Index: third_party/libjpeg/jccoefct.c |
diff --git a/third_party/libjpeg/jccoefct.c b/third_party/libjpeg/jccoefct.c |
deleted file mode 100644 |
index 1963ddb61b15689e36e3f1774007d3583b787a26..0000000000000000000000000000000000000000 |
--- a/third_party/libjpeg/jccoefct.c |
+++ /dev/null |
@@ -1,449 +0,0 @@ |
-/* |
- * jccoefct.c |
- * |
- * Copyright (C) 1994-1997, Thomas G. Lane. |
- * This file is part of the Independent JPEG Group's software. |
- * For conditions of distribution and use, see the accompanying README file. |
- * |
- * This file contains the coefficient buffer controller for compression. |
- * This controller is the top level of the JPEG compressor proper. |
- * The coefficient buffer lies between forward-DCT and entropy encoding steps. |
- */ |
- |
-#define JPEG_INTERNALS |
-#include "jinclude.h" |
-#include "jpeglib.h" |
- |
- |
-/* We use a full-image coefficient buffer when doing Huffman optimization, |
- * and also for writing multiple-scan JPEG files. In all cases, the DCT |
- * step is run during the first pass, and subsequent passes need only read |
- * the buffered coefficients. |
- */ |
-#ifdef ENTROPY_OPT_SUPPORTED |
-#define FULL_COEF_BUFFER_SUPPORTED |
-#else |
-#ifdef C_MULTISCAN_FILES_SUPPORTED |
-#define FULL_COEF_BUFFER_SUPPORTED |
-#endif |
-#endif |
- |
- |
-/* Private buffer controller object */ |
- |
-typedef struct { |
- struct jpeg_c_coef_controller pub; /* public fields */ |
- |
- JDIMENSION iMCU_row_num; /* iMCU row # within image */ |
- JDIMENSION mcu_ctr; /* counts MCUs processed in current row */ |
- int MCU_vert_offset; /* counts MCU rows within iMCU row */ |
- int MCU_rows_per_iMCU_row; /* number of such rows needed */ |
- |
- /* For single-pass compression, it's sufficient to buffer just one MCU |
- * (although this may prove a bit slow in practice). We allocate a |
- * workspace of C_MAX_BLOCKS_IN_MCU coefficient blocks, and reuse it for each |
- * MCU constructed and sent. (On 80x86, the workspace is FAR even though |
- * it's not really very big; this is to keep the module interfaces unchanged |
- * when a large coefficient buffer is necessary.) |
- * In multi-pass modes, this array points to the current MCU's blocks |
- * within the virtual arrays. |
- */ |
- JBLOCKROW MCU_buffer[C_MAX_BLOCKS_IN_MCU]; |
- |
- /* In multi-pass modes, we need a virtual block array for each component. */ |
- jvirt_barray_ptr whole_image[MAX_COMPONENTS]; |
-} my_coef_controller; |
- |
-typedef my_coef_controller * my_coef_ptr; |
- |
- |
-/* Forward declarations */ |
-METHODDEF(boolean) compress_data |
- JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf)); |
-#ifdef FULL_COEF_BUFFER_SUPPORTED |
-METHODDEF(boolean) compress_first_pass |
- JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf)); |
-METHODDEF(boolean) compress_output |
- JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf)); |
-#endif |
- |
- |
-LOCAL(void) |
-start_iMCU_row (j_compress_ptr cinfo) |
-/* Reset within-iMCU-row counters for a new row */ |
-{ |
- my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
- |
- /* In an interleaved scan, an MCU row is the same as an iMCU row. |
- * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows. |
- * But at the bottom of the image, process only what's left. |
- */ |
- if (cinfo->comps_in_scan > 1) { |
- coef->MCU_rows_per_iMCU_row = 1; |
- } else { |
- if (coef->iMCU_row_num < (cinfo->total_iMCU_rows-1)) |
- coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor; |
- else |
- coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height; |
- } |
- |
- coef->mcu_ctr = 0; |
- coef->MCU_vert_offset = 0; |
-} |
- |
- |
-/* |
- * Initialize for a processing pass. |
- */ |
- |
-METHODDEF(void) |
-start_pass_coef (j_compress_ptr cinfo, J_BUF_MODE pass_mode) |
-{ |
- my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
- |
- coef->iMCU_row_num = 0; |
- start_iMCU_row(cinfo); |
- |
- switch (pass_mode) { |
- case JBUF_PASS_THRU: |
- if (coef->whole_image[0] != NULL) |
- ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); |
- coef->pub.compress_data = compress_data; |
- break; |
-#ifdef FULL_COEF_BUFFER_SUPPORTED |
- case JBUF_SAVE_AND_PASS: |
- if (coef->whole_image[0] == NULL) |
- ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); |
- coef->pub.compress_data = compress_first_pass; |
- break; |
- case JBUF_CRANK_DEST: |
- if (coef->whole_image[0] == NULL) |
- ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); |
- coef->pub.compress_data = compress_output; |
- break; |
-#endif |
- default: |
- ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); |
- break; |
- } |
-} |
- |
- |
-/* |
- * Process some data in the single-pass case. |
- * We process the equivalent of one fully interleaved MCU row ("iMCU" row) |
- * per call, ie, v_samp_factor block rows for each component in the image. |
- * Returns TRUE if the iMCU row is completed, FALSE if suspended. |
- * |
- * NB: input_buf contains a plane for each component in image, |
- * which we index according to the component's SOF position. |
- */ |
- |
-METHODDEF(boolean) |
-compress_data (j_compress_ptr cinfo, JSAMPIMAGE input_buf) |
-{ |
- my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
- JDIMENSION MCU_col_num; /* index of current MCU within row */ |
- JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1; |
- JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; |
- int blkn, bi, ci, yindex, yoffset, blockcnt; |
- JDIMENSION ypos, xpos; |
- jpeg_component_info *compptr; |
- |
- /* Loop to write as much as one whole iMCU row */ |
- for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; |
- yoffset++) { |
- for (MCU_col_num = coef->mcu_ctr; MCU_col_num <= last_MCU_col; |
- MCU_col_num++) { |
- /* Determine where data comes from in input_buf and do the DCT thing. |
- * Each call on forward_DCT processes a horizontal row of DCT blocks |
- * as wide as an MCU; we rely on having allocated the MCU_buffer[] blocks |
- * sequentially. Dummy blocks at the right or bottom edge are filled in |
- * specially. The data in them does not matter for image reconstruction, |
- * so we fill them with values that will encode to the smallest amount of |
- * data, viz: all zeroes in the AC entries, DC entries equal to previous |
- * block's DC value. (Thanks to Thomas Kinsman for this idea.) |
- */ |
- blkn = 0; |
- for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
- compptr = cinfo->cur_comp_info[ci]; |
- blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width |
- : compptr->last_col_width; |
- xpos = MCU_col_num * compptr->MCU_sample_width; |
- ypos = yoffset * DCTSIZE; /* ypos == (yoffset+yindex) * DCTSIZE */ |
- for (yindex = 0; yindex < compptr->MCU_height; yindex++) { |
- if (coef->iMCU_row_num < last_iMCU_row || |
- yoffset+yindex < compptr->last_row_height) { |
- (*cinfo->fdct->forward_DCT) (cinfo, compptr, |
- input_buf[compptr->component_index], |
- coef->MCU_buffer[blkn], |
- ypos, xpos, (JDIMENSION) blockcnt); |
- if (blockcnt < compptr->MCU_width) { |
- /* Create some dummy blocks at the right edge of the image. */ |
- jzero_far((void FAR *) coef->MCU_buffer[blkn + blockcnt], |
- (compptr->MCU_width - blockcnt) * SIZEOF(JBLOCK)); |
- for (bi = blockcnt; bi < compptr->MCU_width; bi++) { |
- coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn+bi-1][0][0]; |
- } |
- } |
- } else { |
- /* Create a row of dummy blocks at the bottom of the image. */ |
- jzero_far((void FAR *) coef->MCU_buffer[blkn], |
- compptr->MCU_width * SIZEOF(JBLOCK)); |
- for (bi = 0; bi < compptr->MCU_width; bi++) { |
- coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn-1][0][0]; |
- } |
- } |
- blkn += compptr->MCU_width; |
- ypos += DCTSIZE; |
- } |
- } |
- /* Try to write the MCU. In event of a suspension failure, we will |
- * re-DCT the MCU on restart (a bit inefficient, could be fixed...) |
- */ |
- if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) { |
- /* Suspension forced; update state counters and exit */ |
- coef->MCU_vert_offset = yoffset; |
- coef->mcu_ctr = MCU_col_num; |
- return FALSE; |
- } |
- } |
- /* Completed an MCU row, but perhaps not an iMCU row */ |
- coef->mcu_ctr = 0; |
- } |
- /* Completed the iMCU row, advance counters for next one */ |
- coef->iMCU_row_num++; |
- start_iMCU_row(cinfo); |
- return TRUE; |
-} |
- |
- |
-#ifdef FULL_COEF_BUFFER_SUPPORTED |
- |
-/* |
- * Process some data in the first pass of a multi-pass case. |
- * We process the equivalent of one fully interleaved MCU row ("iMCU" row) |
- * per call, ie, v_samp_factor block rows for each component in the image. |
- * This amount of data is read from the source buffer, DCT'd and quantized, |
- * and saved into the virtual arrays. We also generate suitable dummy blocks |
- * as needed at the right and lower edges. (The dummy blocks are constructed |
- * in the virtual arrays, which have been padded appropriately.) This makes |
- * it possible for subsequent passes not to worry about real vs. dummy blocks. |
- * |
- * We must also emit the data to the entropy encoder. This is conveniently |
- * done by calling compress_output() after we've loaded the current strip |
- * of the virtual arrays. |
- * |
- * NB: input_buf contains a plane for each component in image. All |
- * components are DCT'd and loaded into the virtual arrays in this pass. |
- * However, it may be that only a subset of the components are emitted to |
- * the entropy encoder during this first pass; be careful about looking |
- * at the scan-dependent variables (MCU dimensions, etc). |
- */ |
- |
-METHODDEF(boolean) |
-compress_first_pass (j_compress_ptr cinfo, JSAMPIMAGE input_buf) |
-{ |
- my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
- JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; |
- JDIMENSION blocks_across, MCUs_across, MCUindex; |
- int bi, ci, h_samp_factor, block_row, block_rows, ndummy; |
- JCOEF lastDC; |
- jpeg_component_info *compptr; |
- JBLOCKARRAY buffer; |
- JBLOCKROW thisblockrow, lastblockrow; |
- |
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
- ci++, compptr++) { |
- /* Align the virtual buffer for this component. */ |
- buffer = (*cinfo->mem->access_virt_barray) |
- ((j_common_ptr) cinfo, coef->whole_image[ci], |
- coef->iMCU_row_num * compptr->v_samp_factor, |
- (JDIMENSION) compptr->v_samp_factor, TRUE); |
- /* Count non-dummy DCT block rows in this iMCU row. */ |
- if (coef->iMCU_row_num < last_iMCU_row) |
- block_rows = compptr->v_samp_factor; |
- else { |
- /* NB: can't use last_row_height here, since may not be set! */ |
- block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor); |
- if (block_rows == 0) block_rows = compptr->v_samp_factor; |
- } |
- blocks_across = compptr->width_in_blocks; |
- h_samp_factor = compptr->h_samp_factor; |
- /* Count number of dummy blocks to be added at the right margin. */ |
- ndummy = (int) (blocks_across % h_samp_factor); |
- if (ndummy > 0) |
- ndummy = h_samp_factor - ndummy; |
- /* Perform DCT for all non-dummy blocks in this iMCU row. Each call |
- * on forward_DCT processes a complete horizontal row of DCT blocks. |
- */ |
- for (block_row = 0; block_row < block_rows; block_row++) { |
- thisblockrow = buffer[block_row]; |
- (*cinfo->fdct->forward_DCT) (cinfo, compptr, |
- input_buf[ci], thisblockrow, |
- (JDIMENSION) (block_row * DCTSIZE), |
- (JDIMENSION) 0, blocks_across); |
- if (ndummy > 0) { |
- /* Create dummy blocks at the right edge of the image. */ |
- thisblockrow += blocks_across; /* => first dummy block */ |
- jzero_far((void FAR *) thisblockrow, ndummy * SIZEOF(JBLOCK)); |
- lastDC = thisblockrow[-1][0]; |
- for (bi = 0; bi < ndummy; bi++) { |
- thisblockrow[bi][0] = lastDC; |
- } |
- } |
- } |
- /* If at end of image, create dummy block rows as needed. |
- * The tricky part here is that within each MCU, we want the DC values |
- * of the dummy blocks to match the last real block's DC value. |
- * This squeezes a few more bytes out of the resulting file... |
- */ |
- if (coef->iMCU_row_num == last_iMCU_row) { |
- blocks_across += ndummy; /* include lower right corner */ |
- MCUs_across = blocks_across / h_samp_factor; |
- for (block_row = block_rows; block_row < compptr->v_samp_factor; |
- block_row++) { |
- thisblockrow = buffer[block_row]; |
- lastblockrow = buffer[block_row-1]; |
- jzero_far((void FAR *) thisblockrow, |
- (size_t) (blocks_across * SIZEOF(JBLOCK))); |
- for (MCUindex = 0; MCUindex < MCUs_across; MCUindex++) { |
- lastDC = lastblockrow[h_samp_factor-1][0]; |
- for (bi = 0; bi < h_samp_factor; bi++) { |
- thisblockrow[bi][0] = lastDC; |
- } |
- thisblockrow += h_samp_factor; /* advance to next MCU in row */ |
- lastblockrow += h_samp_factor; |
- } |
- } |
- } |
- } |
- /* NB: compress_output will increment iMCU_row_num if successful. |
- * A suspension return will result in redoing all the work above next time. |
- */ |
- |
- /* Emit data to the entropy encoder, sharing code with subsequent passes */ |
- return compress_output(cinfo, input_buf); |
-} |
- |
- |
-/* |
- * Process some data in subsequent passes of a multi-pass case. |
- * We process the equivalent of one fully interleaved MCU row ("iMCU" row) |
- * per call, ie, v_samp_factor block rows for each component in the scan. |
- * The data is obtained from the virtual arrays and fed to the entropy coder. |
- * Returns TRUE if the iMCU row is completed, FALSE if suspended. |
- * |
- * NB: input_buf is ignored; it is likely to be a NULL pointer. |
- */ |
- |
-METHODDEF(boolean) |
-compress_output (j_compress_ptr cinfo, JSAMPIMAGE input_buf) |
-{ |
- my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
- JDIMENSION MCU_col_num; /* index of current MCU within row */ |
- int blkn, ci, xindex, yindex, yoffset; |
- JDIMENSION start_col; |
- JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN]; |
- JBLOCKROW buffer_ptr; |
- jpeg_component_info *compptr; |
- |
- /* Align the virtual buffers for the components used in this scan. |
- * NB: during first pass, this is safe only because the buffers will |
- * already be aligned properly, so jmemmgr.c won't need to do any I/O. |
- */ |
- for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
- compptr = cinfo->cur_comp_info[ci]; |
- buffer[ci] = (*cinfo->mem->access_virt_barray) |
- ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index], |
- coef->iMCU_row_num * compptr->v_samp_factor, |
- (JDIMENSION) compptr->v_samp_factor, FALSE); |
- } |
- |
- /* Loop to process one whole iMCU row */ |
- for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; |
- yoffset++) { |
- for (MCU_col_num = coef->mcu_ctr; MCU_col_num < cinfo->MCUs_per_row; |
- MCU_col_num++) { |
- /* Construct list of pointers to DCT blocks belonging to this MCU */ |
- blkn = 0; /* index of current DCT block within MCU */ |
- for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
- compptr = cinfo->cur_comp_info[ci]; |
- start_col = MCU_col_num * compptr->MCU_width; |
- for (yindex = 0; yindex < compptr->MCU_height; yindex++) { |
- buffer_ptr = buffer[ci][yindex+yoffset] + start_col; |
- for (xindex = 0; xindex < compptr->MCU_width; xindex++) { |
- coef->MCU_buffer[blkn++] = buffer_ptr++; |
- } |
- } |
- } |
- /* Try to write the MCU. */ |
- if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) { |
- /* Suspension forced; update state counters and exit */ |
- coef->MCU_vert_offset = yoffset; |
- coef->mcu_ctr = MCU_col_num; |
- return FALSE; |
- } |
- } |
- /* Completed an MCU row, but perhaps not an iMCU row */ |
- coef->mcu_ctr = 0; |
- } |
- /* Completed the iMCU row, advance counters for next one */ |
- coef->iMCU_row_num++; |
- start_iMCU_row(cinfo); |
- return TRUE; |
-} |
- |
-#endif /* FULL_COEF_BUFFER_SUPPORTED */ |
- |
- |
-/* |
- * Initialize coefficient buffer controller. |
- */ |
- |
-GLOBAL(void) |
-jinit_c_coef_controller (j_compress_ptr cinfo, boolean need_full_buffer) |
-{ |
- my_coef_ptr coef; |
- |
- coef = (my_coef_ptr) |
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
- SIZEOF(my_coef_controller)); |
- cinfo->coef = (struct jpeg_c_coef_controller *) coef; |
- coef->pub.start_pass = start_pass_coef; |
- |
- /* Create the coefficient buffer. */ |
- if (need_full_buffer) { |
-#ifdef FULL_COEF_BUFFER_SUPPORTED |
- /* Allocate a full-image virtual array for each component, */ |
- /* padded to a multiple of samp_factor DCT blocks in each direction. */ |
- int ci; |
- jpeg_component_info *compptr; |
- |
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
- ci++, compptr++) { |
- coef->whole_image[ci] = (*cinfo->mem->request_virt_barray) |
- ((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE, |
- (JDIMENSION) jround_up((long) compptr->width_in_blocks, |
- (long) compptr->h_samp_factor), |
- (JDIMENSION) jround_up((long) compptr->height_in_blocks, |
- (long) compptr->v_samp_factor), |
- (JDIMENSION) compptr->v_samp_factor); |
- } |
-#else |
- ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); |
-#endif |
- } else { |
- /* We only need a single-MCU buffer. */ |
- JBLOCKROW buffer; |
- int i; |
- |
- buffer = (JBLOCKROW) |
- (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
- C_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK)); |
- for (i = 0; i < C_MAX_BLOCKS_IN_MCU; i++) { |
- coef->MCU_buffer[i] = buffer + i; |
- } |
- coef->whole_image[0] = NULL; /* flag for no virtual arrays */ |
- } |
-} |