Index: third_party/libjpeg/jchuff.c |
diff --git a/third_party/libjpeg/jchuff.c b/third_party/libjpeg/jchuff.c |
deleted file mode 100644 |
index f235250548671f2d52cabd12ce366a07db4cbf34..0000000000000000000000000000000000000000 |
--- a/third_party/libjpeg/jchuff.c |
+++ /dev/null |
@@ -1,909 +0,0 @@ |
-/* |
- * jchuff.c |
- * |
- * Copyright (C) 1991-1997, Thomas G. Lane. |
- * This file is part of the Independent JPEG Group's software. |
- * For conditions of distribution and use, see the accompanying README file. |
- * |
- * This file contains Huffman entropy encoding routines. |
- * |
- * Much of the complexity here has to do with supporting output suspension. |
- * If the data destination module demands suspension, we want to be able to |
- * back up to the start of the current MCU. To do this, we copy state |
- * variables into local working storage, and update them back to the |
- * permanent JPEG objects only upon successful completion of an MCU. |
- */ |
- |
-#define JPEG_INTERNALS |
-#include "jinclude.h" |
-#include "jpeglib.h" |
-#include "jchuff.h" /* Declarations shared with jcphuff.c */ |
- |
- |
-/* Expanded entropy encoder object for Huffman encoding. |
- * |
- * The savable_state subrecord contains fields that change within an MCU, |
- * but must not be updated permanently until we complete the MCU. |
- */ |
- |
-typedef struct { |
- INT32 put_buffer; /* current bit-accumulation buffer */ |
- int put_bits; /* # of bits now in it */ |
- int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ |
-} savable_state; |
- |
-/* This macro is to work around compilers with missing or broken |
- * structure assignment. You'll need to fix this code if you have |
- * such a compiler and you change MAX_COMPS_IN_SCAN. |
- */ |
- |
-#ifndef NO_STRUCT_ASSIGN |
-#define ASSIGN_STATE(dest,src) ((dest) = (src)) |
-#else |
-#if MAX_COMPS_IN_SCAN == 4 |
-#define ASSIGN_STATE(dest,src) \ |
- ((dest).put_buffer = (src).put_buffer, \ |
- (dest).put_bits = (src).put_bits, \ |
- (dest).last_dc_val[0] = (src).last_dc_val[0], \ |
- (dest).last_dc_val[1] = (src).last_dc_val[1], \ |
- (dest).last_dc_val[2] = (src).last_dc_val[2], \ |
- (dest).last_dc_val[3] = (src).last_dc_val[3]) |
-#endif |
-#endif |
- |
- |
-typedef struct { |
- struct jpeg_entropy_encoder pub; /* public fields */ |
- |
- savable_state saved; /* Bit buffer & DC state at start of MCU */ |
- |
- /* These fields are NOT loaded into local working state. */ |
- unsigned int restarts_to_go; /* MCUs left in this restart interval */ |
- int next_restart_num; /* next restart number to write (0-7) */ |
- |
- /* Pointers to derived tables (these workspaces have image lifespan) */ |
- c_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS]; |
- c_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS]; |
- |
-#ifdef ENTROPY_OPT_SUPPORTED /* Statistics tables for optimization */ |
- long * dc_count_ptrs[NUM_HUFF_TBLS]; |
- long * ac_count_ptrs[NUM_HUFF_TBLS]; |
-#endif |
-} huff_entropy_encoder; |
- |
-typedef huff_entropy_encoder * huff_entropy_ptr; |
- |
-/* Working state while writing an MCU. |
- * This struct contains all the fields that are needed by subroutines. |
- */ |
- |
-typedef struct { |
- JOCTET * next_output_byte; /* => next byte to write in buffer */ |
- size_t free_in_buffer; /* # of byte spaces remaining in buffer */ |
- savable_state cur; /* Current bit buffer & DC state */ |
- j_compress_ptr cinfo; /* dump_buffer needs access to this */ |
-} working_state; |
- |
- |
-/* Forward declarations */ |
-METHODDEF(boolean) encode_mcu_huff JPP((j_compress_ptr cinfo, |
- JBLOCKROW *MCU_data)); |
-METHODDEF(void) finish_pass_huff JPP((j_compress_ptr cinfo)); |
-#ifdef ENTROPY_OPT_SUPPORTED |
-METHODDEF(boolean) encode_mcu_gather JPP((j_compress_ptr cinfo, |
- JBLOCKROW *MCU_data)); |
-METHODDEF(void) finish_pass_gather JPP((j_compress_ptr cinfo)); |
-#endif |
- |
- |
-/* |
- * Initialize for a Huffman-compressed scan. |
- * If gather_statistics is TRUE, we do not output anything during the scan, |
- * just count the Huffman symbols used and generate Huffman code tables. |
- */ |
- |
-METHODDEF(void) |
-start_pass_huff (j_compress_ptr cinfo, boolean gather_statistics) |
-{ |
- huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
- int ci, dctbl, actbl; |
- jpeg_component_info * compptr; |
- |
- if (gather_statistics) { |
-#ifdef ENTROPY_OPT_SUPPORTED |
- entropy->pub.encode_mcu = encode_mcu_gather; |
- entropy->pub.finish_pass = finish_pass_gather; |
-#else |
- ERREXIT(cinfo, JERR_NOT_COMPILED); |
-#endif |
- } else { |
- entropy->pub.encode_mcu = encode_mcu_huff; |
- entropy->pub.finish_pass = finish_pass_huff; |
- } |
- |
- for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
- compptr = cinfo->cur_comp_info[ci]; |
- dctbl = compptr->dc_tbl_no; |
- actbl = compptr->ac_tbl_no; |
- if (gather_statistics) { |
-#ifdef ENTROPY_OPT_SUPPORTED |
- /* Check for invalid table indexes */ |
- /* (make_c_derived_tbl does this in the other path) */ |
- if (dctbl < 0 || dctbl >= NUM_HUFF_TBLS) |
- ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, dctbl); |
- if (actbl < 0 || actbl >= NUM_HUFF_TBLS) |
- ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, actbl); |
- /* Allocate and zero the statistics tables */ |
- /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */ |
- if (entropy->dc_count_ptrs[dctbl] == NULL) |
- entropy->dc_count_ptrs[dctbl] = (long *) |
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
- 257 * SIZEOF(long)); |
- MEMZERO(entropy->dc_count_ptrs[dctbl], 257 * SIZEOF(long)); |
- if (entropy->ac_count_ptrs[actbl] == NULL) |
- entropy->ac_count_ptrs[actbl] = (long *) |
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
- 257 * SIZEOF(long)); |
- MEMZERO(entropy->ac_count_ptrs[actbl], 257 * SIZEOF(long)); |
-#endif |
- } else { |
- /* Compute derived values for Huffman tables */ |
- /* We may do this more than once for a table, but it's not expensive */ |
- jpeg_make_c_derived_tbl(cinfo, TRUE, dctbl, |
- & entropy->dc_derived_tbls[dctbl]); |
- jpeg_make_c_derived_tbl(cinfo, FALSE, actbl, |
- & entropy->ac_derived_tbls[actbl]); |
- } |
- /* Initialize DC predictions to 0 */ |
- entropy->saved.last_dc_val[ci] = 0; |
- } |
- |
- /* Initialize bit buffer to empty */ |
- entropy->saved.put_buffer = 0; |
- entropy->saved.put_bits = 0; |
- |
- /* Initialize restart stuff */ |
- entropy->restarts_to_go = cinfo->restart_interval; |
- entropy->next_restart_num = 0; |
-} |
- |
- |
-/* |
- * Compute the derived values for a Huffman table. |
- * This routine also performs some validation checks on the table. |
- * |
- * Note this is also used by jcphuff.c. |
- */ |
- |
-GLOBAL(void) |
-jpeg_make_c_derived_tbl (j_compress_ptr cinfo, boolean isDC, int tblno, |
- c_derived_tbl ** pdtbl) |
-{ |
- JHUFF_TBL *htbl; |
- c_derived_tbl *dtbl; |
- int p, i, l, lastp, si, maxsymbol; |
- char huffsize[257]; |
- unsigned int huffcode[257]; |
- unsigned int code; |
- |
- /* Note that huffsize[] and huffcode[] are filled in code-length order, |
- * paralleling the order of the symbols themselves in htbl->huffval[]. |
- */ |
- |
- /* Find the input Huffman table */ |
- if (tblno < 0 || tblno >= NUM_HUFF_TBLS) |
- ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); |
- htbl = |
- isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno]; |
- if (htbl == NULL) |
- ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); |
- |
- /* Allocate a workspace if we haven't already done so. */ |
- if (*pdtbl == NULL) |
- *pdtbl = (c_derived_tbl *) |
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
- SIZEOF(c_derived_tbl)); |
- dtbl = *pdtbl; |
- |
- /* Figure C.1: make table of Huffman code length for each symbol */ |
- |
- p = 0; |
- for (l = 1; l <= 16; l++) { |
- i = (int) htbl->bits[l]; |
- if (i < 0 || p + i > 256) /* protect against table overrun */ |
- ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); |
- while (i--) |
- huffsize[p++] = (char) l; |
- } |
- huffsize[p] = 0; |
- lastp = p; |
- |
- /* Figure C.2: generate the codes themselves */ |
- /* We also validate that the counts represent a legal Huffman code tree. */ |
- |
- code = 0; |
- si = huffsize[0]; |
- p = 0; |
- while (huffsize[p]) { |
- while (((int) huffsize[p]) == si) { |
- huffcode[p++] = code; |
- code++; |
- } |
- /* code is now 1 more than the last code used for codelength si; but |
- * it must still fit in si bits, since no code is allowed to be all ones. |
- */ |
- if (((INT32) code) >= (((INT32) 1) << si)) |
- ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); |
- code <<= 1; |
- si++; |
- } |
- |
- /* Figure C.3: generate encoding tables */ |
- /* These are code and size indexed by symbol value */ |
- |
- /* Set all codeless symbols to have code length 0; |
- * this lets us detect duplicate VAL entries here, and later |
- * allows emit_bits to detect any attempt to emit such symbols. |
- */ |
- MEMZERO(dtbl->ehufsi, SIZEOF(dtbl->ehufsi)); |
- |
- /* This is also a convenient place to check for out-of-range |
- * and duplicated VAL entries. We allow 0..255 for AC symbols |
- * but only 0..15 for DC. (We could constrain them further |
- * based on data depth and mode, but this seems enough.) |
- */ |
- maxsymbol = isDC ? 15 : 255; |
- |
- for (p = 0; p < lastp; p++) { |
- i = htbl->huffval[p]; |
- if (i < 0 || i > maxsymbol || dtbl->ehufsi[i]) |
- ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); |
- dtbl->ehufco[i] = huffcode[p]; |
- dtbl->ehufsi[i] = huffsize[p]; |
- } |
-} |
- |
- |
-/* Outputting bytes to the file */ |
- |
-/* Emit a byte, taking 'action' if must suspend. */ |
-#define emit_byte(state,val,action) \ |
- { *(state)->next_output_byte++ = (JOCTET) (val); \ |
- if (--(state)->free_in_buffer == 0) \ |
- if (! dump_buffer(state)) \ |
- { action; } } |
- |
- |
-LOCAL(boolean) |
-dump_buffer (working_state * state) |
-/* Empty the output buffer; return TRUE if successful, FALSE if must suspend */ |
-{ |
- struct jpeg_destination_mgr * dest = state->cinfo->dest; |
- |
- if (! (*dest->empty_output_buffer) (state->cinfo)) |
- return FALSE; |
- /* After a successful buffer dump, must reset buffer pointers */ |
- state->next_output_byte = dest->next_output_byte; |
- state->free_in_buffer = dest->free_in_buffer; |
- return TRUE; |
-} |
- |
- |
-/* Outputting bits to the file */ |
- |
-/* Only the right 24 bits of put_buffer are used; the valid bits are |
- * left-justified in this part. At most 16 bits can be passed to emit_bits |
- * in one call, and we never retain more than 7 bits in put_buffer |
- * between calls, so 24 bits are sufficient. |
- */ |
- |
-INLINE |
-LOCAL(boolean) |
-emit_bits (working_state * state, unsigned int code, int size) |
-/* Emit some bits; return TRUE if successful, FALSE if must suspend */ |
-{ |
- /* This routine is heavily used, so it's worth coding tightly. */ |
- register INT32 put_buffer = (INT32) code; |
- register int put_bits = state->cur.put_bits; |
- |
- /* if size is 0, caller used an invalid Huffman table entry */ |
- if (size == 0) |
- ERREXIT(state->cinfo, JERR_HUFF_MISSING_CODE); |
- |
- put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */ |
- |
- put_bits += size; /* new number of bits in buffer */ |
- |
- put_buffer <<= 24 - put_bits; /* align incoming bits */ |
- |
- put_buffer |= state->cur.put_buffer; /* and merge with old buffer contents */ |
- |
- while (put_bits >= 8) { |
- int c = (int) ((put_buffer >> 16) & 0xFF); |
- |
- emit_byte(state, c, return FALSE); |
- if (c == 0xFF) { /* need to stuff a zero byte? */ |
- emit_byte(state, 0, return FALSE); |
- } |
- put_buffer <<= 8; |
- put_bits -= 8; |
- } |
- |
- state->cur.put_buffer = put_buffer; /* update state variables */ |
- state->cur.put_bits = put_bits; |
- |
- return TRUE; |
-} |
- |
- |
-LOCAL(boolean) |
-flush_bits (working_state * state) |
-{ |
- if (! emit_bits(state, 0x7F, 7)) /* fill any partial byte with ones */ |
- return FALSE; |
- state->cur.put_buffer = 0; /* and reset bit-buffer to empty */ |
- state->cur.put_bits = 0; |
- return TRUE; |
-} |
- |
- |
-/* Encode a single block's worth of coefficients */ |
- |
-LOCAL(boolean) |
-encode_one_block (working_state * state, JCOEFPTR block, int last_dc_val, |
- c_derived_tbl *dctbl, c_derived_tbl *actbl) |
-{ |
- register int temp, temp2; |
- register int nbits; |
- register int k, r, i; |
- |
- /* Encode the DC coefficient difference per section F.1.2.1 */ |
- |
- temp = temp2 = block[0] - last_dc_val; |
- |
- if (temp < 0) { |
- temp = -temp; /* temp is abs value of input */ |
- /* For a negative input, want temp2 = bitwise complement of abs(input) */ |
- /* This code assumes we are on a two's complement machine */ |
- temp2--; |
- } |
- |
- /* Find the number of bits needed for the magnitude of the coefficient */ |
- nbits = 0; |
- while (temp) { |
- nbits++; |
- temp >>= 1; |
- } |
- /* Check for out-of-range coefficient values. |
- * Since we're encoding a difference, the range limit is twice as much. |
- */ |
- if (nbits > MAX_COEF_BITS+1) |
- ERREXIT(state->cinfo, JERR_BAD_DCT_COEF); |
- |
- /* Emit the Huffman-coded symbol for the number of bits */ |
- if (! emit_bits(state, dctbl->ehufco[nbits], dctbl->ehufsi[nbits])) |
- return FALSE; |
- |
- /* Emit that number of bits of the value, if positive, */ |
- /* or the complement of its magnitude, if negative. */ |
- if (nbits) /* emit_bits rejects calls with size 0 */ |
- if (! emit_bits(state, (unsigned int) temp2, nbits)) |
- return FALSE; |
- |
- /* Encode the AC coefficients per section F.1.2.2 */ |
- |
- r = 0; /* r = run length of zeros */ |
- |
- for (k = 1; k < DCTSIZE2; k++) { |
- if ((temp = block[jpeg_natural_order[k]]) == 0) { |
- r++; |
- } else { |
- /* if run length > 15, must emit special run-length-16 codes (0xF0) */ |
- while (r > 15) { |
- if (! emit_bits(state, actbl->ehufco[0xF0], actbl->ehufsi[0xF0])) |
- return FALSE; |
- r -= 16; |
- } |
- |
- temp2 = temp; |
- if (temp < 0) { |
- temp = -temp; /* temp is abs value of input */ |
- /* This code assumes we are on a two's complement machine */ |
- temp2--; |
- } |
- |
- /* Find the number of bits needed for the magnitude of the coefficient */ |
- nbits = 1; /* there must be at least one 1 bit */ |
- while ((temp >>= 1)) |
- nbits++; |
- /* Check for out-of-range coefficient values */ |
- if (nbits > MAX_COEF_BITS) |
- ERREXIT(state->cinfo, JERR_BAD_DCT_COEF); |
- |
- /* Emit Huffman symbol for run length / number of bits */ |
- i = (r << 4) + nbits; |
- if (! emit_bits(state, actbl->ehufco[i], actbl->ehufsi[i])) |
- return FALSE; |
- |
- /* Emit that number of bits of the value, if positive, */ |
- /* or the complement of its magnitude, if negative. */ |
- if (! emit_bits(state, (unsigned int) temp2, nbits)) |
- return FALSE; |
- |
- r = 0; |
- } |
- } |
- |
- /* If the last coef(s) were zero, emit an end-of-block code */ |
- if (r > 0) |
- if (! emit_bits(state, actbl->ehufco[0], actbl->ehufsi[0])) |
- return FALSE; |
- |
- return TRUE; |
-} |
- |
- |
-/* |
- * Emit a restart marker & resynchronize predictions. |
- */ |
- |
-LOCAL(boolean) |
-emit_restart (working_state * state, int restart_num) |
-{ |
- int ci; |
- |
- if (! flush_bits(state)) |
- return FALSE; |
- |
- emit_byte(state, 0xFF, return FALSE); |
- emit_byte(state, JPEG_RST0 + restart_num, return FALSE); |
- |
- /* Re-initialize DC predictions to 0 */ |
- for (ci = 0; ci < state->cinfo->comps_in_scan; ci++) |
- state->cur.last_dc_val[ci] = 0; |
- |
- /* The restart counter is not updated until we successfully write the MCU. */ |
- |
- return TRUE; |
-} |
- |
- |
-/* |
- * Encode and output one MCU's worth of Huffman-compressed coefficients. |
- */ |
- |
-METHODDEF(boolean) |
-encode_mcu_huff (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
-{ |
- huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
- working_state state; |
- int blkn, ci; |
- jpeg_component_info * compptr; |
- |
- /* Load up working state */ |
- state.next_output_byte = cinfo->dest->next_output_byte; |
- state.free_in_buffer = cinfo->dest->free_in_buffer; |
- ASSIGN_STATE(state.cur, entropy->saved); |
- state.cinfo = cinfo; |
- |
- /* Emit restart marker if needed */ |
- if (cinfo->restart_interval) { |
- if (entropy->restarts_to_go == 0) |
- if (! emit_restart(&state, entropy->next_restart_num)) |
- return FALSE; |
- } |
- |
- /* Encode the MCU data blocks */ |
- for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
- ci = cinfo->MCU_membership[blkn]; |
- compptr = cinfo->cur_comp_info[ci]; |
- if (! encode_one_block(&state, |
- MCU_data[blkn][0], state.cur.last_dc_val[ci], |
- entropy->dc_derived_tbls[compptr->dc_tbl_no], |
- entropy->ac_derived_tbls[compptr->ac_tbl_no])) |
- return FALSE; |
- /* Update last_dc_val */ |
- state.cur.last_dc_val[ci] = MCU_data[blkn][0][0]; |
- } |
- |
- /* Completed MCU, so update state */ |
- cinfo->dest->next_output_byte = state.next_output_byte; |
- cinfo->dest->free_in_buffer = state.free_in_buffer; |
- ASSIGN_STATE(entropy->saved, state.cur); |
- |
- /* Update restart-interval state too */ |
- if (cinfo->restart_interval) { |
- if (entropy->restarts_to_go == 0) { |
- entropy->restarts_to_go = cinfo->restart_interval; |
- entropy->next_restart_num++; |
- entropy->next_restart_num &= 7; |
- } |
- entropy->restarts_to_go--; |
- } |
- |
- return TRUE; |
-} |
- |
- |
-/* |
- * Finish up at the end of a Huffman-compressed scan. |
- */ |
- |
-METHODDEF(void) |
-finish_pass_huff (j_compress_ptr cinfo) |
-{ |
- huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
- working_state state; |
- |
- /* Load up working state ... flush_bits needs it */ |
- state.next_output_byte = cinfo->dest->next_output_byte; |
- state.free_in_buffer = cinfo->dest->free_in_buffer; |
- ASSIGN_STATE(state.cur, entropy->saved); |
- state.cinfo = cinfo; |
- |
- /* Flush out the last data */ |
- if (! flush_bits(&state)) |
- ERREXIT(cinfo, JERR_CANT_SUSPEND); |
- |
- /* Update state */ |
- cinfo->dest->next_output_byte = state.next_output_byte; |
- cinfo->dest->free_in_buffer = state.free_in_buffer; |
- ASSIGN_STATE(entropy->saved, state.cur); |
-} |
- |
- |
-/* |
- * Huffman coding optimization. |
- * |
- * We first scan the supplied data and count the number of uses of each symbol |
- * that is to be Huffman-coded. (This process MUST agree with the code above.) |
- * Then we build a Huffman coding tree for the observed counts. |
- * Symbols which are not needed at all for the particular image are not |
- * assigned any code, which saves space in the DHT marker as well as in |
- * the compressed data. |
- */ |
- |
-#ifdef ENTROPY_OPT_SUPPORTED |
- |
- |
-/* Process a single block's worth of coefficients */ |
- |
-LOCAL(void) |
-htest_one_block (j_compress_ptr cinfo, JCOEFPTR block, int last_dc_val, |
- long dc_counts[], long ac_counts[]) |
-{ |
- register int temp; |
- register int nbits; |
- register int k, r; |
- |
- /* Encode the DC coefficient difference per section F.1.2.1 */ |
- |
- temp = block[0] - last_dc_val; |
- if (temp < 0) |
- temp = -temp; |
- |
- /* Find the number of bits needed for the magnitude of the coefficient */ |
- nbits = 0; |
- while (temp) { |
- nbits++; |
- temp >>= 1; |
- } |
- /* Check for out-of-range coefficient values. |
- * Since we're encoding a difference, the range limit is twice as much. |
- */ |
- if (nbits > MAX_COEF_BITS+1) |
- ERREXIT(cinfo, JERR_BAD_DCT_COEF); |
- |
- /* Count the Huffman symbol for the number of bits */ |
- dc_counts[nbits]++; |
- |
- /* Encode the AC coefficients per section F.1.2.2 */ |
- |
- r = 0; /* r = run length of zeros */ |
- |
- for (k = 1; k < DCTSIZE2; k++) { |
- if ((temp = block[jpeg_natural_order[k]]) == 0) { |
- r++; |
- } else { |
- /* if run length > 15, must emit special run-length-16 codes (0xF0) */ |
- while (r > 15) { |
- ac_counts[0xF0]++; |
- r -= 16; |
- } |
- |
- /* Find the number of bits needed for the magnitude of the coefficient */ |
- if (temp < 0) |
- temp = -temp; |
- |
- /* Find the number of bits needed for the magnitude of the coefficient */ |
- nbits = 1; /* there must be at least one 1 bit */ |
- while ((temp >>= 1)) |
- nbits++; |
- /* Check for out-of-range coefficient values */ |
- if (nbits > MAX_COEF_BITS) |
- ERREXIT(cinfo, JERR_BAD_DCT_COEF); |
- |
- /* Count Huffman symbol for run length / number of bits */ |
- ac_counts[(r << 4) + nbits]++; |
- |
- r = 0; |
- } |
- } |
- |
- /* If the last coef(s) were zero, emit an end-of-block code */ |
- if (r > 0) |
- ac_counts[0]++; |
-} |
- |
- |
-/* |
- * Trial-encode one MCU's worth of Huffman-compressed coefficients. |
- * No data is actually output, so no suspension return is possible. |
- */ |
- |
-METHODDEF(boolean) |
-encode_mcu_gather (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
-{ |
- huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
- int blkn, ci; |
- jpeg_component_info * compptr; |
- |
- /* Take care of restart intervals if needed */ |
- if (cinfo->restart_interval) { |
- if (entropy->restarts_to_go == 0) { |
- /* Re-initialize DC predictions to 0 */ |
- for (ci = 0; ci < cinfo->comps_in_scan; ci++) |
- entropy->saved.last_dc_val[ci] = 0; |
- /* Update restart state */ |
- entropy->restarts_to_go = cinfo->restart_interval; |
- } |
- entropy->restarts_to_go--; |
- } |
- |
- for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
- ci = cinfo->MCU_membership[blkn]; |
- compptr = cinfo->cur_comp_info[ci]; |
- htest_one_block(cinfo, MCU_data[blkn][0], entropy->saved.last_dc_val[ci], |
- entropy->dc_count_ptrs[compptr->dc_tbl_no], |
- entropy->ac_count_ptrs[compptr->ac_tbl_no]); |
- entropy->saved.last_dc_val[ci] = MCU_data[blkn][0][0]; |
- } |
- |
- return TRUE; |
-} |
- |
- |
-/* |
- * Generate the best Huffman code table for the given counts, fill htbl. |
- * Note this is also used by jcphuff.c. |
- * |
- * The JPEG standard requires that no symbol be assigned a codeword of all |
- * one bits (so that padding bits added at the end of a compressed segment |
- * can't look like a valid code). Because of the canonical ordering of |
- * codewords, this just means that there must be an unused slot in the |
- * longest codeword length category. Section K.2 of the JPEG spec suggests |
- * reserving such a slot by pretending that symbol 256 is a valid symbol |
- * with count 1. In theory that's not optimal; giving it count zero but |
- * including it in the symbol set anyway should give a better Huffman code. |
- * But the theoretically better code actually seems to come out worse in |
- * practice, because it produces more all-ones bytes (which incur stuffed |
- * zero bytes in the final file). In any case the difference is tiny. |
- * |
- * The JPEG standard requires Huffman codes to be no more than 16 bits long. |
- * If some symbols have a very small but nonzero probability, the Huffman tree |
- * must be adjusted to meet the code length restriction. We currently use |
- * the adjustment method suggested in JPEG section K.2. This method is *not* |
- * optimal; it may not choose the best possible limited-length code. But |
- * typically only very-low-frequency symbols will be given less-than-optimal |
- * lengths, so the code is almost optimal. Experimental comparisons against |
- * an optimal limited-length-code algorithm indicate that the difference is |
- * microscopic --- usually less than a hundredth of a percent of total size. |
- * So the extra complexity of an optimal algorithm doesn't seem worthwhile. |
- */ |
- |
-GLOBAL(void) |
-jpeg_gen_optimal_table (j_compress_ptr cinfo, JHUFF_TBL * htbl, long freq[]) |
-{ |
-#define MAX_CLEN 32 /* assumed maximum initial code length */ |
- UINT8 bits[MAX_CLEN+1]; /* bits[k] = # of symbols with code length k */ |
- int codesize[257]; /* codesize[k] = code length of symbol k */ |
- int others[257]; /* next symbol in current branch of tree */ |
- int c1, c2; |
- int p, i, j; |
- long v; |
- |
- /* This algorithm is explained in section K.2 of the JPEG standard */ |
- |
- MEMZERO(bits, SIZEOF(bits)); |
- MEMZERO(codesize, SIZEOF(codesize)); |
- for (i = 0; i < 257; i++) |
- others[i] = -1; /* init links to empty */ |
- |
- freq[256] = 1; /* make sure 256 has a nonzero count */ |
- /* Including the pseudo-symbol 256 in the Huffman procedure guarantees |
- * that no real symbol is given code-value of all ones, because 256 |
- * will be placed last in the largest codeword category. |
- */ |
- |
- /* Huffman's basic algorithm to assign optimal code lengths to symbols */ |
- |
- for (;;) { |
- /* Find the smallest nonzero frequency, set c1 = its symbol */ |
- /* In case of ties, take the larger symbol number */ |
- c1 = -1; |
- v = 1000000000L; |
- for (i = 0; i <= 256; i++) { |
- if (freq[i] && freq[i] <= v) { |
- v = freq[i]; |
- c1 = i; |
- } |
- } |
- |
- /* Find the next smallest nonzero frequency, set c2 = its symbol */ |
- /* In case of ties, take the larger symbol number */ |
- c2 = -1; |
- v = 1000000000L; |
- for (i = 0; i <= 256; i++) { |
- if (freq[i] && freq[i] <= v && i != c1) { |
- v = freq[i]; |
- c2 = i; |
- } |
- } |
- |
- /* Done if we've merged everything into one frequency */ |
- if (c2 < 0) |
- break; |
- |
- /* Else merge the two counts/trees */ |
- freq[c1] += freq[c2]; |
- freq[c2] = 0; |
- |
- /* Increment the codesize of everything in c1's tree branch */ |
- codesize[c1]++; |
- while (others[c1] >= 0) { |
- c1 = others[c1]; |
- codesize[c1]++; |
- } |
- |
- others[c1] = c2; /* chain c2 onto c1's tree branch */ |
- |
- /* Increment the codesize of everything in c2's tree branch */ |
- codesize[c2]++; |
- while (others[c2] >= 0) { |
- c2 = others[c2]; |
- codesize[c2]++; |
- } |
- } |
- |
- /* Now count the number of symbols of each code length */ |
- for (i = 0; i <= 256; i++) { |
- if (codesize[i]) { |
- /* The JPEG standard seems to think that this can't happen, */ |
- /* but I'm paranoid... */ |
- if (codesize[i] > MAX_CLEN) |
- ERREXIT(cinfo, JERR_HUFF_CLEN_OVERFLOW); |
- |
- bits[codesize[i]]++; |
- } |
- } |
- |
- /* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure |
- * Huffman procedure assigned any such lengths, we must adjust the coding. |
- * Here is what the JPEG spec says about how this next bit works: |
- * Since symbols are paired for the longest Huffman code, the symbols are |
- * removed from this length category two at a time. The prefix for the pair |
- * (which is one bit shorter) is allocated to one of the pair; then, |
- * skipping the BITS entry for that prefix length, a code word from the next |
- * shortest nonzero BITS entry is converted into a prefix for two code words |
- * one bit longer. |
- */ |
- |
- for (i = MAX_CLEN; i > 16; i--) { |
- while (bits[i] > 0) { |
- j = i - 2; /* find length of new prefix to be used */ |
- while (bits[j] == 0) |
- j--; |
- |
- bits[i] -= 2; /* remove two symbols */ |
- bits[i-1]++; /* one goes in this length */ |
- bits[j+1] += 2; /* two new symbols in this length */ |
- bits[j]--; /* symbol of this length is now a prefix */ |
- } |
- } |
- |
- /* Remove the count for the pseudo-symbol 256 from the largest codelength */ |
- while (bits[i] == 0) /* find largest codelength still in use */ |
- i--; |
- bits[i]--; |
- |
- /* Return final symbol counts (only for lengths 0..16) */ |
- MEMCOPY(htbl->bits, bits, SIZEOF(htbl->bits)); |
- |
- /* Return a list of the symbols sorted by code length */ |
- /* It's not real clear to me why we don't need to consider the codelength |
- * changes made above, but the JPEG spec seems to think this works. |
- */ |
- p = 0; |
- for (i = 1; i <= MAX_CLEN; i++) { |
- for (j = 0; j <= 255; j++) { |
- if (codesize[j] == i) { |
- htbl->huffval[p] = (UINT8) j; |
- p++; |
- } |
- } |
- } |
- |
- /* Set sent_table FALSE so updated table will be written to JPEG file. */ |
- htbl->sent_table = FALSE; |
-} |
- |
- |
-/* |
- * Finish up a statistics-gathering pass and create the new Huffman tables. |
- */ |
- |
-METHODDEF(void) |
-finish_pass_gather (j_compress_ptr cinfo) |
-{ |
- huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
- int ci, dctbl, actbl; |
- jpeg_component_info * compptr; |
- JHUFF_TBL **htblptr; |
- boolean did_dc[NUM_HUFF_TBLS]; |
- boolean did_ac[NUM_HUFF_TBLS]; |
- |
- /* It's important not to apply jpeg_gen_optimal_table more than once |
- * per table, because it clobbers the input frequency counts! |
- */ |
- MEMZERO(did_dc, SIZEOF(did_dc)); |
- MEMZERO(did_ac, SIZEOF(did_ac)); |
- |
- for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
- compptr = cinfo->cur_comp_info[ci]; |
- dctbl = compptr->dc_tbl_no; |
- actbl = compptr->ac_tbl_no; |
- if (! did_dc[dctbl]) { |
- htblptr = & cinfo->dc_huff_tbl_ptrs[dctbl]; |
- if (*htblptr == NULL) |
- *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo); |
- jpeg_gen_optimal_table(cinfo, *htblptr, entropy->dc_count_ptrs[dctbl]); |
- did_dc[dctbl] = TRUE; |
- } |
- if (! did_ac[actbl]) { |
- htblptr = & cinfo->ac_huff_tbl_ptrs[actbl]; |
- if (*htblptr == NULL) |
- *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo); |
- jpeg_gen_optimal_table(cinfo, *htblptr, entropy->ac_count_ptrs[actbl]); |
- did_ac[actbl] = TRUE; |
- } |
- } |
-} |
- |
- |
-#endif /* ENTROPY_OPT_SUPPORTED */ |
- |
- |
-/* |
- * Module initialization routine for Huffman entropy encoding. |
- */ |
- |
-GLOBAL(void) |
-jinit_huff_encoder (j_compress_ptr cinfo) |
-{ |
- huff_entropy_ptr entropy; |
- int i; |
- |
- entropy = (huff_entropy_ptr) |
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
- SIZEOF(huff_entropy_encoder)); |
- cinfo->entropy = (struct jpeg_entropy_encoder *) entropy; |
- entropy->pub.start_pass = start_pass_huff; |
- |
- /* Mark tables unallocated */ |
- for (i = 0; i < NUM_HUFF_TBLS; i++) { |
- entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL; |
-#ifdef ENTROPY_OPT_SUPPORTED |
- entropy->dc_count_ptrs[i] = entropy->ac_count_ptrs[i] = NULL; |
-#endif |
- } |
-} |