++; |
- } |
- } else { |
- if (! writable) /* reader looking at undefined data */ |
- ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); |
- } |
- } |
- /* Flag the buffer dirty if caller will write in it */ |
- if (writable) |
- ptr->dirty = TRUE; |
- /* Return address of proper part of the buffer */ |
- return ptr->mem_buffer + (start_row - ptr->cur_start_row); |
-} |
- |
- |
-/* |
- * Release all objects belonging to a specified pool. |
- */ |
- |
-METHODDEF(void) |
-free_pool (j_common_ptr cinfo, int pool_id) |
-{ |
- my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
- small_pool_ptr shdr_ptr; |
- large_pool_ptr lhdr_ptr; |
- size_t space_freed; |
- |
- if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS) |
- ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ |
- |
-#ifdef MEM_STATS |
- if (cinfo->err->trace_level > 1) |
- print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */ |
-#endif |
- |
- /* If freeing IMAGE pool, close any virtual arrays first */ |
- if (pool_id == JPOOL_IMAGE) { |
- jvirt_sarray_ptr sptr; |
- jvirt_barray_ptr bptr; |
- |
- for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { |
- if (sptr->b_s_open) { /* there may be no backing store */ |
- sptr->b_s_open = FALSE; /* prevent recursive close if error */ |
- (*sptr->b_s_info.close_backing_store) (cinfo, & sptr->b_s_info); |
- } |
- } |
- mem->virt_sarray_list = NULL; |
- for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { |
- if (bptr->b_s_open) { /* there may be no backing store */ |
- bptr->b_s_open = FALSE; /* prevent recursive close if error */ |
- (*bptr->b_s_info.close_backing_store) (cinfo, & bptr->b_s_info); |
- } |
- } |
- mem->virt_barray_list = NULL; |
- } |
- |
- /* Release large objects */ |
- lhdr_ptr = mem->large_list[pool_id]; |
- mem->large_list[pool_id] = NULL; |
- |
- while (lhdr_ptr != NULL) { |
- large_pool_ptr next_lhdr_ptr = lhdr_ptr->hdr.next; |
- space_freed = lhdr_ptr->hdr.bytes_used + |
- lhdr_ptr->hdr.bytes_left + |
- SIZEOF(large_pool_hdr); |
- jpeg_free_large(cinfo, (void FAR *) lhdr_ptr, space_freed); |
- mem->total_space_allocated -= space_freed; |
- lhdr_ptr = next_lhdr_ptr; |
- } |
- |
- /* Release small objects */ |
- shdr_ptr = mem->small_list[pool_id]; |
- mem->small_list[pool_id] = NULL; |
- |
- while (shdr_ptr != NULL) { |
- small_pool_ptr next_shdr_ptr = shdr_ptr->hdr.next; |
- space_freed = shdr_ptr->hdr.bytes_used + |
- shdr_ptr->hdr.bytes_left + |
- SIZEOF(small_pool_hdr); |
- jpeg_free_small(cinfo, (void *) shdr_ptr, space_freed); |
- mem->total_space_allocated -= space_freed; |
- shdr_ptr = next_shdr_ptr; |
- } |
-} |
- |
- |
-/* |
- * Close up shop entirely. |
- * Note that this cannot be called unless cinfo->mem is non-NULL. |
- */ |
- |
-METHODDEF(void) |
-self_destruct (j_common_ptr cinfo) |
-{ |
- int pool; |
- |
- /* Close all backing store, release all memory. |
- * Releasing pools in reverse order might help avoid fragmentation |
- * with some (brain-damaged) malloc libraries. |
- */ |
- for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) { |
- free_pool(cinfo, pool); |
- } |
- |
- /* Release the memory manager control block too. */ |
- jpeg_free_small(cinfo, (void *) cinfo->mem, SIZEOF(my_memory_mgr)); |
- cinfo->mem = NULL; /* ensures I will be called only once */ |
- |
- jpeg_mem_term(cinfo); /* system-dependent cleanup */ |
-} |
- |
- |
-/* |
- * Memory manager initialization. |
- * When this is called, only the error manager pointer is valid in cinfo! |
- */ |
- |
-GLOBAL(void) |
-jinit_memory_mgr (j_common_ptr cinfo) |
-{ |
- my_mem_ptr mem; |
- long max_to_use; |
- int pool; |
- size_t test_mac; |
- |
- cinfo->mem = NULL; /* for safety if init fails */ |
- |
- /* Check for configuration errors. |
- * SIZEOF(ALIGN_TYPE) should be a power of 2; otherwise, it probably |
- * doesn't reflect any real hardware alignment requirement. |
- * The test is a little tricky: for X>0, X and X-1 have no one-bits |
- * in common if and only if X is a power of 2, ie has only one one-bit. |
- * Some compilers may give an "unreachable code" warning here; ignore it. |
- */ |
- if ((SIZEOF(ALIGN_TYPE) & (SIZEOF(ALIGN_TYPE)-1)) != 0) |
- ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE); |
- /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be |
- * a multiple of SIZEOF(ALIGN_TYPE). |
- * Again, an "unreachable code" warning may be ignored here. |
- * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK. |
- */ |
- test_mac = (size_t) MAX_ALLOC_CHUNK; |
- if ((long) test_mac != MAX_ALLOC_CHUNK || |
- (MAX_ALLOC_CHUNK % SIZEOF(ALIGN_TYPE)) != 0) |
- ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK); |
- |
- max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */ |
- |
- /* Attempt to allocate memory manager's control block */ |
- mem = (my_mem_ptr) jpeg_get_small(cinfo, SIZEOF(my_memory_mgr)); |
- |
- if (mem == NULL) { |
- jpeg_mem_term(cinfo); /* system-dependent cleanup */ |
- ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0); |
- } |
- |
- /* OK, fill in the method pointers */ |
- mem->pub.alloc_small = alloc_small; |
- mem->pub.alloc_large = alloc_large; |
- mem->pub.alloc_sarray = alloc_sarray; |
- mem->pub.alloc_barray = alloc_barray; |
- mem->pub.request_virt_sarray = request_virt_sarray; |
- mem->pub.request_virt_barray = request_virt_barray; |
- mem->pub.realize_virt_arrays = realize_virt_arrays; |
- mem->pub.access_virt_sarray = access_virt_sarray; |
- mem->pub.access_virt_barray = access_virt_barray; |
- mem->pub.free_pool = free_pool; |
- mem->pub.self_destruct = self_destruct; |
- |
- /* Make MAX_ALLOC_CHUNK accessible to other modules */ |
- mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK; |
- |
- /* Initialize working state */ |
- mem->pub.max_memory_to_use = max_to_use; |
- |
- for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) { |
- mem->small_list[pool] = NULL; |
- mem->large_list[pool] = NULL; |
- } |
- mem->virt_sarray_list = NULL; |
- mem->virt_barray_list = NULL; |
- |
- mem->total_space_allocated = SIZEOF(my_memory_mgr); |
- |
- /* Declare ourselves open for business */ |
- cinfo->mem = & mem->pub; |
- |
- /* Check for an environment variable JPEGMEM; if found, override the |
- * default max_memory setting from jpeg_mem_init. Note that the |
- * surrounding application may again override this value. |
- * If your system doesn't support getenv(), define NO_GETENV to disable |
- * this feature. |
- */ |
-#ifndef NO_GETENV |
- { char * memenv; |
- |
- if ((memenv = getenv("JPEGMEM")) != NULL) { |
- char ch = 'x'; |
- |
- if (sscanf(memenv, "%ld%c", &max_to_use, &ch) > 0) { |
- if (ch == 'm' || ch == 'M') |
- max_to_use *= 1000L; |
- mem->pub.max_memory_to_use = max_to_use * 1000L; |
- } |
- } |
- } |
-#endif |
- |
-} |