Index: third_party/libjpeg/jcphuff.c |
diff --git a/third_party/libjpeg/jcphuff.c b/third_party/libjpeg/jcphuff.c |
deleted file mode 100644 |
index 07f9178b01c885820889cf377c0e73d444f5dd1b..0000000000000000000000000000000000000000 |
--- a/third_party/libjpeg/jcphuff.c |
+++ /dev/null |
@@ -1,833 +0,0 @@ |
-/* |
- * jcphuff.c |
- * |
- * Copyright (C) 1995-1997, Thomas G. Lane. |
- * This file is part of the Independent JPEG Group's software. |
- * For conditions of distribution and use, see the accompanying README file. |
- * |
- * This file contains Huffman entropy encoding routines for progressive JPEG. |
- * |
- * We do not support output suspension in this module, since the library |
- * currently does not allow multiple-scan files to be written with output |
- * suspension. |
- */ |
- |
-#define JPEG_INTERNALS |
-#include "jinclude.h" |
-#include "jpeglib.h" |
-#include "jchuff.h" /* Declarations shared with jchuff.c */ |
- |
-#ifdef C_PROGRESSIVE_SUPPORTED |
- |
-/* Expanded entropy encoder object for progressive Huffman encoding. */ |
- |
-typedef struct { |
- struct jpeg_entropy_encoder pub; /* public fields */ |
- |
- /* Mode flag: TRUE for optimization, FALSE for actual data output */ |
- boolean gather_statistics; |
- |
- /* Bit-level coding status. |
- * next_output_byte/free_in_buffer are local copies of cinfo->dest fields. |
- */ |
- JOCTET * next_output_byte; /* => next byte to write in buffer */ |
- size_t free_in_buffer; /* # of byte spaces remaining in buffer */ |
- INT32 put_buffer; /* current bit-accumulation buffer */ |
- int put_bits; /* # of bits now in it */ |
- j_compress_ptr cinfo; /* link to cinfo (needed for dump_buffer) */ |
- |
- /* Coding status for DC components */ |
- int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ |
- |
- /* Coding status for AC components */ |
- int ac_tbl_no; /* the table number of the single component */ |
- unsigned int EOBRUN; /* run length of EOBs */ |
- unsigned int BE; /* # of buffered correction bits before MCU */ |
- char * bit_buffer; /* buffer for correction bits (1 per char) */ |
- /* packing correction bits tightly would save some space but cost time... */ |
- |
- unsigned int restarts_to_go; /* MCUs left in this restart interval */ |
- int next_restart_num; /* next restart number to write (0-7) */ |
- |
- /* Pointers to derived tables (these workspaces have image lifespan). |
- * Since any one scan codes only DC or only AC, we only need one set |
- * of tables, not one for DC and one for AC. |
- */ |
- c_derived_tbl * derived_tbls[NUM_HUFF_TBLS]; |
- |
- /* Statistics tables for optimization; again, one set is enough */ |
- long * count_ptrs[NUM_HUFF_TBLS]; |
-} phuff_entropy_encoder; |
- |
-typedef phuff_entropy_encoder * phuff_entropy_ptr; |
- |
-/* MAX_CORR_BITS is the number of bits the AC refinement correction-bit |
- * buffer can hold. Larger sizes may slightly improve compression, but |
- * 1000 is already well into the realm of overkill. |
- * The minimum safe size is 64 bits. |
- */ |
- |
-#define MAX_CORR_BITS 1000 /* Max # of correction bits I can buffer */ |
- |
-/* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32. |
- * We assume that int right shift is unsigned if INT32 right shift is, |
- * which should be safe. |
- */ |
- |
-#ifdef RIGHT_SHIFT_IS_UNSIGNED |
-#define ISHIFT_TEMPS int ishift_temp; |
-#define IRIGHT_SHIFT(x,shft) \ |
- ((ishift_temp = (x)) < 0 ? \ |
- (ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \ |
- (ishift_temp >> (shft))) |
-#else |
-#define ISHIFT_TEMPS |
-#define IRIGHT_SHIFT(x,shft) ((x) >> (shft)) |
-#endif |
- |
-/* Forward declarations */ |
-METHODDEF(boolean) encode_mcu_DC_first JPP((j_compress_ptr cinfo, |
- JBLOCKROW *MCU_data)); |
-METHODDEF(boolean) encode_mcu_AC_first JPP((j_compress_ptr cinfo, |
- JBLOCKROW *MCU_data)); |
-METHODDEF(boolean) encode_mcu_DC_refine JPP((j_compress_ptr cinfo, |
- JBLOCKROW *MCU_data)); |
-METHODDEF(boolean) encode_mcu_AC_refine JPP((j_compress_ptr cinfo, |
- JBLOCKROW *MCU_data)); |
-METHODDEF(void) finish_pass_phuff JPP((j_compress_ptr cinfo)); |
-METHODDEF(void) finish_pass_gather_phuff JPP((j_compress_ptr cinfo)); |
- |
- |
-/* |
- * Initialize for a Huffman-compressed scan using progressive JPEG. |
- */ |
- |
-METHODDEF(void) |
-start_pass_phuff (j_compress_ptr cinfo, boolean gather_statistics) |
-{ |
- phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; |
- boolean is_DC_band; |
- int ci, tbl; |
- jpeg_component_info * compptr; |
- |
- entropy->cinfo = cinfo; |
- entropy->gather_statistics = gather_statistics; |
- |
- is_DC_band = (cinfo->Ss == 0); |
- |
- /* We assume jcmaster.c already validated the scan parameters. */ |
- |
- /* Select execution routines */ |
- if (cinfo->Ah == 0) { |
- if (is_DC_band) |
- entropy->pub.encode_mcu = encode_mcu_DC_first; |
- else |
- entropy->pub.encode_mcu = encode_mcu_AC_first; |
- } else { |
- if (is_DC_band) |
- entropy->pub.encode_mcu = encode_mcu_DC_refine; |
- else { |
- entropy->pub.encode_mcu = encode_mcu_AC_refine; |
- /* AC refinement needs a correction bit buffer */ |
- if (entropy->bit_buffer == NULL) |
- entropy->bit_buffer = (char *) |
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
- MAX_CORR_BITS * SIZEOF(char)); |
- } |
- } |
- if (gather_statistics) |
- entropy->pub.finish_pass = finish_pass_gather_phuff; |
- else |
- entropy->pub.finish_pass = finish_pass_phuff; |
- |
- /* Only DC coefficients may be interleaved, so cinfo->comps_in_scan = 1 |
- * for AC coefficients. |
- */ |
- for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
- compptr = cinfo->cur_comp_info[ci]; |
- /* Initialize DC predictions to 0 */ |
- entropy->last_dc_val[ci] = 0; |
- /* Get table index */ |
- if (is_DC_band) { |
- if (cinfo->Ah != 0) /* DC refinement needs no table */ |
- continue; |
- tbl = compptr->dc_tbl_no; |
- } else { |
- entropy->ac_tbl_no = tbl = compptr->ac_tbl_no; |
- } |
- if (gather_statistics) { |
- /* Check for invalid table index */ |
- /* (make_c_derived_tbl does this in the other path) */ |
- if (tbl < 0 || tbl >= NUM_HUFF_TBLS) |
- ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl); |
- /* Allocate and zero the statistics tables */ |
- /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */ |
- if (entropy->count_ptrs[tbl] == NULL) |
- entropy->count_ptrs[tbl] = (long *) |
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
- 257 * SIZEOF(long)); |
- MEMZERO(entropy->count_ptrs[tbl], 257 * SIZEOF(long)); |
- } else { |
- /* Compute derived values for Huffman table */ |
- /* We may do this more than once for a table, but it's not expensive */ |
- jpeg_make_c_derived_tbl(cinfo, is_DC_band, tbl, |
- & entropy->derived_tbls[tbl]); |
- } |
- } |
- |
- /* Initialize AC stuff */ |
- entropy->EOBRUN = 0; |
- entropy->BE = 0; |
- |
- /* Initialize bit buffer to empty */ |
- entropy->put_buffer = 0; |
- entropy->put_bits = 0; |
- |
- /* Initialize restart stuff */ |
- entropy->restarts_to_go = cinfo->restart_interval; |
- entropy->next_restart_num = 0; |
-} |
- |
- |
-/* Outputting bytes to the file. |
- * NB: these must be called only when actually outputting, |
- * that is, entropy->gather_statistics == FALSE. |
- */ |
- |
-/* Emit a byte */ |
-#define emit_byte(entropy,val) \ |
- { *(entropy)->next_output_byte++ = (JOCTET) (val); \ |
- if (--(entropy)->free_in_buffer == 0) \ |
- dump_buffer(entropy); } |
- |
- |
-LOCAL(void) |
-dump_buffer (phuff_entropy_ptr entropy) |
-/* Empty the output buffer; we do not support suspension in this module. */ |
-{ |
- struct jpeg_destination_mgr * dest = entropy->cinfo->dest; |
- |
- if (! (*dest->empty_output_buffer) (entropy->cinfo)) |
- ERREXIT(entropy->cinfo, JERR_CANT_SUSPEND); |
- /* After a successful buffer dump, must reset buffer pointers */ |
- entropy->next_output_byte = dest->next_output_byte; |
- entropy->free_in_buffer = dest->free_in_buffer; |
-} |
- |
- |
-/* Outputting bits to the file */ |
- |
-/* Only the right 24 bits of put_buffer are used; the valid bits are |
- * left-justified in this part. At most 16 bits can be passed to emit_bits |
- * in one call, and we never retain more than 7 bits in put_buffer |
- * between calls, so 24 bits are sufficient. |
- */ |
- |
-INLINE |
-LOCAL(void) |
-emit_bits (phuff_entropy_ptr entropy, unsigned int code, int size) |
-/* Emit some bits, unless we are in gather mode */ |
-{ |
- /* This routine is heavily used, so it's worth coding tightly. */ |
- register INT32 put_buffer = (INT32) code; |
- register int put_bits = entropy->put_bits; |
- |
- /* if size is 0, caller used an invalid Huffman table entry */ |
- if (size == 0) |
- ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE); |
- |
- if (entropy->gather_statistics) |
- return; /* do nothing if we're only getting stats */ |
- |
- put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */ |
- |
- put_bits += size; /* new number of bits in buffer */ |
- |
- put_buffer <<= 24 - put_bits; /* align incoming bits */ |
- |
- put_buffer |= entropy->put_buffer; /* and merge with old buffer contents */ |
- |
- while (put_bits >= 8) { |
- int c = (int) ((put_buffer >> 16) & 0xFF); |
- |
- emit_byte(entropy, c); |
- if (c == 0xFF) { /* need to stuff a zero byte? */ |
- emit_byte(entropy, 0); |
- } |
- put_buffer <<= 8; |
- put_bits -= 8; |
- } |
- |
- entropy->put_buffer = put_buffer; /* update variables */ |
- entropy->put_bits = put_bits; |
-} |
- |
- |
-LOCAL(void) |
-flush_bits (phuff_entropy_ptr entropy) |
-{ |
- emit_bits(entropy, 0x7F, 7); /* fill any partial byte with ones */ |
- entropy->put_buffer = 0; /* and reset bit-buffer to empty */ |
- entropy->put_bits = 0; |
-} |
- |
- |
-/* |
- * Emit (or just count) a Huffman symbol. |
- */ |
- |
-INLINE |
-LOCAL(void) |
-emit_symbol (phuff_entropy_ptr entropy, int tbl_no, int symbol) |
-{ |
- if (entropy->gather_statistics) |
- entropy->count_ptrs[tbl_no][symbol]++; |
- else { |
- c_derived_tbl * tbl = entropy->derived_tbls[tbl_no]; |
- emit_bits(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]); |
- } |
-} |
- |
- |
-/* |
- * Emit bits from a correction bit buffer. |
- */ |
- |
-LOCAL(void) |
-emit_buffered_bits (phuff_entropy_ptr entropy, char * bufstart, |
- unsigned int nbits) |
-{ |
- if (entropy->gather_statistics) |
- return; /* no real work */ |
- |
- while (nbits > 0) { |
- emit_bits(entropy, (unsigned int) (*bufstart), 1); |
- bufstart++; |
- nbits--; |
- } |
-} |
- |
- |
-/* |
- * Emit any pending EOBRUN symbol. |
- */ |
- |
-LOCAL(void) |
-emit_eobrun (phuff_entropy_ptr entropy) |
-{ |
- register int temp, nbits; |
- |
- if (entropy->EOBRUN > 0) { /* if there is any pending EOBRUN */ |
- temp = entropy->EOBRUN; |
- nbits = 0; |
- while ((temp >>= 1)) |
- nbits++; |
- /* safety check: shouldn't happen given limited correction-bit buffer */ |
- if (nbits > 14) |
- ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE); |
- |
- emit_symbol(entropy, entropy->ac_tbl_no, nbits << 4); |
- if (nbits) |
- emit_bits(entropy, entropy->EOBRUN, nbits); |
- |
- entropy->EOBRUN = 0; |
- |
- /* Emit any buffered correction bits */ |
- emit_buffered_bits(entropy, entropy->bit_buffer, entropy->BE); |
- entropy->BE = 0; |
- } |
-} |
- |
- |
-/* |
- * Emit a restart marker & resynchronize predictions. |
- */ |
- |
-LOCAL(void) |
-emit_restart (phuff_entropy_ptr entropy, int restart_num) |
-{ |
- int ci; |
- |
- emit_eobrun(entropy); |
- |
- if (! entropy->gather_statistics) { |
- flush_bits(entropy); |
- emit_byte(entropy, 0xFF); |
- emit_byte(entropy, JPEG_RST0 + restart_num); |
- } |
- |
- if (entropy->cinfo->Ss == 0) { |
- /* Re-initialize DC predictions to 0 */ |
- for (ci = 0; ci < entropy->cinfo->comps_in_scan; ci++) |
- entropy->last_dc_val[ci] = 0; |
- } else { |
- /* Re-initialize all AC-related fields to 0 */ |
- entropy->EOBRUN = 0; |
- entropy->BE = 0; |
- } |
-} |
- |
- |
-/* |
- * MCU encoding for DC initial scan (either spectral selection, |
- * or first pass of successive approximation). |
- */ |
- |
-METHODDEF(boolean) |
-encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
-{ |
- phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; |
- register int temp, temp2; |
- register int nbits; |
- int blkn, ci; |
- int Al = cinfo->Al; |
- JBLOCKROW block; |
- jpeg_component_info * compptr; |
- ISHIFT_TEMPS |
- |
- entropy->next_output_byte = cinfo->dest->next_output_byte; |
- entropy->free_in_buffer = cinfo->dest->free_in_buffer; |
- |
- /* Emit restart marker if needed */ |
- if (cinfo->restart_interval) |
- if (entropy->restarts_to_go == 0) |
- emit_restart(entropy, entropy->next_restart_num); |
- |
- /* Encode the MCU data blocks */ |
- for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
- block = MCU_data[blkn]; |
- ci = cinfo->MCU_membership[blkn]; |
- compptr = cinfo->cur_comp_info[ci]; |
- |
- /* Compute the DC value after the required point transform by Al. |
- * This is simply an arithmetic right shift. |
- */ |
- temp2 = IRIGHT_SHIFT((int) ((*block)[0]), Al); |
- |
- /* DC differences are figured on the point-transformed values. */ |
- temp = temp2 - entropy->last_dc_val[ci]; |
- entropy->last_dc_val[ci] = temp2; |
- |
- /* Encode the DC coefficient difference per section G.1.2.1 */ |
- temp2 = temp; |
- if (temp < 0) { |
- temp = -temp; /* temp is abs value of input */ |
- /* For a negative input, want temp2 = bitwise complement of abs(input) */ |
- /* This code assumes we are on a two's complement machine */ |
- temp2--; |
- } |
- |
- /* Find the number of bits needed for the magnitude of the coefficient */ |
- nbits = 0; |
- while (temp) { |
- nbits++; |
- temp >>= 1; |
- } |
- /* Check for out-of-range coefficient values. |
- * Since we're encoding a difference, the range limit is twice as much. |
- */ |
- if (nbits > MAX_COEF_BITS+1) |
- ERREXIT(cinfo, JERR_BAD_DCT_COEF); |
- |
- /* Count/emit the Huffman-coded symbol for the number of bits */ |
- emit_symbol(entropy, compptr->dc_tbl_no, nbits); |
- |
- /* Emit that number of bits of the value, if positive, */ |
- /* or the complement of its magnitude, if negative. */ |
- if (nbits) /* emit_bits rejects calls with size 0 */ |
- emit_bits(entropy, (unsigned int) temp2, nbits); |
- } |
- |
- cinfo->dest->next_output_byte = entropy->next_output_byte; |
- cinfo->dest->free_in_buffer = entropy->free_in_buffer; |
- |
- /* Update restart-interval state too */ |
- if (cinfo->restart_interval) { |
- if (entropy->restarts_to_go == 0) { |
- entropy->restarts_to_go = cinfo->restart_interval; |
- entropy->next_restart_num++; |
- entropy->next_restart_num &= 7; |
- } |
- entropy->restarts_to_go--; |
- } |
- |
- return TRUE; |
-} |
- |
- |
-/* |
- * MCU encoding for AC initial scan (either spectral selection, |
- * or first pass of successive approximation). |
- */ |
- |
-METHODDEF(boolean) |
-encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
-{ |
- phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; |
- register int temp, temp2; |
- register int nbits; |
- register int r, k; |
- int Se = cinfo->Se; |
- int Al = cinfo->Al; |
- JBLOCKROW block; |
- |
- entropy->next_output_byte = cinfo->dest->next_output_byte; |
- entropy->free_in_buffer = cinfo->dest->free_in_buffer; |
- |
- /* Emit restart marker if needed */ |
- if (cinfo->restart_interval) |
- if (entropy->restarts_to_go == 0) |
- emit_restart(entropy, entropy->next_restart_num); |
- |
- /* Encode the MCU data block */ |
- block = MCU_data[0]; |
- |
- /* Encode the AC coefficients per section G.1.2.2, fig. G.3 */ |
- |
- r = 0; /* r = run length of zeros */ |
- |
- for (k = cinfo->Ss; k <= Se; k++) { |
- if ((temp = (*block)[jpeg_natural_order[k]]) == 0) { |
- r++; |
- continue; |
- } |
- /* We must apply the point transform by Al. For AC coefficients this |
- * is an integer division with rounding towards 0. To do this portably |
- * in C, we shift after obtaining the absolute value; so the code is |
- * interwoven with finding the abs value (temp) and output bits (temp2). |
- */ |
- if (temp < 0) { |
- temp = -temp; /* temp is abs value of input */ |
- temp >>= Al; /* apply the point transform */ |
- /* For a negative coef, want temp2 = bitwise complement of abs(coef) */ |
- temp2 = ~temp; |
- } else { |
- temp >>= Al; /* apply the point transform */ |
- temp2 = temp; |
- } |
- /* Watch out for case that nonzero coef is zero after point transform */ |
- if (temp == 0) { |
- r++; |
- continue; |
- } |
- |
- /* Emit any pending EOBRUN */ |
- if (entropy->EOBRUN > 0) |
- emit_eobrun(entropy); |
- /* if run length > 15, must emit special run-length-16 codes (0xF0) */ |
- while (r > 15) { |
- emit_symbol(entropy, entropy->ac_tbl_no, 0xF0); |
- r -= 16; |
- } |
- |
- /* Find the number of bits needed for the magnitude of the coefficient */ |
- nbits = 1; /* there must be at least one 1 bit */ |
- while ((temp >>= 1)) |
- nbits++; |
- /* Check for out-of-range coefficient values */ |
- if (nbits > MAX_COEF_BITS) |
- ERREXIT(cinfo, JERR_BAD_DCT_COEF); |
- |
- /* Count/emit Huffman symbol for run length / number of bits */ |
- emit_symbol(entropy, entropy->ac_tbl_no, (r << 4) + nbits); |
- |
- /* Emit that number of bits of the value, if positive, */ |
- /* or the complement of its magnitude, if negative. */ |
- emit_bits(entropy, (unsigned int) temp2, nbits); |
- |
- r = 0; /* reset zero run length */ |
- } |
- |
- if (r > 0) { /* If there are trailing zeroes, */ |
- entropy->EOBRUN++; /* count an EOB */ |
- if (entropy->EOBRUN == 0x7FFF) |
- emit_eobrun(entropy); /* force it out to avoid overflow */ |
- } |
- |
- cinfo->dest->next_output_byte = entropy->next_output_byte; |
- cinfo->dest->free_in_buffer = entropy->free_in_buffer; |
- |
- /* Update restart-interval state too */ |
- if (cinfo->restart_interval) { |
- if (entropy->restarts_to_go == 0) { |
- entropy->restarts_to_go = cinfo->restart_interval; |
- entropy->next_restart_num++; |
- entropy->next_restart_num &= 7; |
- } |
- entropy->restarts_to_go--; |
- } |
- |
- return TRUE; |
-} |
- |
- |
-/* |
- * MCU encoding for DC successive approximation refinement scan. |
- * Note: we assume such scans can be multi-component, although the spec |
- * is not very clear on the point. |
- */ |
- |
-METHODDEF(boolean) |
-encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
-{ |
- phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; |
- register int temp; |
- int blkn; |
- int Al = cinfo->Al; |
- JBLOCKROW block; |
- |
- entropy->next_output_byte = cinfo->dest->next_output_byte; |
- entropy->free_in_buffer = cinfo->dest->free_in_buffer; |
- |
- /* Emit restart marker if needed */ |
- if (cinfo->restart_interval) |
- if (entropy->restarts_to_go == 0) |
- emit_restart(entropy, entropy->next_restart_num); |
- |
- /* Encode the MCU data blocks */ |
- for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
- block = MCU_data[blkn]; |
- |
- /* We simply emit the Al'th bit of the DC coefficient value. */ |
- temp = (*block)[0]; |
- emit_bits(entropy, (unsigned int) (temp >> Al), 1); |
- } |
- |
- cinfo->dest->next_output_byte = entropy->next_output_byte; |
- cinfo->dest->free_in_buffer = entropy->free_in_buffer; |
- |
- /* Update restart-interval state too */ |
- if (cinfo->restart_interval) { |
- if (entropy->restarts_to_go == 0) { |
- entropy->restarts_to_go = cinfo->restart_interval; |
- entropy->next_restart_num++; |
- entropy->next_restart_num &= 7; |
- } |
- entropy->restarts_to_go--; |
- } |
- |
- return TRUE; |
-} |
- |
- |
-/* |
- * MCU encoding for AC successive approximation refinement scan. |
- */ |
- |
-METHODDEF(boolean) |
-encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
-{ |
- phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; |
- register int temp; |
- register int r, k; |
- int EOB; |
- char *BR_buffer; |
- unsigned int BR; |
- int Se = cinfo->Se; |
- int Al = cinfo->Al; |
- JBLOCKROW block; |
- int absvalues[DCTSIZE2]; |
- |
- entropy->next_output_byte = cinfo->dest->next_output_byte; |
- entropy->free_in_buffer = cinfo->dest->free_in_buffer; |
- |
- /* Emit restart marker if needed */ |
- if (cinfo->restart_interval) |
- if (entropy->restarts_to_go == 0) |
- emit_restart(entropy, entropy->next_restart_num); |
- |
- /* Encode the MCU data block */ |
- block = MCU_data[0]; |
- |
- /* It is convenient to make a pre-pass to determine the transformed |
- * coefficients' absolute values and the EOB position. |
- */ |
- EOB = 0; |
- for (k = cinfo->Ss; k <= Se; k++) { |
- temp = (*block)[jpeg_natural_order[k]]; |
- /* We must apply the point transform by Al. For AC coefficients this |
- * is an integer division with rounding towards 0. To do this portably |
- * in C, we shift after obtaining the absolute value. |
- */ |
- if (temp < 0) |
- temp = -temp; /* temp is abs value of input */ |
- temp >>= Al; /* apply the point transform */ |
- absvalues[k] = temp; /* save abs value for main pass */ |
- if (temp == 1) |
- EOB = k; /* EOB = index of last newly-nonzero coef */ |
- } |
- |
- /* Encode the AC coefficients per section G.1.2.3, fig. G.7 */ |
- |
- r = 0; /* r = run length of zeros */ |
- BR = 0; /* BR = count of buffered bits added now */ |
- BR_buffer = entropy->bit_buffer + entropy->BE; /* Append bits to buffer */ |
- |
- for (k = cinfo->Ss; k <= Se; k++) { |
- if ((temp = absvalues[k]) == 0) { |
- r++; |
- continue; |
- } |
- |
- /* Emit any required ZRLs, but not if they can be folded into EOB */ |
- while (r > 15 && k <= EOB) { |
- /* emit any pending EOBRUN and the BE correction bits */ |
- emit_eobrun(entropy); |
- /* Emit ZRL */ |
- emit_symbol(entropy, entropy->ac_tbl_no, 0xF0); |
- r -= 16; |
- /* Emit buffered correction bits that must be associated with ZRL */ |
- emit_buffered_bits(entropy, BR_buffer, BR); |
- BR_buffer = entropy->bit_buffer; /* BE bits are gone now */ |
- BR = 0; |
- } |
- |
- /* If the coef was previously nonzero, it only needs a correction bit. |
- * NOTE: a straight translation of the spec's figure G.7 would suggest |
- * that we also need to test r > 15. But if r > 15, we can only get here |
- * if k > EOB, which implies that this coefficient is not 1. |
- */ |
- if (temp > 1) { |
- /* The correction bit is the next bit of the absolute value. */ |
- BR_buffer[BR++] = (char) (temp & 1); |
- continue; |
- } |
- |
- /* Emit any pending EOBRUN and the BE correction bits */ |
- emit_eobrun(entropy); |
- |
- /* Count/emit Huffman symbol for run length / number of bits */ |
- emit_symbol(entropy, entropy->ac_tbl_no, (r << 4) + 1); |
- |
- /* Emit output bit for newly-nonzero coef */ |
- temp = ((*block)[jpeg_natural_order[k]] < 0) ? 0 : 1; |
- emit_bits(entropy, (unsigned int) temp, 1); |
- |
- /* Emit buffered correction bits that must be associated with this code */ |
- emit_buffered_bits(entropy, BR_buffer, BR); |
- BR_buffer = entropy->bit_buffer; /* BE bits are gone now */ |
- BR = 0; |
- r = 0; /* reset zero run length */ |
- } |
- |
- if (r > 0 || BR > 0) { /* If there are trailing zeroes, */ |
- entropy->EOBRUN++; /* count an EOB */ |
- entropy->BE += BR; /* concat my correction bits to older ones */ |
- /* We force out the EOB if we risk either: |
- * 1. overflow of the EOB counter; |
- * 2. overflow of the correction bit buffer during the next MCU. |
- */ |
- if (entropy->EOBRUN == 0x7FFF || entropy->BE > (MAX_CORR_BITS-DCTSIZE2+1)) |
- emit_eobrun(entropy); |
- } |
- |
- cinfo->dest->next_output_byte = entropy->next_output_byte; |
- cinfo->dest->free_in_buffer = entropy->free_in_buffer; |
- |
- /* Update restart-interval state too */ |
- if (cinfo->restart_interval) { |
- if (entropy->restarts_to_go == 0) { |
- entropy->restarts_to_go = cinfo->restart_interval; |
- entropy->next_restart_num++; |
- entropy->next_restart_num &= 7; |
- } |
- entropy->restarts_to_go--; |
- } |
- |
- return TRUE; |
-} |
- |
- |
-/* |
- * Finish up at the end of a Huffman-compressed progressive scan. |
- */ |
- |
-METHODDEF(void) |
-finish_pass_phuff (j_compress_ptr cinfo) |
-{ |
- phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; |
- |
- entropy->next_output_byte = cinfo->dest->next_output_byte; |
- entropy->free_in_buffer = cinfo->dest->free_in_buffer; |
- |
- /* Flush out any buffered data */ |
- emit_eobrun(entropy); |
- flush_bits(entropy); |
- |
- cinfo->dest->next_output_byte = entropy->next_output_byte; |
- cinfo->dest->free_in_buffer = entropy->free_in_buffer; |
-} |
- |
- |
-/* |
- * Finish up a statistics-gathering pass and create the new Huffman tables. |
- */ |
- |
-METHODDEF(void) |
-finish_pass_gather_phuff (j_compress_ptr cinfo) |
-{ |
- phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; |
- boolean is_DC_band; |
- int ci, tbl; |
- jpeg_component_info * compptr; |
- JHUFF_TBL **htblptr; |
- boolean did[NUM_HUFF_TBLS]; |
- |
- /* Flush out buffered data (all we care about is counting the EOB symbol) */ |
- emit_eobrun(entropy); |
- |
- is_DC_band = (cinfo->Ss == 0); |
- |
- /* It's important not to apply jpeg_gen_optimal_table more than once |
- * per table, because it clobbers the input frequency counts! |
- */ |
- MEMZERO(did, SIZEOF(did)); |
- |
- for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
- compptr = cinfo->cur_comp_info[ci]; |
- if (is_DC_band) { |
- if (cinfo->Ah != 0) /* DC refinement needs no table */ |
- continue; |
- tbl = compptr->dc_tbl_no; |
- } else { |
- tbl = compptr->ac_tbl_no; |
- } |
- if (! did[tbl]) { |
- if (is_DC_band) |
- htblptr = & cinfo->dc_huff_tbl_ptrs[tbl]; |
- else |
- htblptr = & cinfo->ac_huff_tbl_ptrs[tbl]; |
- if (*htblptr == NULL) |
- *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo); |
- jpeg_gen_optimal_table(cinfo, *htblptr, entropy->count_ptrs[tbl]); |
- did[tbl] = TRUE; |
- } |
- } |
-} |
- |
- |
-/* |
- * Module initialization routine for progressive Huffman entropy encoding. |
- */ |
- |
-GLOBAL(void) |
-jinit_phuff_encoder (j_compress_ptr cinfo) |
-{ |
- phuff_entropy_ptr entropy; |
- int i; |
- |
- entropy = (phuff_entropy_ptr) |
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
- SIZEOF(phuff_entropy_encoder)); |
- cinfo->entropy = (struct jpeg_entropy_encoder *) entropy; |
- entropy->pub.start_pass = start_pass_phuff; |
- |
- /* Mark tables unallocated */ |
- for (i = 0; i < NUM_HUFF_TBLS; i++) { |
- entropy->derived_tbls[i] = NULL; |
- entropy->count_ptrs[i] = NULL; |
- } |
- entropy->bit_buffer = NULL; /* needed only in AC refinement scan */ |
-} |
- |
-#endif /* C_PROGRESSIVE_SUPPORTED */ |