| Index: third_party/libjpeg/jchuff.c
 | 
| diff --git a/third_party/libjpeg/jchuff.c b/third_party/libjpeg/jchuff.c
 | 
| deleted file mode 100644
 | 
| index f235250548671f2d52cabd12ce366a07db4cbf34..0000000000000000000000000000000000000000
 | 
| --- a/third_party/libjpeg/jchuff.c
 | 
| +++ /dev/null
 | 
| @@ -1,909 +0,0 @@
 | 
| -/*
 | 
| - * jchuff.c
 | 
| - *
 | 
| - * Copyright (C) 1991-1997, Thomas G. Lane.
 | 
| - * This file is part of the Independent JPEG Group's software.
 | 
| - * For conditions of distribution and use, see the accompanying README file.
 | 
| - *
 | 
| - * This file contains Huffman entropy encoding routines.
 | 
| - *
 | 
| - * Much of the complexity here has to do with supporting output suspension.
 | 
| - * If the data destination module demands suspension, we want to be able to
 | 
| - * back up to the start of the current MCU.  To do this, we copy state
 | 
| - * variables into local working storage, and update them back to the
 | 
| - * permanent JPEG objects only upon successful completion of an MCU.
 | 
| - */
 | 
| -
 | 
| -#define JPEG_INTERNALS
 | 
| -#include "jinclude.h"
 | 
| -#include "jpeglib.h"
 | 
| -#include "jchuff.h"		/* Declarations shared with jcphuff.c */
 | 
| -
 | 
| -
 | 
| -/* Expanded entropy encoder object for Huffman encoding.
 | 
| - *
 | 
| - * The savable_state subrecord contains fields that change within an MCU,
 | 
| - * but must not be updated permanently until we complete the MCU.
 | 
| - */
 | 
| -
 | 
| -typedef struct {
 | 
| -  INT32 put_buffer;		/* current bit-accumulation buffer */
 | 
| -  int put_bits;			/* # of bits now in it */
 | 
| -  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
 | 
| -} savable_state;
 | 
| -
 | 
| -/* This macro is to work around compilers with missing or broken
 | 
| - * structure assignment.  You'll need to fix this code if you have
 | 
| - * such a compiler and you change MAX_COMPS_IN_SCAN.
 | 
| - */
 | 
| -
 | 
| -#ifndef NO_STRUCT_ASSIGN
 | 
| -#define ASSIGN_STATE(dest,src)  ((dest) = (src))
 | 
| -#else
 | 
| -#if MAX_COMPS_IN_SCAN == 4
 | 
| -#define ASSIGN_STATE(dest,src)  \
 | 
| -	((dest).put_buffer = (src).put_buffer, \
 | 
| -	 (dest).put_bits = (src).put_bits, \
 | 
| -	 (dest).last_dc_val[0] = (src).last_dc_val[0], \
 | 
| -	 (dest).last_dc_val[1] = (src).last_dc_val[1], \
 | 
| -	 (dest).last_dc_val[2] = (src).last_dc_val[2], \
 | 
| -	 (dest).last_dc_val[3] = (src).last_dc_val[3])
 | 
| -#endif
 | 
| -#endif
 | 
| -
 | 
| -
 | 
| -typedef struct {
 | 
| -  struct jpeg_entropy_encoder pub; /* public fields */
 | 
| -
 | 
| -  savable_state saved;		/* Bit buffer & DC state at start of MCU */
 | 
| -
 | 
| -  /* These fields are NOT loaded into local working state. */
 | 
| -  unsigned int restarts_to_go;	/* MCUs left in this restart interval */
 | 
| -  int next_restart_num;		/* next restart number to write (0-7) */
 | 
| -
 | 
| -  /* Pointers to derived tables (these workspaces have image lifespan) */
 | 
| -  c_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
 | 
| -  c_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
 | 
| -
 | 
| -#ifdef ENTROPY_OPT_SUPPORTED	/* Statistics tables for optimization */
 | 
| -  long * dc_count_ptrs[NUM_HUFF_TBLS];
 | 
| -  long * ac_count_ptrs[NUM_HUFF_TBLS];
 | 
| -#endif
 | 
| -} huff_entropy_encoder;
 | 
| -
 | 
| -typedef huff_entropy_encoder * huff_entropy_ptr;
 | 
| -
 | 
| -/* Working state while writing an MCU.
 | 
| - * This struct contains all the fields that are needed by subroutines.
 | 
| - */
 | 
| -
 | 
| -typedef struct {
 | 
| -  JOCTET * next_output_byte;	/* => next byte to write in buffer */
 | 
| -  size_t free_in_buffer;	/* # of byte spaces remaining in buffer */
 | 
| -  savable_state cur;		/* Current bit buffer & DC state */
 | 
| -  j_compress_ptr cinfo;		/* dump_buffer needs access to this */
 | 
| -} working_state;
 | 
| -
 | 
| -
 | 
| -/* Forward declarations */
 | 
| -METHODDEF(boolean) encode_mcu_huff JPP((j_compress_ptr cinfo,
 | 
| -					JBLOCKROW *MCU_data));
 | 
| -METHODDEF(void) finish_pass_huff JPP((j_compress_ptr cinfo));
 | 
| -#ifdef ENTROPY_OPT_SUPPORTED
 | 
| -METHODDEF(boolean) encode_mcu_gather JPP((j_compress_ptr cinfo,
 | 
| -					  JBLOCKROW *MCU_data));
 | 
| -METHODDEF(void) finish_pass_gather JPP((j_compress_ptr cinfo));
 | 
| -#endif
 | 
| -
 | 
| -
 | 
| -/*
 | 
| - * Initialize for a Huffman-compressed scan.
 | 
| - * If gather_statistics is TRUE, we do not output anything during the scan,
 | 
| - * just count the Huffman symbols used and generate Huffman code tables.
 | 
| - */
 | 
| -
 | 
| -METHODDEF(void)
 | 
| -start_pass_huff (j_compress_ptr cinfo, boolean gather_statistics)
 | 
| -{
 | 
| -  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
 | 
| -  int ci, dctbl, actbl;
 | 
| -  jpeg_component_info * compptr;
 | 
| -
 | 
| -  if (gather_statistics) {
 | 
| -#ifdef ENTROPY_OPT_SUPPORTED
 | 
| -    entropy->pub.encode_mcu = encode_mcu_gather;
 | 
| -    entropy->pub.finish_pass = finish_pass_gather;
 | 
| -#else
 | 
| -    ERREXIT(cinfo, JERR_NOT_COMPILED);
 | 
| -#endif
 | 
| -  } else {
 | 
| -    entropy->pub.encode_mcu = encode_mcu_huff;
 | 
| -    entropy->pub.finish_pass = finish_pass_huff;
 | 
| -  }
 | 
| -
 | 
| -  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
 | 
| -    compptr = cinfo->cur_comp_info[ci];
 | 
| -    dctbl = compptr->dc_tbl_no;
 | 
| -    actbl = compptr->ac_tbl_no;
 | 
| -    if (gather_statistics) {
 | 
| -#ifdef ENTROPY_OPT_SUPPORTED
 | 
| -      /* Check for invalid table indexes */
 | 
| -      /* (make_c_derived_tbl does this in the other path) */
 | 
| -      if (dctbl < 0 || dctbl >= NUM_HUFF_TBLS)
 | 
| -	ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, dctbl);
 | 
| -      if (actbl < 0 || actbl >= NUM_HUFF_TBLS)
 | 
| -	ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, actbl);
 | 
| -      /* Allocate and zero the statistics tables */
 | 
| -      /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */
 | 
| -      if (entropy->dc_count_ptrs[dctbl] == NULL)
 | 
| -	entropy->dc_count_ptrs[dctbl] = (long *)
 | 
| -	  (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
 | 
| -				      257 * SIZEOF(long));
 | 
| -      MEMZERO(entropy->dc_count_ptrs[dctbl], 257 * SIZEOF(long));
 | 
| -      if (entropy->ac_count_ptrs[actbl] == NULL)
 | 
| -	entropy->ac_count_ptrs[actbl] = (long *)
 | 
| -	  (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
 | 
| -				      257 * SIZEOF(long));
 | 
| -      MEMZERO(entropy->ac_count_ptrs[actbl], 257 * SIZEOF(long));
 | 
| -#endif
 | 
| -    } else {
 | 
| -      /* Compute derived values for Huffman tables */
 | 
| -      /* We may do this more than once for a table, but it's not expensive */
 | 
| -      jpeg_make_c_derived_tbl(cinfo, TRUE, dctbl,
 | 
| -			      & entropy->dc_derived_tbls[dctbl]);
 | 
| -      jpeg_make_c_derived_tbl(cinfo, FALSE, actbl,
 | 
| -			      & entropy->ac_derived_tbls[actbl]);
 | 
| -    }
 | 
| -    /* Initialize DC predictions to 0 */
 | 
| -    entropy->saved.last_dc_val[ci] = 0;
 | 
| -  }
 | 
| -
 | 
| -  /* Initialize bit buffer to empty */
 | 
| -  entropy->saved.put_buffer = 0;
 | 
| -  entropy->saved.put_bits = 0;
 | 
| -
 | 
| -  /* Initialize restart stuff */
 | 
| -  entropy->restarts_to_go = cinfo->restart_interval;
 | 
| -  entropy->next_restart_num = 0;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -/*
 | 
| - * Compute the derived values for a Huffman table.
 | 
| - * This routine also performs some validation checks on the table.
 | 
| - *
 | 
| - * Note this is also used by jcphuff.c.
 | 
| - */
 | 
| -
 | 
| -GLOBAL(void)
 | 
| -jpeg_make_c_derived_tbl (j_compress_ptr cinfo, boolean isDC, int tblno,
 | 
| -			 c_derived_tbl ** pdtbl)
 | 
| -{
 | 
| -  JHUFF_TBL *htbl;
 | 
| -  c_derived_tbl *dtbl;
 | 
| -  int p, i, l, lastp, si, maxsymbol;
 | 
| -  char huffsize[257];
 | 
| -  unsigned int huffcode[257];
 | 
| -  unsigned int code;
 | 
| -
 | 
| -  /* Note that huffsize[] and huffcode[] are filled in code-length order,
 | 
| -   * paralleling the order of the symbols themselves in htbl->huffval[].
 | 
| -   */
 | 
| -
 | 
| -  /* Find the input Huffman table */
 | 
| -  if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
 | 
| -    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
 | 
| -  htbl =
 | 
| -    isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
 | 
| -  if (htbl == NULL)
 | 
| -    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
 | 
| -
 | 
| -  /* Allocate a workspace if we haven't already done so. */
 | 
| -  if (*pdtbl == NULL)
 | 
| -    *pdtbl = (c_derived_tbl *)
 | 
| -      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
 | 
| -				  SIZEOF(c_derived_tbl));
 | 
| -  dtbl = *pdtbl;
 | 
| -  
 | 
| -  /* Figure C.1: make table of Huffman code length for each symbol */
 | 
| -
 | 
| -  p = 0;
 | 
| -  for (l = 1; l <= 16; l++) {
 | 
| -    i = (int) htbl->bits[l];
 | 
| -    if (i < 0 || p + i > 256)	/* protect against table overrun */
 | 
| -      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
 | 
| -    while (i--)
 | 
| -      huffsize[p++] = (char) l;
 | 
| -  }
 | 
| -  huffsize[p] = 0;
 | 
| -  lastp = p;
 | 
| -  
 | 
| -  /* Figure C.2: generate the codes themselves */
 | 
| -  /* We also validate that the counts represent a legal Huffman code tree. */
 | 
| -
 | 
| -  code = 0;
 | 
| -  si = huffsize[0];
 | 
| -  p = 0;
 | 
| -  while (huffsize[p]) {
 | 
| -    while (((int) huffsize[p]) == si) {
 | 
| -      huffcode[p++] = code;
 | 
| -      code++;
 | 
| -    }
 | 
| -    /* code is now 1 more than the last code used for codelength si; but
 | 
| -     * it must still fit in si bits, since no code is allowed to be all ones.
 | 
| -     */
 | 
| -    if (((INT32) code) >= (((INT32) 1) << si))
 | 
| -      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
 | 
| -    code <<= 1;
 | 
| -    si++;
 | 
| -  }
 | 
| -  
 | 
| -  /* Figure C.3: generate encoding tables */
 | 
| -  /* These are code and size indexed by symbol value */
 | 
| -
 | 
| -  /* Set all codeless symbols to have code length 0;
 | 
| -   * this lets us detect duplicate VAL entries here, and later
 | 
| -   * allows emit_bits to detect any attempt to emit such symbols.
 | 
| -   */
 | 
| -  MEMZERO(dtbl->ehufsi, SIZEOF(dtbl->ehufsi));
 | 
| -
 | 
| -  /* This is also a convenient place to check for out-of-range
 | 
| -   * and duplicated VAL entries.  We allow 0..255 for AC symbols
 | 
| -   * but only 0..15 for DC.  (We could constrain them further
 | 
| -   * based on data depth and mode, but this seems enough.)
 | 
| -   */
 | 
| -  maxsymbol = isDC ? 15 : 255;
 | 
| -
 | 
| -  for (p = 0; p < lastp; p++) {
 | 
| -    i = htbl->huffval[p];
 | 
| -    if (i < 0 || i > maxsymbol || dtbl->ehufsi[i])
 | 
| -      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
 | 
| -    dtbl->ehufco[i] = huffcode[p];
 | 
| -    dtbl->ehufsi[i] = huffsize[p];
 | 
| -  }
 | 
| -}
 | 
| -
 | 
| -
 | 
| -/* Outputting bytes to the file */
 | 
| -
 | 
| -/* Emit a byte, taking 'action' if must suspend. */
 | 
| -#define emit_byte(state,val,action)  \
 | 
| -	{ *(state)->next_output_byte++ = (JOCTET) (val);  \
 | 
| -	  if (--(state)->free_in_buffer == 0)  \
 | 
| -	    if (! dump_buffer(state))  \
 | 
| -	      { action; } }
 | 
| -
 | 
| -
 | 
| -LOCAL(boolean)
 | 
| -dump_buffer (working_state * state)
 | 
| -/* Empty the output buffer; return TRUE if successful, FALSE if must suspend */
 | 
| -{
 | 
| -  struct jpeg_destination_mgr * dest = state->cinfo->dest;
 | 
| -
 | 
| -  if (! (*dest->empty_output_buffer) (state->cinfo))
 | 
| -    return FALSE;
 | 
| -  /* After a successful buffer dump, must reset buffer pointers */
 | 
| -  state->next_output_byte = dest->next_output_byte;
 | 
| -  state->free_in_buffer = dest->free_in_buffer;
 | 
| -  return TRUE;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -/* Outputting bits to the file */
 | 
| -
 | 
| -/* Only the right 24 bits of put_buffer are used; the valid bits are
 | 
| - * left-justified in this part.  At most 16 bits can be passed to emit_bits
 | 
| - * in one call, and we never retain more than 7 bits in put_buffer
 | 
| - * between calls, so 24 bits are sufficient.
 | 
| - */
 | 
| -
 | 
| -INLINE
 | 
| -LOCAL(boolean)
 | 
| -emit_bits (working_state * state, unsigned int code, int size)
 | 
| -/* Emit some bits; return TRUE if successful, FALSE if must suspend */
 | 
| -{
 | 
| -  /* This routine is heavily used, so it's worth coding tightly. */
 | 
| -  register INT32 put_buffer = (INT32) code;
 | 
| -  register int put_bits = state->cur.put_bits;
 | 
| -
 | 
| -  /* if size is 0, caller used an invalid Huffman table entry */
 | 
| -  if (size == 0)
 | 
| -    ERREXIT(state->cinfo, JERR_HUFF_MISSING_CODE);
 | 
| -
 | 
| -  put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */
 | 
| -  
 | 
| -  put_bits += size;		/* new number of bits in buffer */
 | 
| -  
 | 
| -  put_buffer <<= 24 - put_bits; /* align incoming bits */
 | 
| -
 | 
| -  put_buffer |= state->cur.put_buffer; /* and merge with old buffer contents */
 | 
| -  
 | 
| -  while (put_bits >= 8) {
 | 
| -    int c = (int) ((put_buffer >> 16) & 0xFF);
 | 
| -    
 | 
| -    emit_byte(state, c, return FALSE);
 | 
| -    if (c == 0xFF) {		/* need to stuff a zero byte? */
 | 
| -      emit_byte(state, 0, return FALSE);
 | 
| -    }
 | 
| -    put_buffer <<= 8;
 | 
| -    put_bits -= 8;
 | 
| -  }
 | 
| -
 | 
| -  state->cur.put_buffer = put_buffer; /* update state variables */
 | 
| -  state->cur.put_bits = put_bits;
 | 
| -
 | 
| -  return TRUE;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -LOCAL(boolean)
 | 
| -flush_bits (working_state * state)
 | 
| -{
 | 
| -  if (! emit_bits(state, 0x7F, 7)) /* fill any partial byte with ones */
 | 
| -    return FALSE;
 | 
| -  state->cur.put_buffer = 0;	/* and reset bit-buffer to empty */
 | 
| -  state->cur.put_bits = 0;
 | 
| -  return TRUE;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -/* Encode a single block's worth of coefficients */
 | 
| -
 | 
| -LOCAL(boolean)
 | 
| -encode_one_block (working_state * state, JCOEFPTR block, int last_dc_val,
 | 
| -		  c_derived_tbl *dctbl, c_derived_tbl *actbl)
 | 
| -{
 | 
| -  register int temp, temp2;
 | 
| -  register int nbits;
 | 
| -  register int k, r, i;
 | 
| -  
 | 
| -  /* Encode the DC coefficient difference per section F.1.2.1 */
 | 
| -  
 | 
| -  temp = temp2 = block[0] - last_dc_val;
 | 
| -
 | 
| -  if (temp < 0) {
 | 
| -    temp = -temp;		/* temp is abs value of input */
 | 
| -    /* For a negative input, want temp2 = bitwise complement of abs(input) */
 | 
| -    /* This code assumes we are on a two's complement machine */
 | 
| -    temp2--;
 | 
| -  }
 | 
| -  
 | 
| -  /* Find the number of bits needed for the magnitude of the coefficient */
 | 
| -  nbits = 0;
 | 
| -  while (temp) {
 | 
| -    nbits++;
 | 
| -    temp >>= 1;
 | 
| -  }
 | 
| -  /* Check for out-of-range coefficient values.
 | 
| -   * Since we're encoding a difference, the range limit is twice as much.
 | 
| -   */
 | 
| -  if (nbits > MAX_COEF_BITS+1)
 | 
| -    ERREXIT(state->cinfo, JERR_BAD_DCT_COEF);
 | 
| -  
 | 
| -  /* Emit the Huffman-coded symbol for the number of bits */
 | 
| -  if (! emit_bits(state, dctbl->ehufco[nbits], dctbl->ehufsi[nbits]))
 | 
| -    return FALSE;
 | 
| -
 | 
| -  /* Emit that number of bits of the value, if positive, */
 | 
| -  /* or the complement of its magnitude, if negative. */
 | 
| -  if (nbits)			/* emit_bits rejects calls with size 0 */
 | 
| -    if (! emit_bits(state, (unsigned int) temp2, nbits))
 | 
| -      return FALSE;
 | 
| -
 | 
| -  /* Encode the AC coefficients per section F.1.2.2 */
 | 
| -  
 | 
| -  r = 0;			/* r = run length of zeros */
 | 
| -  
 | 
| -  for (k = 1; k < DCTSIZE2; k++) {
 | 
| -    if ((temp = block[jpeg_natural_order[k]]) == 0) {
 | 
| -      r++;
 | 
| -    } else {
 | 
| -      /* if run length > 15, must emit special run-length-16 codes (0xF0) */
 | 
| -      while (r > 15) {
 | 
| -	if (! emit_bits(state, actbl->ehufco[0xF0], actbl->ehufsi[0xF0]))
 | 
| -	  return FALSE;
 | 
| -	r -= 16;
 | 
| -      }
 | 
| -
 | 
| -      temp2 = temp;
 | 
| -      if (temp < 0) {
 | 
| -	temp = -temp;		/* temp is abs value of input */
 | 
| -	/* This code assumes we are on a two's complement machine */
 | 
| -	temp2--;
 | 
| -      }
 | 
| -      
 | 
| -      /* Find the number of bits needed for the magnitude of the coefficient */
 | 
| -      nbits = 1;		/* there must be at least one 1 bit */
 | 
| -      while ((temp >>= 1))
 | 
| -	nbits++;
 | 
| -      /* Check for out-of-range coefficient values */
 | 
| -      if (nbits > MAX_COEF_BITS)
 | 
| -	ERREXIT(state->cinfo, JERR_BAD_DCT_COEF);
 | 
| -      
 | 
| -      /* Emit Huffman symbol for run length / number of bits */
 | 
| -      i = (r << 4) + nbits;
 | 
| -      if (! emit_bits(state, actbl->ehufco[i], actbl->ehufsi[i]))
 | 
| -	return FALSE;
 | 
| -
 | 
| -      /* Emit that number of bits of the value, if positive, */
 | 
| -      /* or the complement of its magnitude, if negative. */
 | 
| -      if (! emit_bits(state, (unsigned int) temp2, nbits))
 | 
| -	return FALSE;
 | 
| -      
 | 
| -      r = 0;
 | 
| -    }
 | 
| -  }
 | 
| -
 | 
| -  /* If the last coef(s) were zero, emit an end-of-block code */
 | 
| -  if (r > 0)
 | 
| -    if (! emit_bits(state, actbl->ehufco[0], actbl->ehufsi[0]))
 | 
| -      return FALSE;
 | 
| -
 | 
| -  return TRUE;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -/*
 | 
| - * Emit a restart marker & resynchronize predictions.
 | 
| - */
 | 
| -
 | 
| -LOCAL(boolean)
 | 
| -emit_restart (working_state * state, int restart_num)
 | 
| -{
 | 
| -  int ci;
 | 
| -
 | 
| -  if (! flush_bits(state))
 | 
| -    return FALSE;
 | 
| -
 | 
| -  emit_byte(state, 0xFF, return FALSE);
 | 
| -  emit_byte(state, JPEG_RST0 + restart_num, return FALSE);
 | 
| -
 | 
| -  /* Re-initialize DC predictions to 0 */
 | 
| -  for (ci = 0; ci < state->cinfo->comps_in_scan; ci++)
 | 
| -    state->cur.last_dc_val[ci] = 0;
 | 
| -
 | 
| -  /* The restart counter is not updated until we successfully write the MCU. */
 | 
| -
 | 
| -  return TRUE;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -/*
 | 
| - * Encode and output one MCU's worth of Huffman-compressed coefficients.
 | 
| - */
 | 
| -
 | 
| -METHODDEF(boolean)
 | 
| -encode_mcu_huff (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
 | 
| -{
 | 
| -  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
 | 
| -  working_state state;
 | 
| -  int blkn, ci;
 | 
| -  jpeg_component_info * compptr;
 | 
| -
 | 
| -  /* Load up working state */
 | 
| -  state.next_output_byte = cinfo->dest->next_output_byte;
 | 
| -  state.free_in_buffer = cinfo->dest->free_in_buffer;
 | 
| -  ASSIGN_STATE(state.cur, entropy->saved);
 | 
| -  state.cinfo = cinfo;
 | 
| -
 | 
| -  /* Emit restart marker if needed */
 | 
| -  if (cinfo->restart_interval) {
 | 
| -    if (entropy->restarts_to_go == 0)
 | 
| -      if (! emit_restart(&state, entropy->next_restart_num))
 | 
| -	return FALSE;
 | 
| -  }
 | 
| -
 | 
| -  /* Encode the MCU data blocks */
 | 
| -  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
 | 
| -    ci = cinfo->MCU_membership[blkn];
 | 
| -    compptr = cinfo->cur_comp_info[ci];
 | 
| -    if (! encode_one_block(&state,
 | 
| -			   MCU_data[blkn][0], state.cur.last_dc_val[ci],
 | 
| -			   entropy->dc_derived_tbls[compptr->dc_tbl_no],
 | 
| -			   entropy->ac_derived_tbls[compptr->ac_tbl_no]))
 | 
| -      return FALSE;
 | 
| -    /* Update last_dc_val */
 | 
| -    state.cur.last_dc_val[ci] = MCU_data[blkn][0][0];
 | 
| -  }
 | 
| -
 | 
| -  /* Completed MCU, so update state */
 | 
| -  cinfo->dest->next_output_byte = state.next_output_byte;
 | 
| -  cinfo->dest->free_in_buffer = state.free_in_buffer;
 | 
| -  ASSIGN_STATE(entropy->saved, state.cur);
 | 
| -
 | 
| -  /* Update restart-interval state too */
 | 
| -  if (cinfo->restart_interval) {
 | 
| -    if (entropy->restarts_to_go == 0) {
 | 
| -      entropy->restarts_to_go = cinfo->restart_interval;
 | 
| -      entropy->next_restart_num++;
 | 
| -      entropy->next_restart_num &= 7;
 | 
| -    }
 | 
| -    entropy->restarts_to_go--;
 | 
| -  }
 | 
| -
 | 
| -  return TRUE;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -/*
 | 
| - * Finish up at the end of a Huffman-compressed scan.
 | 
| - */
 | 
| -
 | 
| -METHODDEF(void)
 | 
| -finish_pass_huff (j_compress_ptr cinfo)
 | 
| -{
 | 
| -  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
 | 
| -  working_state state;
 | 
| -
 | 
| -  /* Load up working state ... flush_bits needs it */
 | 
| -  state.next_output_byte = cinfo->dest->next_output_byte;
 | 
| -  state.free_in_buffer = cinfo->dest->free_in_buffer;
 | 
| -  ASSIGN_STATE(state.cur, entropy->saved);
 | 
| -  state.cinfo = cinfo;
 | 
| -
 | 
| -  /* Flush out the last data */
 | 
| -  if (! flush_bits(&state))
 | 
| -    ERREXIT(cinfo, JERR_CANT_SUSPEND);
 | 
| -
 | 
| -  /* Update state */
 | 
| -  cinfo->dest->next_output_byte = state.next_output_byte;
 | 
| -  cinfo->dest->free_in_buffer = state.free_in_buffer;
 | 
| -  ASSIGN_STATE(entropy->saved, state.cur);
 | 
| -}
 | 
| -
 | 
| -
 | 
| -/*
 | 
| - * Huffman coding optimization.
 | 
| - *
 | 
| - * We first scan the supplied data and count the number of uses of each symbol
 | 
| - * that is to be Huffman-coded. (This process MUST agree with the code above.)
 | 
| - * Then we build a Huffman coding tree for the observed counts.
 | 
| - * Symbols which are not needed at all for the particular image are not
 | 
| - * assigned any code, which saves space in the DHT marker as well as in
 | 
| - * the compressed data.
 | 
| - */
 | 
| -
 | 
| -#ifdef ENTROPY_OPT_SUPPORTED
 | 
| -
 | 
| -
 | 
| -/* Process a single block's worth of coefficients */
 | 
| -
 | 
| -LOCAL(void)
 | 
| -htest_one_block (j_compress_ptr cinfo, JCOEFPTR block, int last_dc_val,
 | 
| -		 long dc_counts[], long ac_counts[])
 | 
| -{
 | 
| -  register int temp;
 | 
| -  register int nbits;
 | 
| -  register int k, r;
 | 
| -  
 | 
| -  /* Encode the DC coefficient difference per section F.1.2.1 */
 | 
| -  
 | 
| -  temp = block[0] - last_dc_val;
 | 
| -  if (temp < 0)
 | 
| -    temp = -temp;
 | 
| -  
 | 
| -  /* Find the number of bits needed for the magnitude of the coefficient */
 | 
| -  nbits = 0;
 | 
| -  while (temp) {
 | 
| -    nbits++;
 | 
| -    temp >>= 1;
 | 
| -  }
 | 
| -  /* Check for out-of-range coefficient values.
 | 
| -   * Since we're encoding a difference, the range limit is twice as much.
 | 
| -   */
 | 
| -  if (nbits > MAX_COEF_BITS+1)
 | 
| -    ERREXIT(cinfo, JERR_BAD_DCT_COEF);
 | 
| -
 | 
| -  /* Count the Huffman symbol for the number of bits */
 | 
| -  dc_counts[nbits]++;
 | 
| -  
 | 
| -  /* Encode the AC coefficients per section F.1.2.2 */
 | 
| -  
 | 
| -  r = 0;			/* r = run length of zeros */
 | 
| -  
 | 
| -  for (k = 1; k < DCTSIZE2; k++) {
 | 
| -    if ((temp = block[jpeg_natural_order[k]]) == 0) {
 | 
| -      r++;
 | 
| -    } else {
 | 
| -      /* if run length > 15, must emit special run-length-16 codes (0xF0) */
 | 
| -      while (r > 15) {
 | 
| -	ac_counts[0xF0]++;
 | 
| -	r -= 16;
 | 
| -      }
 | 
| -      
 | 
| -      /* Find the number of bits needed for the magnitude of the coefficient */
 | 
| -      if (temp < 0)
 | 
| -	temp = -temp;
 | 
| -      
 | 
| -      /* Find the number of bits needed for the magnitude of the coefficient */
 | 
| -      nbits = 1;		/* there must be at least one 1 bit */
 | 
| -      while ((temp >>= 1))
 | 
| -	nbits++;
 | 
| -      /* Check for out-of-range coefficient values */
 | 
| -      if (nbits > MAX_COEF_BITS)
 | 
| -	ERREXIT(cinfo, JERR_BAD_DCT_COEF);
 | 
| -      
 | 
| -      /* Count Huffman symbol for run length / number of bits */
 | 
| -      ac_counts[(r << 4) + nbits]++;
 | 
| -      
 | 
| -      r = 0;
 | 
| -    }
 | 
| -  }
 | 
| -
 | 
| -  /* If the last coef(s) were zero, emit an end-of-block code */
 | 
| -  if (r > 0)
 | 
| -    ac_counts[0]++;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -/*
 | 
| - * Trial-encode one MCU's worth of Huffman-compressed coefficients.
 | 
| - * No data is actually output, so no suspension return is possible.
 | 
| - */
 | 
| -
 | 
| -METHODDEF(boolean)
 | 
| -encode_mcu_gather (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
 | 
| -{
 | 
| -  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
 | 
| -  int blkn, ci;
 | 
| -  jpeg_component_info * compptr;
 | 
| -
 | 
| -  /* Take care of restart intervals if needed */
 | 
| -  if (cinfo->restart_interval) {
 | 
| -    if (entropy->restarts_to_go == 0) {
 | 
| -      /* Re-initialize DC predictions to 0 */
 | 
| -      for (ci = 0; ci < cinfo->comps_in_scan; ci++)
 | 
| -	entropy->saved.last_dc_val[ci] = 0;
 | 
| -      /* Update restart state */
 | 
| -      entropy->restarts_to_go = cinfo->restart_interval;
 | 
| -    }
 | 
| -    entropy->restarts_to_go--;
 | 
| -  }
 | 
| -
 | 
| -  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
 | 
| -    ci = cinfo->MCU_membership[blkn];
 | 
| -    compptr = cinfo->cur_comp_info[ci];
 | 
| -    htest_one_block(cinfo, MCU_data[blkn][0], entropy->saved.last_dc_val[ci],
 | 
| -		    entropy->dc_count_ptrs[compptr->dc_tbl_no],
 | 
| -		    entropy->ac_count_ptrs[compptr->ac_tbl_no]);
 | 
| -    entropy->saved.last_dc_val[ci] = MCU_data[blkn][0][0];
 | 
| -  }
 | 
| -
 | 
| -  return TRUE;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -/*
 | 
| - * Generate the best Huffman code table for the given counts, fill htbl.
 | 
| - * Note this is also used by jcphuff.c.
 | 
| - *
 | 
| - * The JPEG standard requires that no symbol be assigned a codeword of all
 | 
| - * one bits (so that padding bits added at the end of a compressed segment
 | 
| - * can't look like a valid code).  Because of the canonical ordering of
 | 
| - * codewords, this just means that there must be an unused slot in the
 | 
| - * longest codeword length category.  Section K.2 of the JPEG spec suggests
 | 
| - * reserving such a slot by pretending that symbol 256 is a valid symbol
 | 
| - * with count 1.  In theory that's not optimal; giving it count zero but
 | 
| - * including it in the symbol set anyway should give a better Huffman code.
 | 
| - * But the theoretically better code actually seems to come out worse in
 | 
| - * practice, because it produces more all-ones bytes (which incur stuffed
 | 
| - * zero bytes in the final file).  In any case the difference is tiny.
 | 
| - *
 | 
| - * The JPEG standard requires Huffman codes to be no more than 16 bits long.
 | 
| - * If some symbols have a very small but nonzero probability, the Huffman tree
 | 
| - * must be adjusted to meet the code length restriction.  We currently use
 | 
| - * the adjustment method suggested in JPEG section K.2.  This method is *not*
 | 
| - * optimal; it may not choose the best possible limited-length code.  But
 | 
| - * typically only very-low-frequency symbols will be given less-than-optimal
 | 
| - * lengths, so the code is almost optimal.  Experimental comparisons against
 | 
| - * an optimal limited-length-code algorithm indicate that the difference is
 | 
| - * microscopic --- usually less than a hundredth of a percent of total size.
 | 
| - * So the extra complexity of an optimal algorithm doesn't seem worthwhile.
 | 
| - */
 | 
| -
 | 
| -GLOBAL(void)
 | 
| -jpeg_gen_optimal_table (j_compress_ptr cinfo, JHUFF_TBL * htbl, long freq[])
 | 
| -{
 | 
| -#define MAX_CLEN 32		/* assumed maximum initial code length */
 | 
| -  UINT8 bits[MAX_CLEN+1];	/* bits[k] = # of symbols with code length k */
 | 
| -  int codesize[257];		/* codesize[k] = code length of symbol k */
 | 
| -  int others[257];		/* next symbol in current branch of tree */
 | 
| -  int c1, c2;
 | 
| -  int p, i, j;
 | 
| -  long v;
 | 
| -
 | 
| -  /* This algorithm is explained in section K.2 of the JPEG standard */
 | 
| -
 | 
| -  MEMZERO(bits, SIZEOF(bits));
 | 
| -  MEMZERO(codesize, SIZEOF(codesize));
 | 
| -  for (i = 0; i < 257; i++)
 | 
| -    others[i] = -1;		/* init links to empty */
 | 
| -  
 | 
| -  freq[256] = 1;		/* make sure 256 has a nonzero count */
 | 
| -  /* Including the pseudo-symbol 256 in the Huffman procedure guarantees
 | 
| -   * that no real symbol is given code-value of all ones, because 256
 | 
| -   * will be placed last in the largest codeword category.
 | 
| -   */
 | 
| -
 | 
| -  /* Huffman's basic algorithm to assign optimal code lengths to symbols */
 | 
| -
 | 
| -  for (;;) {
 | 
| -    /* Find the smallest nonzero frequency, set c1 = its symbol */
 | 
| -    /* In case of ties, take the larger symbol number */
 | 
| -    c1 = -1;
 | 
| -    v = 1000000000L;
 | 
| -    for (i = 0; i <= 256; i++) {
 | 
| -      if (freq[i] && freq[i] <= v) {
 | 
| -	v = freq[i];
 | 
| -	c1 = i;
 | 
| -      }
 | 
| -    }
 | 
| -
 | 
| -    /* Find the next smallest nonzero frequency, set c2 = its symbol */
 | 
| -    /* In case of ties, take the larger symbol number */
 | 
| -    c2 = -1;
 | 
| -    v = 1000000000L;
 | 
| -    for (i = 0; i <= 256; i++) {
 | 
| -      if (freq[i] && freq[i] <= v && i != c1) {
 | 
| -	v = freq[i];
 | 
| -	c2 = i;
 | 
| -      }
 | 
| -    }
 | 
| -
 | 
| -    /* Done if we've merged everything into one frequency */
 | 
| -    if (c2 < 0)
 | 
| -      break;
 | 
| -    
 | 
| -    /* Else merge the two counts/trees */
 | 
| -    freq[c1] += freq[c2];
 | 
| -    freq[c2] = 0;
 | 
| -
 | 
| -    /* Increment the codesize of everything in c1's tree branch */
 | 
| -    codesize[c1]++;
 | 
| -    while (others[c1] >= 0) {
 | 
| -      c1 = others[c1];
 | 
| -      codesize[c1]++;
 | 
| -    }
 | 
| -    
 | 
| -    others[c1] = c2;		/* chain c2 onto c1's tree branch */
 | 
| -    
 | 
| -    /* Increment the codesize of everything in c2's tree branch */
 | 
| -    codesize[c2]++;
 | 
| -    while (others[c2] >= 0) {
 | 
| -      c2 = others[c2];
 | 
| -      codesize[c2]++;
 | 
| -    }
 | 
| -  }
 | 
| -
 | 
| -  /* Now count the number of symbols of each code length */
 | 
| -  for (i = 0; i <= 256; i++) {
 | 
| -    if (codesize[i]) {
 | 
| -      /* The JPEG standard seems to think that this can't happen, */
 | 
| -      /* but I'm paranoid... */
 | 
| -      if (codesize[i] > MAX_CLEN)
 | 
| -	ERREXIT(cinfo, JERR_HUFF_CLEN_OVERFLOW);
 | 
| -
 | 
| -      bits[codesize[i]]++;
 | 
| -    }
 | 
| -  }
 | 
| -
 | 
| -  /* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure
 | 
| -   * Huffman procedure assigned any such lengths, we must adjust the coding.
 | 
| -   * Here is what the JPEG spec says about how this next bit works:
 | 
| -   * Since symbols are paired for the longest Huffman code, the symbols are
 | 
| -   * removed from this length category two at a time.  The prefix for the pair
 | 
| -   * (which is one bit shorter) is allocated to one of the pair; then,
 | 
| -   * skipping the BITS entry for that prefix length, a code word from the next
 | 
| -   * shortest nonzero BITS entry is converted into a prefix for two code words
 | 
| -   * one bit longer.
 | 
| -   */
 | 
| -  
 | 
| -  for (i = MAX_CLEN; i > 16; i--) {
 | 
| -    while (bits[i] > 0) {
 | 
| -      j = i - 2;		/* find length of new prefix to be used */
 | 
| -      while (bits[j] == 0)
 | 
| -	j--;
 | 
| -      
 | 
| -      bits[i] -= 2;		/* remove two symbols */
 | 
| -      bits[i-1]++;		/* one goes in this length */
 | 
| -      bits[j+1] += 2;		/* two new symbols in this length */
 | 
| -      bits[j]--;		/* symbol of this length is now a prefix */
 | 
| -    }
 | 
| -  }
 | 
| -
 | 
| -  /* Remove the count for the pseudo-symbol 256 from the largest codelength */
 | 
| -  while (bits[i] == 0)		/* find largest codelength still in use */
 | 
| -    i--;
 | 
| -  bits[i]--;
 | 
| -  
 | 
| -  /* Return final symbol counts (only for lengths 0..16) */
 | 
| -  MEMCOPY(htbl->bits, bits, SIZEOF(htbl->bits));
 | 
| -  
 | 
| -  /* Return a list of the symbols sorted by code length */
 | 
| -  /* It's not real clear to me why we don't need to consider the codelength
 | 
| -   * changes made above, but the JPEG spec seems to think this works.
 | 
| -   */
 | 
| -  p = 0;
 | 
| -  for (i = 1; i <= MAX_CLEN; i++) {
 | 
| -    for (j = 0; j <= 255; j++) {
 | 
| -      if (codesize[j] == i) {
 | 
| -	htbl->huffval[p] = (UINT8) j;
 | 
| -	p++;
 | 
| -      }
 | 
| -    }
 | 
| -  }
 | 
| -
 | 
| -  /* Set sent_table FALSE so updated table will be written to JPEG file. */
 | 
| -  htbl->sent_table = FALSE;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -/*
 | 
| - * Finish up a statistics-gathering pass and create the new Huffman tables.
 | 
| - */
 | 
| -
 | 
| -METHODDEF(void)
 | 
| -finish_pass_gather (j_compress_ptr cinfo)
 | 
| -{
 | 
| -  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
 | 
| -  int ci, dctbl, actbl;
 | 
| -  jpeg_component_info * compptr;
 | 
| -  JHUFF_TBL **htblptr;
 | 
| -  boolean did_dc[NUM_HUFF_TBLS];
 | 
| -  boolean did_ac[NUM_HUFF_TBLS];
 | 
| -
 | 
| -  /* It's important not to apply jpeg_gen_optimal_table more than once
 | 
| -   * per table, because it clobbers the input frequency counts!
 | 
| -   */
 | 
| -  MEMZERO(did_dc, SIZEOF(did_dc));
 | 
| -  MEMZERO(did_ac, SIZEOF(did_ac));
 | 
| -
 | 
| -  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
 | 
| -    compptr = cinfo->cur_comp_info[ci];
 | 
| -    dctbl = compptr->dc_tbl_no;
 | 
| -    actbl = compptr->ac_tbl_no;
 | 
| -    if (! did_dc[dctbl]) {
 | 
| -      htblptr = & cinfo->dc_huff_tbl_ptrs[dctbl];
 | 
| -      if (*htblptr == NULL)
 | 
| -	*htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
 | 
| -      jpeg_gen_optimal_table(cinfo, *htblptr, entropy->dc_count_ptrs[dctbl]);
 | 
| -      did_dc[dctbl] = TRUE;
 | 
| -    }
 | 
| -    if (! did_ac[actbl]) {
 | 
| -      htblptr = & cinfo->ac_huff_tbl_ptrs[actbl];
 | 
| -      if (*htblptr == NULL)
 | 
| -	*htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
 | 
| -      jpeg_gen_optimal_table(cinfo, *htblptr, entropy->ac_count_ptrs[actbl]);
 | 
| -      did_ac[actbl] = TRUE;
 | 
| -    }
 | 
| -  }
 | 
| -}
 | 
| -
 | 
| -
 | 
| -#endif /* ENTROPY_OPT_SUPPORTED */
 | 
| -
 | 
| -
 | 
| -/*
 | 
| - * Module initialization routine for Huffman entropy encoding.
 | 
| - */
 | 
| -
 | 
| -GLOBAL(void)
 | 
| -jinit_huff_encoder (j_compress_ptr cinfo)
 | 
| -{
 | 
| -  huff_entropy_ptr entropy;
 | 
| -  int i;
 | 
| -
 | 
| -  entropy = (huff_entropy_ptr)
 | 
| -    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
 | 
| -				SIZEOF(huff_entropy_encoder));
 | 
| -  cinfo->entropy = (struct jpeg_entropy_encoder *) entropy;
 | 
| -  entropy->pub.start_pass = start_pass_huff;
 | 
| -
 | 
| -  /* Mark tables unallocated */
 | 
| -  for (i = 0; i < NUM_HUFF_TBLS; i++) {
 | 
| -    entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
 | 
| -#ifdef ENTROPY_OPT_SUPPORTED
 | 
| -    entropy->dc_count_ptrs[i] = entropy->ac_count_ptrs[i] = NULL;
 | 
| -#endif
 | 
| -  }
 | 
| -}
 | 
| 
 |