| Index: third_party/libjpeg/jchuff.c
|
| diff --git a/third_party/libjpeg/jchuff.c b/third_party/libjpeg/jchuff.c
|
| deleted file mode 100644
|
| index f235250548671f2d52cabd12ce366a07db4cbf34..0000000000000000000000000000000000000000
|
| --- a/third_party/libjpeg/jchuff.c
|
| +++ /dev/null
|
| @@ -1,909 +0,0 @@
|
| -/*
|
| - * jchuff.c
|
| - *
|
| - * Copyright (C) 1991-1997, Thomas G. Lane.
|
| - * This file is part of the Independent JPEG Group's software.
|
| - * For conditions of distribution and use, see the accompanying README file.
|
| - *
|
| - * This file contains Huffman entropy encoding routines.
|
| - *
|
| - * Much of the complexity here has to do with supporting output suspension.
|
| - * If the data destination module demands suspension, we want to be able to
|
| - * back up to the start of the current MCU. To do this, we copy state
|
| - * variables into local working storage, and update them back to the
|
| - * permanent JPEG objects only upon successful completion of an MCU.
|
| - */
|
| -
|
| -#define JPEG_INTERNALS
|
| -#include "jinclude.h"
|
| -#include "jpeglib.h"
|
| -#include "jchuff.h" /* Declarations shared with jcphuff.c */
|
| -
|
| -
|
| -/* Expanded entropy encoder object for Huffman encoding.
|
| - *
|
| - * The savable_state subrecord contains fields that change within an MCU,
|
| - * but must not be updated permanently until we complete the MCU.
|
| - */
|
| -
|
| -typedef struct {
|
| - INT32 put_buffer; /* current bit-accumulation buffer */
|
| - int put_bits; /* # of bits now in it */
|
| - int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
|
| -} savable_state;
|
| -
|
| -/* This macro is to work around compilers with missing or broken
|
| - * structure assignment. You'll need to fix this code if you have
|
| - * such a compiler and you change MAX_COMPS_IN_SCAN.
|
| - */
|
| -
|
| -#ifndef NO_STRUCT_ASSIGN
|
| -#define ASSIGN_STATE(dest,src) ((dest) = (src))
|
| -#else
|
| -#if MAX_COMPS_IN_SCAN == 4
|
| -#define ASSIGN_STATE(dest,src) \
|
| - ((dest).put_buffer = (src).put_buffer, \
|
| - (dest).put_bits = (src).put_bits, \
|
| - (dest).last_dc_val[0] = (src).last_dc_val[0], \
|
| - (dest).last_dc_val[1] = (src).last_dc_val[1], \
|
| - (dest).last_dc_val[2] = (src).last_dc_val[2], \
|
| - (dest).last_dc_val[3] = (src).last_dc_val[3])
|
| -#endif
|
| -#endif
|
| -
|
| -
|
| -typedef struct {
|
| - struct jpeg_entropy_encoder pub; /* public fields */
|
| -
|
| - savable_state saved; /* Bit buffer & DC state at start of MCU */
|
| -
|
| - /* These fields are NOT loaded into local working state. */
|
| - unsigned int restarts_to_go; /* MCUs left in this restart interval */
|
| - int next_restart_num; /* next restart number to write (0-7) */
|
| -
|
| - /* Pointers to derived tables (these workspaces have image lifespan) */
|
| - c_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
|
| - c_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
|
| -
|
| -#ifdef ENTROPY_OPT_SUPPORTED /* Statistics tables for optimization */
|
| - long * dc_count_ptrs[NUM_HUFF_TBLS];
|
| - long * ac_count_ptrs[NUM_HUFF_TBLS];
|
| -#endif
|
| -} huff_entropy_encoder;
|
| -
|
| -typedef huff_entropy_encoder * huff_entropy_ptr;
|
| -
|
| -/* Working state while writing an MCU.
|
| - * This struct contains all the fields that are needed by subroutines.
|
| - */
|
| -
|
| -typedef struct {
|
| - JOCTET * next_output_byte; /* => next byte to write in buffer */
|
| - size_t free_in_buffer; /* # of byte spaces remaining in buffer */
|
| - savable_state cur; /* Current bit buffer & DC state */
|
| - j_compress_ptr cinfo; /* dump_buffer needs access to this */
|
| -} working_state;
|
| -
|
| -
|
| -/* Forward declarations */
|
| -METHODDEF(boolean) encode_mcu_huff JPP((j_compress_ptr cinfo,
|
| - JBLOCKROW *MCU_data));
|
| -METHODDEF(void) finish_pass_huff JPP((j_compress_ptr cinfo));
|
| -#ifdef ENTROPY_OPT_SUPPORTED
|
| -METHODDEF(boolean) encode_mcu_gather JPP((j_compress_ptr cinfo,
|
| - JBLOCKROW *MCU_data));
|
| -METHODDEF(void) finish_pass_gather JPP((j_compress_ptr cinfo));
|
| -#endif
|
| -
|
| -
|
| -/*
|
| - * Initialize for a Huffman-compressed scan.
|
| - * If gather_statistics is TRUE, we do not output anything during the scan,
|
| - * just count the Huffman symbols used and generate Huffman code tables.
|
| - */
|
| -
|
| -METHODDEF(void)
|
| -start_pass_huff (j_compress_ptr cinfo, boolean gather_statistics)
|
| -{
|
| - huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
|
| - int ci, dctbl, actbl;
|
| - jpeg_component_info * compptr;
|
| -
|
| - if (gather_statistics) {
|
| -#ifdef ENTROPY_OPT_SUPPORTED
|
| - entropy->pub.encode_mcu = encode_mcu_gather;
|
| - entropy->pub.finish_pass = finish_pass_gather;
|
| -#else
|
| - ERREXIT(cinfo, JERR_NOT_COMPILED);
|
| -#endif
|
| - } else {
|
| - entropy->pub.encode_mcu = encode_mcu_huff;
|
| - entropy->pub.finish_pass = finish_pass_huff;
|
| - }
|
| -
|
| - for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
| - compptr = cinfo->cur_comp_info[ci];
|
| - dctbl = compptr->dc_tbl_no;
|
| - actbl = compptr->ac_tbl_no;
|
| - if (gather_statistics) {
|
| -#ifdef ENTROPY_OPT_SUPPORTED
|
| - /* Check for invalid table indexes */
|
| - /* (make_c_derived_tbl does this in the other path) */
|
| - if (dctbl < 0 || dctbl >= NUM_HUFF_TBLS)
|
| - ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, dctbl);
|
| - if (actbl < 0 || actbl >= NUM_HUFF_TBLS)
|
| - ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, actbl);
|
| - /* Allocate and zero the statistics tables */
|
| - /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */
|
| - if (entropy->dc_count_ptrs[dctbl] == NULL)
|
| - entropy->dc_count_ptrs[dctbl] = (long *)
|
| - (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
| - 257 * SIZEOF(long));
|
| - MEMZERO(entropy->dc_count_ptrs[dctbl], 257 * SIZEOF(long));
|
| - if (entropy->ac_count_ptrs[actbl] == NULL)
|
| - entropy->ac_count_ptrs[actbl] = (long *)
|
| - (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
| - 257 * SIZEOF(long));
|
| - MEMZERO(entropy->ac_count_ptrs[actbl], 257 * SIZEOF(long));
|
| -#endif
|
| - } else {
|
| - /* Compute derived values for Huffman tables */
|
| - /* We may do this more than once for a table, but it's not expensive */
|
| - jpeg_make_c_derived_tbl(cinfo, TRUE, dctbl,
|
| - & entropy->dc_derived_tbls[dctbl]);
|
| - jpeg_make_c_derived_tbl(cinfo, FALSE, actbl,
|
| - & entropy->ac_derived_tbls[actbl]);
|
| - }
|
| - /* Initialize DC predictions to 0 */
|
| - entropy->saved.last_dc_val[ci] = 0;
|
| - }
|
| -
|
| - /* Initialize bit buffer to empty */
|
| - entropy->saved.put_buffer = 0;
|
| - entropy->saved.put_bits = 0;
|
| -
|
| - /* Initialize restart stuff */
|
| - entropy->restarts_to_go = cinfo->restart_interval;
|
| - entropy->next_restart_num = 0;
|
| -}
|
| -
|
| -
|
| -/*
|
| - * Compute the derived values for a Huffman table.
|
| - * This routine also performs some validation checks on the table.
|
| - *
|
| - * Note this is also used by jcphuff.c.
|
| - */
|
| -
|
| -GLOBAL(void)
|
| -jpeg_make_c_derived_tbl (j_compress_ptr cinfo, boolean isDC, int tblno,
|
| - c_derived_tbl ** pdtbl)
|
| -{
|
| - JHUFF_TBL *htbl;
|
| - c_derived_tbl *dtbl;
|
| - int p, i, l, lastp, si, maxsymbol;
|
| - char huffsize[257];
|
| - unsigned int huffcode[257];
|
| - unsigned int code;
|
| -
|
| - /* Note that huffsize[] and huffcode[] are filled in code-length order,
|
| - * paralleling the order of the symbols themselves in htbl->huffval[].
|
| - */
|
| -
|
| - /* Find the input Huffman table */
|
| - if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
|
| - ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
|
| - htbl =
|
| - isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
|
| - if (htbl == NULL)
|
| - ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
|
| -
|
| - /* Allocate a workspace if we haven't already done so. */
|
| - if (*pdtbl == NULL)
|
| - *pdtbl = (c_derived_tbl *)
|
| - (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
| - SIZEOF(c_derived_tbl));
|
| - dtbl = *pdtbl;
|
| -
|
| - /* Figure C.1: make table of Huffman code length for each symbol */
|
| -
|
| - p = 0;
|
| - for (l = 1; l <= 16; l++) {
|
| - i = (int) htbl->bits[l];
|
| - if (i < 0 || p + i > 256) /* protect against table overrun */
|
| - ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
|
| - while (i--)
|
| - huffsize[p++] = (char) l;
|
| - }
|
| - huffsize[p] = 0;
|
| - lastp = p;
|
| -
|
| - /* Figure C.2: generate the codes themselves */
|
| - /* We also validate that the counts represent a legal Huffman code tree. */
|
| -
|
| - code = 0;
|
| - si = huffsize[0];
|
| - p = 0;
|
| - while (huffsize[p]) {
|
| - while (((int) huffsize[p]) == si) {
|
| - huffcode[p++] = code;
|
| - code++;
|
| - }
|
| - /* code is now 1 more than the last code used for codelength si; but
|
| - * it must still fit in si bits, since no code is allowed to be all ones.
|
| - */
|
| - if (((INT32) code) >= (((INT32) 1) << si))
|
| - ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
|
| - code <<= 1;
|
| - si++;
|
| - }
|
| -
|
| - /* Figure C.3: generate encoding tables */
|
| - /* These are code and size indexed by symbol value */
|
| -
|
| - /* Set all codeless symbols to have code length 0;
|
| - * this lets us detect duplicate VAL entries here, and later
|
| - * allows emit_bits to detect any attempt to emit such symbols.
|
| - */
|
| - MEMZERO(dtbl->ehufsi, SIZEOF(dtbl->ehufsi));
|
| -
|
| - /* This is also a convenient place to check for out-of-range
|
| - * and duplicated VAL entries. We allow 0..255 for AC symbols
|
| - * but only 0..15 for DC. (We could constrain them further
|
| - * based on data depth and mode, but this seems enough.)
|
| - */
|
| - maxsymbol = isDC ? 15 : 255;
|
| -
|
| - for (p = 0; p < lastp; p++) {
|
| - i = htbl->huffval[p];
|
| - if (i < 0 || i > maxsymbol || dtbl->ehufsi[i])
|
| - ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
|
| - dtbl->ehufco[i] = huffcode[p];
|
| - dtbl->ehufsi[i] = huffsize[p];
|
| - }
|
| -}
|
| -
|
| -
|
| -/* Outputting bytes to the file */
|
| -
|
| -/* Emit a byte, taking 'action' if must suspend. */
|
| -#define emit_byte(state,val,action) \
|
| - { *(state)->next_output_byte++ = (JOCTET) (val); \
|
| - if (--(state)->free_in_buffer == 0) \
|
| - if (! dump_buffer(state)) \
|
| - { action; } }
|
| -
|
| -
|
| -LOCAL(boolean)
|
| -dump_buffer (working_state * state)
|
| -/* Empty the output buffer; return TRUE if successful, FALSE if must suspend */
|
| -{
|
| - struct jpeg_destination_mgr * dest = state->cinfo->dest;
|
| -
|
| - if (! (*dest->empty_output_buffer) (state->cinfo))
|
| - return FALSE;
|
| - /* After a successful buffer dump, must reset buffer pointers */
|
| - state->next_output_byte = dest->next_output_byte;
|
| - state->free_in_buffer = dest->free_in_buffer;
|
| - return TRUE;
|
| -}
|
| -
|
| -
|
| -/* Outputting bits to the file */
|
| -
|
| -/* Only the right 24 bits of put_buffer are used; the valid bits are
|
| - * left-justified in this part. At most 16 bits can be passed to emit_bits
|
| - * in one call, and we never retain more than 7 bits in put_buffer
|
| - * between calls, so 24 bits are sufficient.
|
| - */
|
| -
|
| -INLINE
|
| -LOCAL(boolean)
|
| -emit_bits (working_state * state, unsigned int code, int size)
|
| -/* Emit some bits; return TRUE if successful, FALSE if must suspend */
|
| -{
|
| - /* This routine is heavily used, so it's worth coding tightly. */
|
| - register INT32 put_buffer = (INT32) code;
|
| - register int put_bits = state->cur.put_bits;
|
| -
|
| - /* if size is 0, caller used an invalid Huffman table entry */
|
| - if (size == 0)
|
| - ERREXIT(state->cinfo, JERR_HUFF_MISSING_CODE);
|
| -
|
| - put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */
|
| -
|
| - put_bits += size; /* new number of bits in buffer */
|
| -
|
| - put_buffer <<= 24 - put_bits; /* align incoming bits */
|
| -
|
| - put_buffer |= state->cur.put_buffer; /* and merge with old buffer contents */
|
| -
|
| - while (put_bits >= 8) {
|
| - int c = (int) ((put_buffer >> 16) & 0xFF);
|
| -
|
| - emit_byte(state, c, return FALSE);
|
| - if (c == 0xFF) { /* need to stuff a zero byte? */
|
| - emit_byte(state, 0, return FALSE);
|
| - }
|
| - put_buffer <<= 8;
|
| - put_bits -= 8;
|
| - }
|
| -
|
| - state->cur.put_buffer = put_buffer; /* update state variables */
|
| - state->cur.put_bits = put_bits;
|
| -
|
| - return TRUE;
|
| -}
|
| -
|
| -
|
| -LOCAL(boolean)
|
| -flush_bits (working_state * state)
|
| -{
|
| - if (! emit_bits(state, 0x7F, 7)) /* fill any partial byte with ones */
|
| - return FALSE;
|
| - state->cur.put_buffer = 0; /* and reset bit-buffer to empty */
|
| - state->cur.put_bits = 0;
|
| - return TRUE;
|
| -}
|
| -
|
| -
|
| -/* Encode a single block's worth of coefficients */
|
| -
|
| -LOCAL(boolean)
|
| -encode_one_block (working_state * state, JCOEFPTR block, int last_dc_val,
|
| - c_derived_tbl *dctbl, c_derived_tbl *actbl)
|
| -{
|
| - register int temp, temp2;
|
| - register int nbits;
|
| - register int k, r, i;
|
| -
|
| - /* Encode the DC coefficient difference per section F.1.2.1 */
|
| -
|
| - temp = temp2 = block[0] - last_dc_val;
|
| -
|
| - if (temp < 0) {
|
| - temp = -temp; /* temp is abs value of input */
|
| - /* For a negative input, want temp2 = bitwise complement of abs(input) */
|
| - /* This code assumes we are on a two's complement machine */
|
| - temp2--;
|
| - }
|
| -
|
| - /* Find the number of bits needed for the magnitude of the coefficient */
|
| - nbits = 0;
|
| - while (temp) {
|
| - nbits++;
|
| - temp >>= 1;
|
| - }
|
| - /* Check for out-of-range coefficient values.
|
| - * Since we're encoding a difference, the range limit is twice as much.
|
| - */
|
| - if (nbits > MAX_COEF_BITS+1)
|
| - ERREXIT(state->cinfo, JERR_BAD_DCT_COEF);
|
| -
|
| - /* Emit the Huffman-coded symbol for the number of bits */
|
| - if (! emit_bits(state, dctbl->ehufco[nbits], dctbl->ehufsi[nbits]))
|
| - return FALSE;
|
| -
|
| - /* Emit that number of bits of the value, if positive, */
|
| - /* or the complement of its magnitude, if negative. */
|
| - if (nbits) /* emit_bits rejects calls with size 0 */
|
| - if (! emit_bits(state, (unsigned int) temp2, nbits))
|
| - return FALSE;
|
| -
|
| - /* Encode the AC coefficients per section F.1.2.2 */
|
| -
|
| - r = 0; /* r = run length of zeros */
|
| -
|
| - for (k = 1; k < DCTSIZE2; k++) {
|
| - if ((temp = block[jpeg_natural_order[k]]) == 0) {
|
| - r++;
|
| - } else {
|
| - /* if run length > 15, must emit special run-length-16 codes (0xF0) */
|
| - while (r > 15) {
|
| - if (! emit_bits(state, actbl->ehufco[0xF0], actbl->ehufsi[0xF0]))
|
| - return FALSE;
|
| - r -= 16;
|
| - }
|
| -
|
| - temp2 = temp;
|
| - if (temp < 0) {
|
| - temp = -temp; /* temp is abs value of input */
|
| - /* This code assumes we are on a two's complement machine */
|
| - temp2--;
|
| - }
|
| -
|
| - /* Find the number of bits needed for the magnitude of the coefficient */
|
| - nbits = 1; /* there must be at least one 1 bit */
|
| - while ((temp >>= 1))
|
| - nbits++;
|
| - /* Check for out-of-range coefficient values */
|
| - if (nbits > MAX_COEF_BITS)
|
| - ERREXIT(state->cinfo, JERR_BAD_DCT_COEF);
|
| -
|
| - /* Emit Huffman symbol for run length / number of bits */
|
| - i = (r << 4) + nbits;
|
| - if (! emit_bits(state, actbl->ehufco[i], actbl->ehufsi[i]))
|
| - return FALSE;
|
| -
|
| - /* Emit that number of bits of the value, if positive, */
|
| - /* or the complement of its magnitude, if negative. */
|
| - if (! emit_bits(state, (unsigned int) temp2, nbits))
|
| - return FALSE;
|
| -
|
| - r = 0;
|
| - }
|
| - }
|
| -
|
| - /* If the last coef(s) were zero, emit an end-of-block code */
|
| - if (r > 0)
|
| - if (! emit_bits(state, actbl->ehufco[0], actbl->ehufsi[0]))
|
| - return FALSE;
|
| -
|
| - return TRUE;
|
| -}
|
| -
|
| -
|
| -/*
|
| - * Emit a restart marker & resynchronize predictions.
|
| - */
|
| -
|
| -LOCAL(boolean)
|
| -emit_restart (working_state * state, int restart_num)
|
| -{
|
| - int ci;
|
| -
|
| - if (! flush_bits(state))
|
| - return FALSE;
|
| -
|
| - emit_byte(state, 0xFF, return FALSE);
|
| - emit_byte(state, JPEG_RST0 + restart_num, return FALSE);
|
| -
|
| - /* Re-initialize DC predictions to 0 */
|
| - for (ci = 0; ci < state->cinfo->comps_in_scan; ci++)
|
| - state->cur.last_dc_val[ci] = 0;
|
| -
|
| - /* The restart counter is not updated until we successfully write the MCU. */
|
| -
|
| - return TRUE;
|
| -}
|
| -
|
| -
|
| -/*
|
| - * Encode and output one MCU's worth of Huffman-compressed coefficients.
|
| - */
|
| -
|
| -METHODDEF(boolean)
|
| -encode_mcu_huff (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
|
| -{
|
| - huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
|
| - working_state state;
|
| - int blkn, ci;
|
| - jpeg_component_info * compptr;
|
| -
|
| - /* Load up working state */
|
| - state.next_output_byte = cinfo->dest->next_output_byte;
|
| - state.free_in_buffer = cinfo->dest->free_in_buffer;
|
| - ASSIGN_STATE(state.cur, entropy->saved);
|
| - state.cinfo = cinfo;
|
| -
|
| - /* Emit restart marker if needed */
|
| - if (cinfo->restart_interval) {
|
| - if (entropy->restarts_to_go == 0)
|
| - if (! emit_restart(&state, entropy->next_restart_num))
|
| - return FALSE;
|
| - }
|
| -
|
| - /* Encode the MCU data blocks */
|
| - for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
| - ci = cinfo->MCU_membership[blkn];
|
| - compptr = cinfo->cur_comp_info[ci];
|
| - if (! encode_one_block(&state,
|
| - MCU_data[blkn][0], state.cur.last_dc_val[ci],
|
| - entropy->dc_derived_tbls[compptr->dc_tbl_no],
|
| - entropy->ac_derived_tbls[compptr->ac_tbl_no]))
|
| - return FALSE;
|
| - /* Update last_dc_val */
|
| - state.cur.last_dc_val[ci] = MCU_data[blkn][0][0];
|
| - }
|
| -
|
| - /* Completed MCU, so update state */
|
| - cinfo->dest->next_output_byte = state.next_output_byte;
|
| - cinfo->dest->free_in_buffer = state.free_in_buffer;
|
| - ASSIGN_STATE(entropy->saved, state.cur);
|
| -
|
| - /* Update restart-interval state too */
|
| - if (cinfo->restart_interval) {
|
| - if (entropy->restarts_to_go == 0) {
|
| - entropy->restarts_to_go = cinfo->restart_interval;
|
| - entropy->next_restart_num++;
|
| - entropy->next_restart_num &= 7;
|
| - }
|
| - entropy->restarts_to_go--;
|
| - }
|
| -
|
| - return TRUE;
|
| -}
|
| -
|
| -
|
| -/*
|
| - * Finish up at the end of a Huffman-compressed scan.
|
| - */
|
| -
|
| -METHODDEF(void)
|
| -finish_pass_huff (j_compress_ptr cinfo)
|
| -{
|
| - huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
|
| - working_state state;
|
| -
|
| - /* Load up working state ... flush_bits needs it */
|
| - state.next_output_byte = cinfo->dest->next_output_byte;
|
| - state.free_in_buffer = cinfo->dest->free_in_buffer;
|
| - ASSIGN_STATE(state.cur, entropy->saved);
|
| - state.cinfo = cinfo;
|
| -
|
| - /* Flush out the last data */
|
| - if (! flush_bits(&state))
|
| - ERREXIT(cinfo, JERR_CANT_SUSPEND);
|
| -
|
| - /* Update state */
|
| - cinfo->dest->next_output_byte = state.next_output_byte;
|
| - cinfo->dest->free_in_buffer = state.free_in_buffer;
|
| - ASSIGN_STATE(entropy->saved, state.cur);
|
| -}
|
| -
|
| -
|
| -/*
|
| - * Huffman coding optimization.
|
| - *
|
| - * We first scan the supplied data and count the number of uses of each symbol
|
| - * that is to be Huffman-coded. (This process MUST agree with the code above.)
|
| - * Then we build a Huffman coding tree for the observed counts.
|
| - * Symbols which are not needed at all for the particular image are not
|
| - * assigned any code, which saves space in the DHT marker as well as in
|
| - * the compressed data.
|
| - */
|
| -
|
| -#ifdef ENTROPY_OPT_SUPPORTED
|
| -
|
| -
|
| -/* Process a single block's worth of coefficients */
|
| -
|
| -LOCAL(void)
|
| -htest_one_block (j_compress_ptr cinfo, JCOEFPTR block, int last_dc_val,
|
| - long dc_counts[], long ac_counts[])
|
| -{
|
| - register int temp;
|
| - register int nbits;
|
| - register int k, r;
|
| -
|
| - /* Encode the DC coefficient difference per section F.1.2.1 */
|
| -
|
| - temp = block[0] - last_dc_val;
|
| - if (temp < 0)
|
| - temp = -temp;
|
| -
|
| - /* Find the number of bits needed for the magnitude of the coefficient */
|
| - nbits = 0;
|
| - while (temp) {
|
| - nbits++;
|
| - temp >>= 1;
|
| - }
|
| - /* Check for out-of-range coefficient values.
|
| - * Since we're encoding a difference, the range limit is twice as much.
|
| - */
|
| - if (nbits > MAX_COEF_BITS+1)
|
| - ERREXIT(cinfo, JERR_BAD_DCT_COEF);
|
| -
|
| - /* Count the Huffman symbol for the number of bits */
|
| - dc_counts[nbits]++;
|
| -
|
| - /* Encode the AC coefficients per section F.1.2.2 */
|
| -
|
| - r = 0; /* r = run length of zeros */
|
| -
|
| - for (k = 1; k < DCTSIZE2; k++) {
|
| - if ((temp = block[jpeg_natural_order[k]]) == 0) {
|
| - r++;
|
| - } else {
|
| - /* if run length > 15, must emit special run-length-16 codes (0xF0) */
|
| - while (r > 15) {
|
| - ac_counts[0xF0]++;
|
| - r -= 16;
|
| - }
|
| -
|
| - /* Find the number of bits needed for the magnitude of the coefficient */
|
| - if (temp < 0)
|
| - temp = -temp;
|
| -
|
| - /* Find the number of bits needed for the magnitude of the coefficient */
|
| - nbits = 1; /* there must be at least one 1 bit */
|
| - while ((temp >>= 1))
|
| - nbits++;
|
| - /* Check for out-of-range coefficient values */
|
| - if (nbits > MAX_COEF_BITS)
|
| - ERREXIT(cinfo, JERR_BAD_DCT_COEF);
|
| -
|
| - /* Count Huffman symbol for run length / number of bits */
|
| - ac_counts[(r << 4) + nbits]++;
|
| -
|
| - r = 0;
|
| - }
|
| - }
|
| -
|
| - /* If the last coef(s) were zero, emit an end-of-block code */
|
| - if (r > 0)
|
| - ac_counts[0]++;
|
| -}
|
| -
|
| -
|
| -/*
|
| - * Trial-encode one MCU's worth of Huffman-compressed coefficients.
|
| - * No data is actually output, so no suspension return is possible.
|
| - */
|
| -
|
| -METHODDEF(boolean)
|
| -encode_mcu_gather (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
|
| -{
|
| - huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
|
| - int blkn, ci;
|
| - jpeg_component_info * compptr;
|
| -
|
| - /* Take care of restart intervals if needed */
|
| - if (cinfo->restart_interval) {
|
| - if (entropy->restarts_to_go == 0) {
|
| - /* Re-initialize DC predictions to 0 */
|
| - for (ci = 0; ci < cinfo->comps_in_scan; ci++)
|
| - entropy->saved.last_dc_val[ci] = 0;
|
| - /* Update restart state */
|
| - entropy->restarts_to_go = cinfo->restart_interval;
|
| - }
|
| - entropy->restarts_to_go--;
|
| - }
|
| -
|
| - for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
| - ci = cinfo->MCU_membership[blkn];
|
| - compptr = cinfo->cur_comp_info[ci];
|
| - htest_one_block(cinfo, MCU_data[blkn][0], entropy->saved.last_dc_val[ci],
|
| - entropy->dc_count_ptrs[compptr->dc_tbl_no],
|
| - entropy->ac_count_ptrs[compptr->ac_tbl_no]);
|
| - entropy->saved.last_dc_val[ci] = MCU_data[blkn][0][0];
|
| - }
|
| -
|
| - return TRUE;
|
| -}
|
| -
|
| -
|
| -/*
|
| - * Generate the best Huffman code table for the given counts, fill htbl.
|
| - * Note this is also used by jcphuff.c.
|
| - *
|
| - * The JPEG standard requires that no symbol be assigned a codeword of all
|
| - * one bits (so that padding bits added at the end of a compressed segment
|
| - * can't look like a valid code). Because of the canonical ordering of
|
| - * codewords, this just means that there must be an unused slot in the
|
| - * longest codeword length category. Section K.2 of the JPEG spec suggests
|
| - * reserving such a slot by pretending that symbol 256 is a valid symbol
|
| - * with count 1. In theory that's not optimal; giving it count zero but
|
| - * including it in the symbol set anyway should give a better Huffman code.
|
| - * But the theoretically better code actually seems to come out worse in
|
| - * practice, because it produces more all-ones bytes (which incur stuffed
|
| - * zero bytes in the final file). In any case the difference is tiny.
|
| - *
|
| - * The JPEG standard requires Huffman codes to be no more than 16 bits long.
|
| - * If some symbols have a very small but nonzero probability, the Huffman tree
|
| - * must be adjusted to meet the code length restriction. We currently use
|
| - * the adjustment method suggested in JPEG section K.2. This method is *not*
|
| - * optimal; it may not choose the best possible limited-length code. But
|
| - * typically only very-low-frequency symbols will be given less-than-optimal
|
| - * lengths, so the code is almost optimal. Experimental comparisons against
|
| - * an optimal limited-length-code algorithm indicate that the difference is
|
| - * microscopic --- usually less than a hundredth of a percent of total size.
|
| - * So the extra complexity of an optimal algorithm doesn't seem worthwhile.
|
| - */
|
| -
|
| -GLOBAL(void)
|
| -jpeg_gen_optimal_table (j_compress_ptr cinfo, JHUFF_TBL * htbl, long freq[])
|
| -{
|
| -#define MAX_CLEN 32 /* assumed maximum initial code length */
|
| - UINT8 bits[MAX_CLEN+1]; /* bits[k] = # of symbols with code length k */
|
| - int codesize[257]; /* codesize[k] = code length of symbol k */
|
| - int others[257]; /* next symbol in current branch of tree */
|
| - int c1, c2;
|
| - int p, i, j;
|
| - long v;
|
| -
|
| - /* This algorithm is explained in section K.2 of the JPEG standard */
|
| -
|
| - MEMZERO(bits, SIZEOF(bits));
|
| - MEMZERO(codesize, SIZEOF(codesize));
|
| - for (i = 0; i < 257; i++)
|
| - others[i] = -1; /* init links to empty */
|
| -
|
| - freq[256] = 1; /* make sure 256 has a nonzero count */
|
| - /* Including the pseudo-symbol 256 in the Huffman procedure guarantees
|
| - * that no real symbol is given code-value of all ones, because 256
|
| - * will be placed last in the largest codeword category.
|
| - */
|
| -
|
| - /* Huffman's basic algorithm to assign optimal code lengths to symbols */
|
| -
|
| - for (;;) {
|
| - /* Find the smallest nonzero frequency, set c1 = its symbol */
|
| - /* In case of ties, take the larger symbol number */
|
| - c1 = -1;
|
| - v = 1000000000L;
|
| - for (i = 0; i <= 256; i++) {
|
| - if (freq[i] && freq[i] <= v) {
|
| - v = freq[i];
|
| - c1 = i;
|
| - }
|
| - }
|
| -
|
| - /* Find the next smallest nonzero frequency, set c2 = its symbol */
|
| - /* In case of ties, take the larger symbol number */
|
| - c2 = -1;
|
| - v = 1000000000L;
|
| - for (i = 0; i <= 256; i++) {
|
| - if (freq[i] && freq[i] <= v && i != c1) {
|
| - v = freq[i];
|
| - c2 = i;
|
| - }
|
| - }
|
| -
|
| - /* Done if we've merged everything into one frequency */
|
| - if (c2 < 0)
|
| - break;
|
| -
|
| - /* Else merge the two counts/trees */
|
| - freq[c1] += freq[c2];
|
| - freq[c2] = 0;
|
| -
|
| - /* Increment the codesize of everything in c1's tree branch */
|
| - codesize[c1]++;
|
| - while (others[c1] >= 0) {
|
| - c1 = others[c1];
|
| - codesize[c1]++;
|
| - }
|
| -
|
| - others[c1] = c2; /* chain c2 onto c1's tree branch */
|
| -
|
| - /* Increment the codesize of everything in c2's tree branch */
|
| - codesize[c2]++;
|
| - while (others[c2] >= 0) {
|
| - c2 = others[c2];
|
| - codesize[c2]++;
|
| - }
|
| - }
|
| -
|
| - /* Now count the number of symbols of each code length */
|
| - for (i = 0; i <= 256; i++) {
|
| - if (codesize[i]) {
|
| - /* The JPEG standard seems to think that this can't happen, */
|
| - /* but I'm paranoid... */
|
| - if (codesize[i] > MAX_CLEN)
|
| - ERREXIT(cinfo, JERR_HUFF_CLEN_OVERFLOW);
|
| -
|
| - bits[codesize[i]]++;
|
| - }
|
| - }
|
| -
|
| - /* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure
|
| - * Huffman procedure assigned any such lengths, we must adjust the coding.
|
| - * Here is what the JPEG spec says about how this next bit works:
|
| - * Since symbols are paired for the longest Huffman code, the symbols are
|
| - * removed from this length category two at a time. The prefix for the pair
|
| - * (which is one bit shorter) is allocated to one of the pair; then,
|
| - * skipping the BITS entry for that prefix length, a code word from the next
|
| - * shortest nonzero BITS entry is converted into a prefix for two code words
|
| - * one bit longer.
|
| - */
|
| -
|
| - for (i = MAX_CLEN; i > 16; i--) {
|
| - while (bits[i] > 0) {
|
| - j = i - 2; /* find length of new prefix to be used */
|
| - while (bits[j] == 0)
|
| - j--;
|
| -
|
| - bits[i] -= 2; /* remove two symbols */
|
| - bits[i-1]++; /* one goes in this length */
|
| - bits[j+1] += 2; /* two new symbols in this length */
|
| - bits[j]--; /* symbol of this length is now a prefix */
|
| - }
|
| - }
|
| -
|
| - /* Remove the count for the pseudo-symbol 256 from the largest codelength */
|
| - while (bits[i] == 0) /* find largest codelength still in use */
|
| - i--;
|
| - bits[i]--;
|
| -
|
| - /* Return final symbol counts (only for lengths 0..16) */
|
| - MEMCOPY(htbl->bits, bits, SIZEOF(htbl->bits));
|
| -
|
| - /* Return a list of the symbols sorted by code length */
|
| - /* It's not real clear to me why we don't need to consider the codelength
|
| - * changes made above, but the JPEG spec seems to think this works.
|
| - */
|
| - p = 0;
|
| - for (i = 1; i <= MAX_CLEN; i++) {
|
| - for (j = 0; j <= 255; j++) {
|
| - if (codesize[j] == i) {
|
| - htbl->huffval[p] = (UINT8) j;
|
| - p++;
|
| - }
|
| - }
|
| - }
|
| -
|
| - /* Set sent_table FALSE so updated table will be written to JPEG file. */
|
| - htbl->sent_table = FALSE;
|
| -}
|
| -
|
| -
|
| -/*
|
| - * Finish up a statistics-gathering pass and create the new Huffman tables.
|
| - */
|
| -
|
| -METHODDEF(void)
|
| -finish_pass_gather (j_compress_ptr cinfo)
|
| -{
|
| - huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
|
| - int ci, dctbl, actbl;
|
| - jpeg_component_info * compptr;
|
| - JHUFF_TBL **htblptr;
|
| - boolean did_dc[NUM_HUFF_TBLS];
|
| - boolean did_ac[NUM_HUFF_TBLS];
|
| -
|
| - /* It's important not to apply jpeg_gen_optimal_table more than once
|
| - * per table, because it clobbers the input frequency counts!
|
| - */
|
| - MEMZERO(did_dc, SIZEOF(did_dc));
|
| - MEMZERO(did_ac, SIZEOF(did_ac));
|
| -
|
| - for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
| - compptr = cinfo->cur_comp_info[ci];
|
| - dctbl = compptr->dc_tbl_no;
|
| - actbl = compptr->ac_tbl_no;
|
| - if (! did_dc[dctbl]) {
|
| - htblptr = & cinfo->dc_huff_tbl_ptrs[dctbl];
|
| - if (*htblptr == NULL)
|
| - *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
|
| - jpeg_gen_optimal_table(cinfo, *htblptr, entropy->dc_count_ptrs[dctbl]);
|
| - did_dc[dctbl] = TRUE;
|
| - }
|
| - if (! did_ac[actbl]) {
|
| - htblptr = & cinfo->ac_huff_tbl_ptrs[actbl];
|
| - if (*htblptr == NULL)
|
| - *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
|
| - jpeg_gen_optimal_table(cinfo, *htblptr, entropy->ac_count_ptrs[actbl]);
|
| - did_ac[actbl] = TRUE;
|
| - }
|
| - }
|
| -}
|
| -
|
| -
|
| -#endif /* ENTROPY_OPT_SUPPORTED */
|
| -
|
| -
|
| -/*
|
| - * Module initialization routine for Huffman entropy encoding.
|
| - */
|
| -
|
| -GLOBAL(void)
|
| -jinit_huff_encoder (j_compress_ptr cinfo)
|
| -{
|
| - huff_entropy_ptr entropy;
|
| - int i;
|
| -
|
| - entropy = (huff_entropy_ptr)
|
| - (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
| - SIZEOF(huff_entropy_encoder));
|
| - cinfo->entropy = (struct jpeg_entropy_encoder *) entropy;
|
| - entropy->pub.start_pass = start_pass_huff;
|
| -
|
| - /* Mark tables unallocated */
|
| - for (i = 0; i < NUM_HUFF_TBLS; i++) {
|
| - entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
|
| -#ifdef ENTROPY_OPT_SUPPORTED
|
| - entropy->dc_count_ptrs[i] = entropy->ac_count_ptrs[i] = NULL;
|
| -#endif
|
| - }
|
| -}
|
|
|