OLD | NEW |
| (Empty) |
1 /* | |
2 * jquant2.c | |
3 * | |
4 * Copyright (C) 1991-1996, Thomas G. Lane. | |
5 * This file is part of the Independent JPEG Group's software. | |
6 * For conditions of distribution and use, see the accompanying README file. | |
7 * | |
8 * This file contains 2-pass color quantization (color mapping) routines. | |
9 * These routines provide selection of a custom color map for an image, | |
10 * followed by mapping of the image to that color map, with optional | |
11 * Floyd-Steinberg dithering. | |
12 * It is also possible to use just the second pass to map to an arbitrary | |
13 * externally-given color map. | |
14 * | |
15 * Note: ordered dithering is not supported, since there isn't any fast | |
16 * way to compute intercolor distances; it's unclear that ordered dither's | |
17 * fundamental assumptions even hold with an irregularly spaced color map. | |
18 */ | |
19 | |
20 #define JPEG_INTERNALS | |
21 #include "jinclude.h" | |
22 #include "jpeglib.h" | |
23 | |
24 #ifdef QUANT_2PASS_SUPPORTED | |
25 | |
26 | |
27 /* | |
28 * This module implements the well-known Heckbert paradigm for color | |
29 * quantization. Most of the ideas used here can be traced back to | |
30 * Heckbert's seminal paper | |
31 * Heckbert, Paul. "Color Image Quantization for Frame Buffer Display", | |
32 * Proc. SIGGRAPH '82, Computer Graphics v.16 #3 (July 1982), pp 297-304. | |
33 * | |
34 * In the first pass over the image, we accumulate a histogram showing the | |
35 * usage count of each possible color. To keep the histogram to a reasonable | |
36 * size, we reduce the precision of the input; typical practice is to retain | |
37 * 5 or 6 bits per color, so that 8 or 4 different input values are counted | |
38 * in the same histogram cell. | |
39 * | |
40 * Next, the color-selection step begins with a box representing the whole | |
41 * color space, and repeatedly splits the "largest" remaining box until we | |
42 * have as many boxes as desired colors. Then the mean color in each | |
43 * remaining box becomes one of the possible output colors. | |
44 * | |
45 * The second pass over the image maps each input pixel to the closest output | |
46 * color (optionally after applying a Floyd-Steinberg dithering correction). | |
47 * This mapping is logically trivial, but making it go fast enough requires | |
48 * considerable care. | |
49 * | |
50 * Heckbert-style quantizers vary a good deal in their policies for choosing | |
51 * the "largest" box and deciding where to cut it. The particular policies | |
52 * used here have proved out well in experimental comparisons, but better ones | |
53 * may yet be found. | |
54 * | |
55 * In earlier versions of the IJG code, this module quantized in YCbCr color | |
56 * space, processing the raw upsampled data without a color conversion step. | |
57 * This allowed the color conversion math to be done only once per colormap | |
58 * entry, not once per pixel. However, that optimization precluded other | |
59 * useful optimizations (such as merging color conversion with upsampling) | |
60 * and it also interfered with desired capabilities such as quantizing to an | |
61 * externally-supplied colormap. We have therefore abandoned that approach. | |
62 * The present code works in the post-conversion color space, typically RGB. | |
63 * | |
64 * To improve the visual quality of the results, we actually work in scaled | |
65 * RGB space, giving G distances more weight than R, and R in turn more than | |
66 * B. To do everything in integer math, we must use integer scale factors. | |
67 * The 2/3/1 scale factors used here correspond loosely to the relative | |
68 * weights of the colors in the NTSC grayscale equation. | |
69 * If you want to use this code to quantize a non-RGB color space, you'll | |
70 * probably need to change these scale factors. | |
71 */ | |
72 | |
73 #define R_SCALE 2 /* scale R distances by this much */ | |
74 #define G_SCALE 3 /* scale G distances by this much */ | |
75 #define B_SCALE 1 /* and B by this much */ | |
76 | |
77 /* Relabel R/G/B as components 0/1/2, respecting the RGB ordering defined | |
78 * in jmorecfg.h. As the code stands, it will do the right thing for R,G,B | |
79 * and B,G,R orders. If you define some other weird order in jmorecfg.h, | |
80 * you'll get compile errors until you extend this logic. In that case | |
81 * you'll probably want to tweak the histogram sizes too. | |
82 */ | |
83 | |
84 #if RGB_RED == 0 | |
85 #define C0_SCALE R_SCALE | |
86 #endif | |
87 #if RGB_BLUE == 0 | |
88 #define C0_SCALE B_SCALE | |
89 #endif | |
90 #if RGB_GREEN == 1 | |
91 #define C1_SCALE G_SCALE | |
92 #endif | |
93 #if RGB_RED == 2 | |
94 #define C2_SCALE R_SCALE | |
95 #endif | |
96 #if RGB_BLUE == 2 | |
97 #define C2_SCALE B_SCALE | |
98 #endif | |
99 | |
100 | |
101 /* | |
102 * First we have the histogram data structure and routines for creating it. | |
103 * | |
104 * The number of bits of precision can be adjusted by changing these symbols. | |
105 * We recommend keeping 6 bits for G and 5 each for R and B. | |
106 * If you have plenty of memory and cycles, 6 bits all around gives marginally | |
107 * better results; if you are short of memory, 5 bits all around will save | |
108 * some space but degrade the results. | |
109 * To maintain a fully accurate histogram, we'd need to allocate a "long" | |
110 * (preferably unsigned long) for each cell. In practice this is overkill; | |
111 * we can get by with 16 bits per cell. Few of the cell counts will overflow, | |
112 * and clamping those that do overflow to the maximum value will give close- | |
113 * enough results. This reduces the recommended histogram size from 256Kb | |
114 * to 128Kb, which is a useful savings on PC-class machines. | |
115 * (In the second pass the histogram space is re-used for pixel mapping data; | |
116 * in that capacity, each cell must be able to store zero to the number of | |
117 * desired colors. 16 bits/cell is plenty for that too.) | |
118 * Since the JPEG code is intended to run in small memory model on 80x86 | |
119 * machines, we can't just allocate the histogram in one chunk. Instead | |
120 * of a true 3-D array, we use a row of pointers to 2-D arrays. Each | |
121 * pointer corresponds to a C0 value (typically 2^5 = 32 pointers) and | |
122 * each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries. Note that | |
123 * on 80x86 machines, the pointer row is in near memory but the actual | |
124 * arrays are in far memory (same arrangement as we use for image arrays). | |
125 */ | |
126 | |
127 #define MAXNUMCOLORS (MAXJSAMPLE+1) /* maximum size of colormap */ | |
128 | |
129 /* These will do the right thing for either R,G,B or B,G,R color order, | |
130 * but you may not like the results for other color orders. | |
131 */ | |
132 #define HIST_C0_BITS 5 /* bits of precision in R/B histogram */ | |
133 #define HIST_C1_BITS 6 /* bits of precision in G histogram */ | |
134 #define HIST_C2_BITS 5 /* bits of precision in B/R histogram */ | |
135 | |
136 /* Number of elements along histogram axes. */ | |
137 #define HIST_C0_ELEMS (1<<HIST_C0_BITS) | |
138 #define HIST_C1_ELEMS (1<<HIST_C1_BITS) | |
139 #define HIST_C2_ELEMS (1<<HIST_C2_BITS) | |
140 | |
141 /* These are the amounts to shift an input value to get a histogram index. */ | |
142 #define C0_SHIFT (BITS_IN_JSAMPLE-HIST_C0_BITS) | |
143 #define C1_SHIFT (BITS_IN_JSAMPLE-HIST_C1_BITS) | |
144 #define C2_SHIFT (BITS_IN_JSAMPLE-HIST_C2_BITS) | |
145 | |
146 | |
147 typedef UINT16 histcell; /* histogram cell; prefer an unsigned type */ | |
148 | |
149 typedef histcell FAR * histptr; /* for pointers to histogram cells */ | |
150 | |
151 typedef histcell hist1d[HIST_C2_ELEMS]; /* typedefs for the array */ | |
152 typedef hist1d FAR * hist2d; /* type for the 2nd-level pointers */ | |
153 typedef hist2d * hist3d; /* type for top-level pointer */ | |
154 | |
155 | |
156 /* Declarations for Floyd-Steinberg dithering. | |
157 * | |
158 * Errors are accumulated into the array fserrors[], at a resolution of | |
159 * 1/16th of a pixel count. The error at a given pixel is propagated | |
160 * to its not-yet-processed neighbors using the standard F-S fractions, | |
161 * ... (here) 7/16 | |
162 * 3/16 5/16 1/16 | |
163 * We work left-to-right on even rows, right-to-left on odd rows. | |
164 * | |
165 * We can get away with a single array (holding one row's worth of errors) | |
166 * by using it to store the current row's errors at pixel columns not yet | |
167 * processed, but the next row's errors at columns already processed. We | |
168 * need only a few extra variables to hold the errors immediately around the | |
169 * current column. (If we are lucky, those variables are in registers, but | |
170 * even if not, they're probably cheaper to access than array elements are.) | |
171 * | |
172 * The fserrors[] array has (#columns + 2) entries; the extra entry at | |
173 * each end saves us from special-casing the first and last pixels. | |
174 * Each entry is three values long, one value for each color component. | |
175 * | |
176 * Note: on a wide image, we might not have enough room in a PC's near data | |
177 * segment to hold the error array; so it is allocated with alloc_large. | |
178 */ | |
179 | |
180 #if BITS_IN_JSAMPLE == 8 | |
181 typedef INT16 FSERROR; /* 16 bits should be enough */ | |
182 typedef int LOCFSERROR; /* use 'int' for calculation temps */ | |
183 #else | |
184 typedef INT32 FSERROR; /* may need more than 16 bits */ | |
185 typedef INT32 LOCFSERROR; /* be sure calculation temps are big enough */ | |
186 #endif | |
187 | |
188 typedef FSERROR FAR *FSERRPTR; /* pointer to error array (in FAR storage!) */ | |
189 | |
190 | |
191 /* Private subobject */ | |
192 | |
193 typedef struct { | |
194 struct jpeg_color_quantizer pub; /* public fields */ | |
195 | |
196 /* Space for the eventually created colormap is stashed here */ | |
197 JSAMPARRAY sv_colormap; /* colormap allocated at init time */ | |
198 int desired; /* desired # of colors = size of colormap */ | |
199 | |
200 /* Variables for accumulating image statistics */ | |
201 hist3d histogram; /* pointer to the histogram */ | |
202 | |
203 boolean needs_zeroed; /* TRUE if next pass must zero histogram */ | |
204 | |
205 /* Variables for Floyd-Steinberg dithering */ | |
206 FSERRPTR fserrors; /* accumulated errors */ | |
207 boolean on_odd_row; /* flag to remember which row we are on */ | |
208 int * error_limiter; /* table for clamping the applied error */ | |
209 } my_cquantizer; | |
210 | |
211 typedef my_cquantizer * my_cquantize_ptr; | |
212 | |
213 | |
214 /* | |
215 * Prescan some rows of pixels. | |
216 * In this module the prescan simply updates the histogram, which has been | |
217 * initialized to zeroes by start_pass. | |
218 * An output_buf parameter is required by the method signature, but no data | |
219 * is actually output (in fact the buffer controller is probably passing a | |
220 * NULL pointer). | |
221 */ | |
222 | |
223 METHODDEF(void) | |
224 prescan_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf, | |
225 JSAMPARRAY output_buf, int num_rows) | |
226 { | |
227 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |
228 register JSAMPROW ptr; | |
229 register histptr histp; | |
230 register hist3d histogram = cquantize->histogram; | |
231 int row; | |
232 JDIMENSION col; | |
233 JDIMENSION width = cinfo->output_width; | |
234 | |
235 for (row = 0; row < num_rows; row++) { | |
236 ptr = input_buf[row]; | |
237 for (col = width; col > 0; col--) { | |
238 /* get pixel value and index into the histogram */ | |
239 histp = & histogram[GETJSAMPLE(ptr[0]) >> C0_SHIFT] | |
240 [GETJSAMPLE(ptr[1]) >> C1_SHIFT] | |
241 [GETJSAMPLE(ptr[2]) >> C2_SHIFT]; | |
242 /* increment, check for overflow and undo increment if so. */ | |
243 if (++(*histp) <= 0) | |
244 (*histp)--; | |
245 ptr += 3; | |
246 } | |
247 } | |
248 } | |
249 | |
250 | |
251 /* | |
252 * Next we have the really interesting routines: selection of a colormap | |
253 * given the completed histogram. | |
254 * These routines work with a list of "boxes", each representing a rectangular | |
255 * subset of the input color space (to histogram precision). | |
256 */ | |
257 | |
258 typedef struct { | |
259 /* The bounds of the box (inclusive); expressed as histogram indexes */ | |
260 int c0min, c0max; | |
261 int c1min, c1max; | |
262 int c2min, c2max; | |
263 /* The volume (actually 2-norm) of the box */ | |
264 INT32 volume; | |
265 /* The number of nonzero histogram cells within this box */ | |
266 long colorcount; | |
267 } box; | |
268 | |
269 typedef box * boxptr; | |
270 | |
271 | |
272 LOCAL(boxptr) | |
273 find_biggest_color_pop (boxptr boxlist, int numboxes) | |
274 /* Find the splittable box with the largest color population */ | |
275 /* Returns NULL if no splittable boxes remain */ | |
276 { | |
277 register boxptr boxp; | |
278 register int i; | |
279 register long maxc = 0; | |
280 boxptr which = NULL; | |
281 | |
282 for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) { | |
283 if (boxp->colorcount > maxc && boxp->volume > 0) { | |
284 which = boxp; | |
285 maxc = boxp->colorcount; | |
286 } | |
287 } | |
288 return which; | |
289 } | |
290 | |
291 | |
292 LOCAL(boxptr) | |
293 find_biggest_volume (boxptr boxlist, int numboxes) | |
294 /* Find the splittable box with the largest (scaled) volume */ | |
295 /* Returns NULL if no splittable boxes remain */ | |
296 { | |
297 register boxptr boxp; | |
298 register int i; | |
299 register INT32 maxv = 0; | |
300 boxptr which = NULL; | |
301 | |
302 for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) { | |
303 if (boxp->volume > maxv) { | |
304 which = boxp; | |
305 maxv = boxp->volume; | |
306 } | |
307 } | |
308 return which; | |
309 } | |
310 | |
311 | |
312 LOCAL(void) | |
313 update_box (j_decompress_ptr cinfo, boxptr boxp) | |
314 /* Shrink the min/max bounds of a box to enclose only nonzero elements, */ | |
315 /* and recompute its volume and population */ | |
316 { | |
317 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |
318 hist3d histogram = cquantize->histogram; | |
319 histptr histp; | |
320 int c0,c1,c2; | |
321 int c0min,c0max,c1min,c1max,c2min,c2max; | |
322 INT32 dist0,dist1,dist2; | |
323 long ccount; | |
324 | |
325 c0min = boxp->c0min; c0max = boxp->c0max; | |
326 c1min = boxp->c1min; c1max = boxp->c1max; | |
327 c2min = boxp->c2min; c2max = boxp->c2max; | |
328 | |
329 if (c0max > c0min) | |
330 for (c0 = c0min; c0 <= c0max; c0++) | |
331 for (c1 = c1min; c1 <= c1max; c1++) { | |
332 histp = & histogram[c0][c1][c2min]; | |
333 for (c2 = c2min; c2 <= c2max; c2++) | |
334 if (*histp++ != 0) { | |
335 boxp->c0min = c0min = c0; | |
336 goto have_c0min; | |
337 } | |
338 } | |
339 have_c0min: | |
340 if (c0max > c0min) | |
341 for (c0 = c0max; c0 >= c0min; c0--) | |
342 for (c1 = c1min; c1 <= c1max; c1++) { | |
343 histp = & histogram[c0][c1][c2min]; | |
344 for (c2 = c2min; c2 <= c2max; c2++) | |
345 if (*histp++ != 0) { | |
346 boxp->c0max = c0max = c0; | |
347 goto have_c0max; | |
348 } | |
349 } | |
350 have_c0max: | |
351 if (c1max > c1min) | |
352 for (c1 = c1min; c1 <= c1max; c1++) | |
353 for (c0 = c0min; c0 <= c0max; c0++) { | |
354 histp = & histogram[c0][c1][c2min]; | |
355 for (c2 = c2min; c2 <= c2max; c2++) | |
356 if (*histp++ != 0) { | |
357 boxp->c1min = c1min = c1; | |
358 goto have_c1min; | |
359 } | |
360 } | |
361 have_c1min: | |
362 if (c1max > c1min) | |
363 for (c1 = c1max; c1 >= c1min; c1--) | |
364 for (c0 = c0min; c0 <= c0max; c0++) { | |
365 histp = & histogram[c0][c1][c2min]; | |
366 for (c2 = c2min; c2 <= c2max; c2++) | |
367 if (*histp++ != 0) { | |
368 boxp->c1max = c1max = c1; | |
369 goto have_c1max; | |
370 } | |
371 } | |
372 have_c1max: | |
373 if (c2max > c2min) | |
374 for (c2 = c2min; c2 <= c2max; c2++) | |
375 for (c0 = c0min; c0 <= c0max; c0++) { | |
376 histp = & histogram[c0][c1min][c2]; | |
377 for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS) | |
378 if (*histp != 0) { | |
379 boxp->c2min = c2min = c2; | |
380 goto have_c2min; | |
381 } | |
382 } | |
383 have_c2min: | |
384 if (c2max > c2min) | |
385 for (c2 = c2max; c2 >= c2min; c2--) | |
386 for (c0 = c0min; c0 <= c0max; c0++) { | |
387 histp = & histogram[c0][c1min][c2]; | |
388 for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS) | |
389 if (*histp != 0) { | |
390 boxp->c2max = c2max = c2; | |
391 goto have_c2max; | |
392 } | |
393 } | |
394 have_c2max: | |
395 | |
396 /* Update box volume. | |
397 * We use 2-norm rather than real volume here; this biases the method | |
398 * against making long narrow boxes, and it has the side benefit that | |
399 * a box is splittable iff norm > 0. | |
400 * Since the differences are expressed in histogram-cell units, | |
401 * we have to shift back to JSAMPLE units to get consistent distances; | |
402 * after which, we scale according to the selected distance scale factors. | |
403 */ | |
404 dist0 = ((c0max - c0min) << C0_SHIFT) * C0_SCALE; | |
405 dist1 = ((c1max - c1min) << C1_SHIFT) * C1_SCALE; | |
406 dist2 = ((c2max - c2min) << C2_SHIFT) * C2_SCALE; | |
407 boxp->volume = dist0*dist0 + dist1*dist1 + dist2*dist2; | |
408 | |
409 /* Now scan remaining volume of box and compute population */ | |
410 ccount = 0; | |
411 for (c0 = c0min; c0 <= c0max; c0++) | |
412 for (c1 = c1min; c1 <= c1max; c1++) { | |
413 histp = & histogram[c0][c1][c2min]; | |
414 for (c2 = c2min; c2 <= c2max; c2++, histp++) | |
415 if (*histp != 0) { | |
416 ccount++; | |
417 } | |
418 } | |
419 boxp->colorcount = ccount; | |
420 } | |
421 | |
422 | |
423 LOCAL(int) | |
424 median_cut (j_decompress_ptr cinfo, boxptr boxlist, int numboxes, | |
425 int desired_colors) | |
426 /* Repeatedly select and split the largest box until we have enough boxes */ | |
427 { | |
428 int n,lb; | |
429 int c0,c1,c2,cmax; | |
430 register boxptr b1,b2; | |
431 | |
432 while (numboxes < desired_colors) { | |
433 /* Select box to split. | |
434 * Current algorithm: by population for first half, then by volume. | |
435 */ | |
436 if (numboxes*2 <= desired_colors) { | |
437 b1 = find_biggest_color_pop(boxlist, numboxes); | |
438 } else { | |
439 b1 = find_biggest_volume(boxlist, numboxes); | |
440 } | |
441 if (b1 == NULL) /* no splittable boxes left! */ | |
442 break; | |
443 b2 = &boxlist[numboxes]; /* where new box will go */ | |
444 /* Copy the color bounds to the new box. */ | |
445 b2->c0max = b1->c0max; b2->c1max = b1->c1max; b2->c2max = b1->c2max; | |
446 b2->c0min = b1->c0min; b2->c1min = b1->c1min; b2->c2min = b1->c2min; | |
447 /* Choose which axis to split the box on. | |
448 * Current algorithm: longest scaled axis. | |
449 * See notes in update_box about scaling distances. | |
450 */ | |
451 c0 = ((b1->c0max - b1->c0min) << C0_SHIFT) * C0_SCALE; | |
452 c1 = ((b1->c1max - b1->c1min) << C1_SHIFT) * C1_SCALE; | |
453 c2 = ((b1->c2max - b1->c2min) << C2_SHIFT) * C2_SCALE; | |
454 /* We want to break any ties in favor of green, then red, blue last. | |
455 * This code does the right thing for R,G,B or B,G,R color orders only. | |
456 */ | |
457 #if RGB_RED == 0 | |
458 cmax = c1; n = 1; | |
459 if (c0 > cmax) { cmax = c0; n = 0; } | |
460 if (c2 > cmax) { n = 2; } | |
461 #else | |
462 cmax = c1; n = 1; | |
463 if (c2 > cmax) { cmax = c2; n = 2; } | |
464 if (c0 > cmax) { n = 0; } | |
465 #endif | |
466 /* Choose split point along selected axis, and update box bounds. | |
467 * Current algorithm: split at halfway point. | |
468 * (Since the box has been shrunk to minimum volume, | |
469 * any split will produce two nonempty subboxes.) | |
470 * Note that lb value is max for lower box, so must be < old max. | |
471 */ | |
472 switch (n) { | |
473 case 0: | |
474 lb = (b1->c0max + b1->c0min) / 2; | |
475 b1->c0max = lb; | |
476 b2->c0min = lb+1; | |
477 break; | |
478 case 1: | |
479 lb = (b1->c1max + b1->c1min) / 2; | |
480 b1->c1max = lb; | |
481 b2->c1min = lb+1; | |
482 break; | |
483 case 2: | |
484 lb = (b1->c2max + b1->c2min) / 2; | |
485 b1->c2max = lb; | |
486 b2->c2min = lb+1; | |
487 break; | |
488 } | |
489 /* Update stats for boxes */ | |
490 update_box(cinfo, b1); | |
491 update_box(cinfo, b2); | |
492 numboxes++; | |
493 } | |
494 return numboxes; | |
495 } | |
496 | |
497 | |
498 LOCAL(void) | |
499 compute_color (j_decompress_ptr cinfo, boxptr boxp, int icolor) | |
500 /* Compute representative color for a box, put it in colormap[icolor] */ | |
501 { | |
502 /* Current algorithm: mean weighted by pixels (not colors) */ | |
503 /* Note it is important to get the rounding correct! */ | |
504 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |
505 hist3d histogram = cquantize->histogram; | |
506 histptr histp; | |
507 int c0,c1,c2; | |
508 int c0min,c0max,c1min,c1max,c2min,c2max; | |
509 long count; | |
510 long total = 0; | |
511 long c0total = 0; | |
512 long c1total = 0; | |
513 long c2total = 0; | |
514 | |
515 c0min = boxp->c0min; c0max = boxp->c0max; | |
516 c1min = boxp->c1min; c1max = boxp->c1max; | |
517 c2min = boxp->c2min; c2max = boxp->c2max; | |
518 | |
519 for (c0 = c0min; c0 <= c0max; c0++) | |
520 for (c1 = c1min; c1 <= c1max; c1++) { | |
521 histp = & histogram[c0][c1][c2min]; | |
522 for (c2 = c2min; c2 <= c2max; c2++) { | |
523 if ((count = *histp++) != 0) { | |
524 total += count; | |
525 c0total += ((c0 << C0_SHIFT) + ((1<<C0_SHIFT)>>1)) * count; | |
526 c1total += ((c1 << C1_SHIFT) + ((1<<C1_SHIFT)>>1)) * count; | |
527 c2total += ((c2 << C2_SHIFT) + ((1<<C2_SHIFT)>>1)) * count; | |
528 } | |
529 } | |
530 } | |
531 | |
532 cinfo->colormap[0][icolor] = (JSAMPLE) ((c0total + (total>>1)) / total); | |
533 cinfo->colormap[1][icolor] = (JSAMPLE) ((c1total + (total>>1)) / total); | |
534 cinfo->colormap[2][icolor] = (JSAMPLE) ((c2total + (total>>1)) / total); | |
535 } | |
536 | |
537 | |
538 LOCAL(void) | |
539 select_colors (j_decompress_ptr cinfo, int desired_colors) | |
540 /* Master routine for color selection */ | |
541 { | |
542 boxptr boxlist; | |
543 int numboxes; | |
544 int i; | |
545 | |
546 /* Allocate workspace for box list */ | |
547 boxlist = (boxptr) (*cinfo->mem->alloc_small) | |
548 ((j_common_ptr) cinfo, JPOOL_IMAGE, desired_colors * SIZEOF(box)); | |
549 /* Initialize one box containing whole space */ | |
550 numboxes = 1; | |
551 boxlist[0].c0min = 0; | |
552 boxlist[0].c0max = MAXJSAMPLE >> C0_SHIFT; | |
553 boxlist[0].c1min = 0; | |
554 boxlist[0].c1max = MAXJSAMPLE >> C1_SHIFT; | |
555 boxlist[0].c2min = 0; | |
556 boxlist[0].c2max = MAXJSAMPLE >> C2_SHIFT; | |
557 /* Shrink it to actually-used volume and set its statistics */ | |
558 update_box(cinfo, & boxlist[0]); | |
559 /* Perform median-cut to produce final box list */ | |
560 numboxes = median_cut(cinfo, boxlist, numboxes, desired_colors); | |
561 /* Compute the representative color for each box, fill colormap */ | |
562 for (i = 0; i < numboxes; i++) | |
563 compute_color(cinfo, & boxlist[i], i); | |
564 cinfo->actual_number_of_colors = numboxes; | |
565 TRACEMS1(cinfo, 1, JTRC_QUANT_SELECTED, numboxes); | |
566 } | |
567 | |
568 | |
569 /* | |
570 * These routines are concerned with the time-critical task of mapping input | |
571 * colors to the nearest color in the selected colormap. | |
572 * | |
573 * We re-use the histogram space as an "inverse color map", essentially a | |
574 * cache for the results of nearest-color searches. All colors within a | |
575 * histogram cell will be mapped to the same colormap entry, namely the one | |
576 * closest to the cell's center. This may not be quite the closest entry to | |
577 * the actual input color, but it's almost as good. A zero in the cache | |
578 * indicates we haven't found the nearest color for that cell yet; the array | |
579 * is cleared to zeroes before starting the mapping pass. When we find the | |
580 * nearest color for a cell, its colormap index plus one is recorded in the | |
581 * cache for future use. The pass2 scanning routines call fill_inverse_cmap | |
582 * when they need to use an unfilled entry in the cache. | |
583 * | |
584 * Our method of efficiently finding nearest colors is based on the "locally | |
585 * sorted search" idea described by Heckbert and on the incremental distance | |
586 * calculation described by Spencer W. Thomas in chapter III.1 of Graphics | |
587 * Gems II (James Arvo, ed. Academic Press, 1991). Thomas points out that | |
588 * the distances from a given colormap entry to each cell of the histogram can | |
589 * be computed quickly using an incremental method: the differences between | |
590 * distances to adjacent cells themselves differ by a constant. This allows a | |
591 * fairly fast implementation of the "brute force" approach of computing the | |
592 * distance from every colormap entry to every histogram cell. Unfortunately, | |
593 * it needs a work array to hold the best-distance-so-far for each histogram | |
594 * cell (because the inner loop has to be over cells, not colormap entries). | |
595 * The work array elements have to be INT32s, so the work array would need | |
596 * 256Kb at our recommended precision. This is not feasible in DOS machines. | |
597 * | |
598 * To get around these problems, we apply Thomas' method to compute the | |
599 * nearest colors for only the cells within a small subbox of the histogram. | |
600 * The work array need be only as big as the subbox, so the memory usage | |
601 * problem is solved. Furthermore, we need not fill subboxes that are never | |
602 * referenced in pass2; many images use only part of the color gamut, so a | |
603 * fair amount of work is saved. An additional advantage of this | |
604 * approach is that we can apply Heckbert's locality criterion to quickly | |
605 * eliminate colormap entries that are far away from the subbox; typically | |
606 * three-fourths of the colormap entries are rejected by Heckbert's criterion, | |
607 * and we need not compute their distances to individual cells in the subbox. | |
608 * The speed of this approach is heavily influenced by the subbox size: too | |
609 * small means too much overhead, too big loses because Heckbert's criterion | |
610 * can't eliminate as many colormap entries. Empirically the best subbox | |
611 * size seems to be about 1/512th of the histogram (1/8th in each direction). | |
612 * | |
613 * Thomas' article also describes a refined method which is asymptotically | |
614 * faster than the brute-force method, but it is also far more complex and | |
615 * cannot efficiently be applied to small subboxes. It is therefore not | |
616 * useful for programs intended to be portable to DOS machines. On machines | |
617 * with plenty of memory, filling the whole histogram in one shot with Thomas' | |
618 * refined method might be faster than the present code --- but then again, | |
619 * it might not be any faster, and it's certainly more complicated. | |
620 */ | |
621 | |
622 | |
623 /* log2(histogram cells in update box) for each axis; this can be adjusted */ | |
624 #define BOX_C0_LOG (HIST_C0_BITS-3) | |
625 #define BOX_C1_LOG (HIST_C1_BITS-3) | |
626 #define BOX_C2_LOG (HIST_C2_BITS-3) | |
627 | |
628 #define BOX_C0_ELEMS (1<<BOX_C0_LOG) /* # of hist cells in update box */ | |
629 #define BOX_C1_ELEMS (1<<BOX_C1_LOG) | |
630 #define BOX_C2_ELEMS (1<<BOX_C2_LOG) | |
631 | |
632 #define BOX_C0_SHIFT (C0_SHIFT + BOX_C0_LOG) | |
633 #define BOX_C1_SHIFT (C1_SHIFT + BOX_C1_LOG) | |
634 #define BOX_C2_SHIFT (C2_SHIFT + BOX_C2_LOG) | |
635 | |
636 | |
637 /* | |
638 * The next three routines implement inverse colormap filling. They could | |
639 * all be folded into one big routine, but splitting them up this way saves | |
640 * some stack space (the mindist[] and bestdist[] arrays need not coexist) | |
641 * and may allow some compilers to produce better code by registerizing more | |
642 * inner-loop variables. | |
643 */ | |
644 | |
645 LOCAL(int) | |
646 find_nearby_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2, | |
647 JSAMPLE colorlist[]) | |
648 /* Locate the colormap entries close enough to an update box to be candidates | |
649 * for the nearest entry to some cell(s) in the update box. The update box | |
650 * is specified by the center coordinates of its first cell. The number of | |
651 * candidate colormap entries is returned, and their colormap indexes are | |
652 * placed in colorlist[]. | |
653 * This routine uses Heckbert's "locally sorted search" criterion to select | |
654 * the colors that need further consideration. | |
655 */ | |
656 { | |
657 int numcolors = cinfo->actual_number_of_colors; | |
658 int maxc0, maxc1, maxc2; | |
659 int centerc0, centerc1, centerc2; | |
660 int i, x, ncolors; | |
661 INT32 minmaxdist, min_dist, max_dist, tdist; | |
662 INT32 mindist[MAXNUMCOLORS]; /* min distance to colormap entry i */ | |
663 | |
664 /* Compute true coordinates of update box's upper corner and center. | |
665 * Actually we compute the coordinates of the center of the upper-corner | |
666 * histogram cell, which are the upper bounds of the volume we care about. | |
667 * Note that since ">>" rounds down, the "center" values may be closer to | |
668 * min than to max; hence comparisons to them must be "<=", not "<". | |
669 */ | |
670 maxc0 = minc0 + ((1 << BOX_C0_SHIFT) - (1 << C0_SHIFT)); | |
671 centerc0 = (minc0 + maxc0) >> 1; | |
672 maxc1 = minc1 + ((1 << BOX_C1_SHIFT) - (1 << C1_SHIFT)); | |
673 centerc1 = (minc1 + maxc1) >> 1; | |
674 maxc2 = minc2 + ((1 << BOX_C2_SHIFT) - (1 << C2_SHIFT)); | |
675 centerc2 = (minc2 + maxc2) >> 1; | |
676 | |
677 /* For each color in colormap, find: | |
678 * 1. its minimum squared-distance to any point in the update box | |
679 * (zero if color is within update box); | |
680 * 2. its maximum squared-distance to any point in the update box. | |
681 * Both of these can be found by considering only the corners of the box. | |
682 * We save the minimum distance for each color in mindist[]; | |
683 * only the smallest maximum distance is of interest. | |
684 */ | |
685 minmaxdist = 0x7FFFFFFFL; | |
686 | |
687 for (i = 0; i < numcolors; i++) { | |
688 /* We compute the squared-c0-distance term, then add in the other two. */ | |
689 x = GETJSAMPLE(cinfo->colormap[0][i]); | |
690 if (x < minc0) { | |
691 tdist = (x - minc0) * C0_SCALE; | |
692 min_dist = tdist*tdist; | |
693 tdist = (x - maxc0) * C0_SCALE; | |
694 max_dist = tdist*tdist; | |
695 } else if (x > maxc0) { | |
696 tdist = (x - maxc0) * C0_SCALE; | |
697 min_dist = tdist*tdist; | |
698 tdist = (x - minc0) * C0_SCALE; | |
699 max_dist = tdist*tdist; | |
700 } else { | |
701 /* within cell range so no contribution to min_dist */ | |
702 min_dist = 0; | |
703 if (x <= centerc0) { | |
704 tdist = (x - maxc0) * C0_SCALE; | |
705 max_dist = tdist*tdist; | |
706 } else { | |
707 tdist = (x - minc0) * C0_SCALE; | |
708 max_dist = tdist*tdist; | |
709 } | |
710 } | |
711 | |
712 x = GETJSAMPLE(cinfo->colormap[1][i]); | |
713 if (x < minc1) { | |
714 tdist = (x - minc1) * C1_SCALE; | |
715 min_dist += tdist*tdist; | |
716 tdist = (x - maxc1) * C1_SCALE; | |
717 max_dist += tdist*tdist; | |
718 } else if (x > maxc1) { | |
719 tdist = (x - maxc1) * C1_SCALE; | |
720 min_dist += tdist*tdist; | |
721 tdist = (x - minc1) * C1_SCALE; | |
722 max_dist += tdist*tdist; | |
723 } else { | |
724 /* within cell range so no contribution to min_dist */ | |
725 if (x <= centerc1) { | |
726 tdist = (x - maxc1) * C1_SCALE; | |
727 max_dist += tdist*tdist; | |
728 } else { | |
729 tdist = (x - minc1) * C1_SCALE; | |
730 max_dist += tdist*tdist; | |
731 } | |
732 } | |
733 | |
734 x = GETJSAMPLE(cinfo->colormap[2][i]); | |
735 if (x < minc2) { | |
736 tdist = (x - minc2) * C2_SCALE; | |
737 min_dist += tdist*tdist; | |
738 tdist = (x - maxc2) * C2_SCALE; | |
739 max_dist += tdist*tdist; | |
740 } else if (x > maxc2) { | |
741 tdist = (x - maxc2) * C2_SCALE; | |
742 min_dist += tdist*tdist; | |
743 tdist = (x - minc2) * C2_SCALE; | |
744 max_dist += tdist*tdist; | |
745 } else { | |
746 /* within cell range so no contribution to min_dist */ | |
747 if (x <= centerc2) { | |
748 tdist = (x - maxc2) * C2_SCALE; | |
749 max_dist += tdist*tdist; | |
750 } else { | |
751 tdist = (x - minc2) * C2_SCALE; | |
752 max_dist += tdist*tdist; | |
753 } | |
754 } | |
755 | |
756 mindist[i] = min_dist; /* save away the results */ | |
757 if (max_dist < minmaxdist) | |
758 minmaxdist = max_dist; | |
759 } | |
760 | |
761 /* Now we know that no cell in the update box is more than minmaxdist | |
762 * away from some colormap entry. Therefore, only colors that are | |
763 * within minmaxdist of some part of the box need be considered. | |
764 */ | |
765 ncolors = 0; | |
766 for (i = 0; i < numcolors; i++) { | |
767 if (mindist[i] <= minmaxdist) | |
768 colorlist[ncolors++] = (JSAMPLE) i; | |
769 } | |
770 return ncolors; | |
771 } | |
772 | |
773 | |
774 LOCAL(void) | |
775 find_best_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2, | |
776 int numcolors, JSAMPLE colorlist[], JSAMPLE bestcolor[]) | |
777 /* Find the closest colormap entry for each cell in the update box, | |
778 * given the list of candidate colors prepared by find_nearby_colors. | |
779 * Return the indexes of the closest entries in the bestcolor[] array. | |
780 * This routine uses Thomas' incremental distance calculation method to | |
781 * find the distance from a colormap entry to successive cells in the box. | |
782 */ | |
783 { | |
784 int ic0, ic1, ic2; | |
785 int i, icolor; | |
786 register INT32 * bptr; /* pointer into bestdist[] array */ | |
787 JSAMPLE * cptr; /* pointer into bestcolor[] array */ | |
788 INT32 dist0, dist1; /* initial distance values */ | |
789 register INT32 dist2; /* current distance in inner loop */ | |
790 INT32 xx0, xx1; /* distance increments */ | |
791 register INT32 xx2; | |
792 INT32 inc0, inc1, inc2; /* initial values for increments */ | |
793 /* This array holds the distance to the nearest-so-far color for each cell */ | |
794 INT32 bestdist[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS]; | |
795 | |
796 /* Initialize best-distance for each cell of the update box */ | |
797 bptr = bestdist; | |
798 for (i = BOX_C0_ELEMS*BOX_C1_ELEMS*BOX_C2_ELEMS-1; i >= 0; i--) | |
799 *bptr++ = 0x7FFFFFFFL; | |
800 | |
801 /* For each color selected by find_nearby_colors, | |
802 * compute its distance to the center of each cell in the box. | |
803 * If that's less than best-so-far, update best distance and color number. | |
804 */ | |
805 | |
806 /* Nominal steps between cell centers ("x" in Thomas article) */ | |
807 #define STEP_C0 ((1 << C0_SHIFT) * C0_SCALE) | |
808 #define STEP_C1 ((1 << C1_SHIFT) * C1_SCALE) | |
809 #define STEP_C2 ((1 << C2_SHIFT) * C2_SCALE) | |
810 | |
811 for (i = 0; i < numcolors; i++) { | |
812 icolor = GETJSAMPLE(colorlist[i]); | |
813 /* Compute (square of) distance from minc0/c1/c2 to this color */ | |
814 inc0 = (minc0 - GETJSAMPLE(cinfo->colormap[0][icolor])) * C0_SCALE; | |
815 dist0 = inc0*inc0; | |
816 inc1 = (minc1 - GETJSAMPLE(cinfo->colormap[1][icolor])) * C1_SCALE; | |
817 dist0 += inc1*inc1; | |
818 inc2 = (minc2 - GETJSAMPLE(cinfo->colormap[2][icolor])) * C2_SCALE; | |
819 dist0 += inc2*inc2; | |
820 /* Form the initial difference increments */ | |
821 inc0 = inc0 * (2 * STEP_C0) + STEP_C0 * STEP_C0; | |
822 inc1 = inc1 * (2 * STEP_C1) + STEP_C1 * STEP_C1; | |
823 inc2 = inc2 * (2 * STEP_C2) + STEP_C2 * STEP_C2; | |
824 /* Now loop over all cells in box, updating distance per Thomas method */ | |
825 bptr = bestdist; | |
826 cptr = bestcolor; | |
827 xx0 = inc0; | |
828 for (ic0 = BOX_C0_ELEMS-1; ic0 >= 0; ic0--) { | |
829 dist1 = dist0; | |
830 xx1 = inc1; | |
831 for (ic1 = BOX_C1_ELEMS-1; ic1 >= 0; ic1--) { | |
832 dist2 = dist1; | |
833 xx2 = inc2; | |
834 for (ic2 = BOX_C2_ELEMS-1; ic2 >= 0; ic2--) { | |
835 if (dist2 < *bptr) { | |
836 *bptr = dist2; | |
837 *cptr = (JSAMPLE) icolor; | |
838 } | |
839 dist2 += xx2; | |
840 xx2 += 2 * STEP_C2 * STEP_C2; | |
841 bptr++; | |
842 cptr++; | |
843 } | |
844 dist1 += xx1; | |
845 xx1 += 2 * STEP_C1 * STEP_C1; | |
846 } | |
847 dist0 += xx0; | |
848 xx0 += 2 * STEP_C0 * STEP_C0; | |
849 } | |
850 } | |
851 } | |
852 | |
853 | |
854 LOCAL(void) | |
855 fill_inverse_cmap (j_decompress_ptr cinfo, int c0, int c1, int c2) | |
856 /* Fill the inverse-colormap entries in the update box that contains */ | |
857 /* histogram cell c0/c1/c2. (Only that one cell MUST be filled, but */ | |
858 /* we can fill as many others as we wish.) */ | |
859 { | |
860 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |
861 hist3d histogram = cquantize->histogram; | |
862 int minc0, minc1, minc2; /* lower left corner of update box */ | |
863 int ic0, ic1, ic2; | |
864 register JSAMPLE * cptr; /* pointer into bestcolor[] array */ | |
865 register histptr cachep; /* pointer into main cache array */ | |
866 /* This array lists the candidate colormap indexes. */ | |
867 JSAMPLE colorlist[MAXNUMCOLORS]; | |
868 int numcolors; /* number of candidate colors */ | |
869 /* This array holds the actually closest colormap index for each cell. */ | |
870 JSAMPLE bestcolor[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS]; | |
871 | |
872 /* Convert cell coordinates to update box ID */ | |
873 c0 >>= BOX_C0_LOG; | |
874 c1 >>= BOX_C1_LOG; | |
875 c2 >>= BOX_C2_LOG; | |
876 | |
877 /* Compute true coordinates of update box's origin corner. | |
878 * Actually we compute the coordinates of the center of the corner | |
879 * histogram cell, which are the lower bounds of the volume we care about. | |
880 */ | |
881 minc0 = (c0 << BOX_C0_SHIFT) + ((1 << C0_SHIFT) >> 1); | |
882 minc1 = (c1 << BOX_C1_SHIFT) + ((1 << C1_SHIFT) >> 1); | |
883 minc2 = (c2 << BOX_C2_SHIFT) + ((1 << C2_SHIFT) >> 1); | |
884 | |
885 /* Determine which colormap entries are close enough to be candidates | |
886 * for the nearest entry to some cell in the update box. | |
887 */ | |
888 numcolors = find_nearby_colors(cinfo, minc0, minc1, minc2, colorlist); | |
889 | |
890 /* Determine the actually nearest colors. */ | |
891 find_best_colors(cinfo, minc0, minc1, minc2, numcolors, colorlist, | |
892 bestcolor); | |
893 | |
894 /* Save the best color numbers (plus 1) in the main cache array */ | |
895 c0 <<= BOX_C0_LOG; /* convert ID back to base cell indexes */ | |
896 c1 <<= BOX_C1_LOG; | |
897 c2 <<= BOX_C2_LOG; | |
898 cptr = bestcolor; | |
899 for (ic0 = 0; ic0 < BOX_C0_ELEMS; ic0++) { | |
900 for (ic1 = 0; ic1 < BOX_C1_ELEMS; ic1++) { | |
901 cachep = & histogram[c0+ic0][c1+ic1][c2]; | |
902 for (ic2 = 0; ic2 < BOX_C2_ELEMS; ic2++) { | |
903 *cachep++ = (histcell) (GETJSAMPLE(*cptr++) + 1); | |
904 } | |
905 } | |
906 } | |
907 } | |
908 | |
909 | |
910 /* | |
911 * Map some rows of pixels to the output colormapped representation. | |
912 */ | |
913 | |
914 METHODDEF(void) | |
915 pass2_no_dither (j_decompress_ptr cinfo, | |
916 JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows) | |
917 /* This version performs no dithering */ | |
918 { | |
919 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |
920 hist3d histogram = cquantize->histogram; | |
921 register JSAMPROW inptr, outptr; | |
922 register histptr cachep; | |
923 register int c0, c1, c2; | |
924 int row; | |
925 JDIMENSION col; | |
926 JDIMENSION width = cinfo->output_width; | |
927 | |
928 for (row = 0; row < num_rows; row++) { | |
929 inptr = input_buf[row]; | |
930 outptr = output_buf[row]; | |
931 for (col = width; col > 0; col--) { | |
932 /* get pixel value and index into the cache */ | |
933 c0 = GETJSAMPLE(*inptr++) >> C0_SHIFT; | |
934 c1 = GETJSAMPLE(*inptr++) >> C1_SHIFT; | |
935 c2 = GETJSAMPLE(*inptr++) >> C2_SHIFT; | |
936 cachep = & histogram[c0][c1][c2]; | |
937 /* If we have not seen this color before, find nearest colormap entry */ | |
938 /* and update the cache */ | |
939 if (*cachep == 0) | |
940 fill_inverse_cmap(cinfo, c0,c1,c2); | |
941 /* Now emit the colormap index for this cell */ | |
942 *outptr++ = (JSAMPLE) (*cachep - 1); | |
943 } | |
944 } | |
945 } | |
946 | |
947 | |
948 METHODDEF(void) | |
949 pass2_fs_dither (j_decompress_ptr cinfo, | |
950 JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows) | |
951 /* This version performs Floyd-Steinberg dithering */ | |
952 { | |
953 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |
954 hist3d histogram = cquantize->histogram; | |
955 register LOCFSERROR cur0, cur1, cur2; /* current error or pixel value */ | |
956 LOCFSERROR belowerr0, belowerr1, belowerr2; /* error for pixel below cur */ | |
957 LOCFSERROR bpreverr0, bpreverr1, bpreverr2; /* error for below/prev col */ | |
958 register FSERRPTR errorptr; /* => fserrors[] at column before current */ | |
959 JSAMPROW inptr; /* => current input pixel */ | |
960 JSAMPROW outptr; /* => current output pixel */ | |
961 histptr cachep; | |
962 int dir; /* +1 or -1 depending on direction */ | |
963 int dir3; /* 3*dir, for advancing inptr & errorptr */ | |
964 int row; | |
965 JDIMENSION col; | |
966 JDIMENSION width = cinfo->output_width; | |
967 JSAMPLE *range_limit = cinfo->sample_range_limit; | |
968 int *error_limit = cquantize->error_limiter; | |
969 JSAMPROW colormap0 = cinfo->colormap[0]; | |
970 JSAMPROW colormap1 = cinfo->colormap[1]; | |
971 JSAMPROW colormap2 = cinfo->colormap[2]; | |
972 SHIFT_TEMPS | |
973 | |
974 for (row = 0; row < num_rows; row++) { | |
975 inptr = input_buf[row]; | |
976 outptr = output_buf[row]; | |
977 if (cquantize->on_odd_row) { | |
978 /* work right to left in this row */ | |
979 inptr += (width-1) * 3; /* so point to rightmost pixel */ | |
980 outptr += width-1; | |
981 dir = -1; | |
982 dir3 = -3; | |
983 errorptr = cquantize->fserrors + (width+1)*3; /* => entry after last colum
n */ | |
984 cquantize->on_odd_row = FALSE; /* flip for next time */ | |
985 } else { | |
986 /* work left to right in this row */ | |
987 dir = 1; | |
988 dir3 = 3; | |
989 errorptr = cquantize->fserrors; /* => entry before first real column */ | |
990 cquantize->on_odd_row = TRUE; /* flip for next time */ | |
991 } | |
992 /* Preset error values: no error propagated to first pixel from left */ | |
993 cur0 = cur1 = cur2 = 0; | |
994 /* and no error propagated to row below yet */ | |
995 belowerr0 = belowerr1 = belowerr2 = 0; | |
996 bpreverr0 = bpreverr1 = bpreverr2 = 0; | |
997 | |
998 for (col = width; col > 0; col--) { | |
999 /* curN holds the error propagated from the previous pixel on the | |
1000 * current line. Add the error propagated from the previous line | |
1001 * to form the complete error correction term for this pixel, and | |
1002 * round the error term (which is expressed * 16) to an integer. | |
1003 * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct | |
1004 * for either sign of the error value. | |
1005 * Note: errorptr points to *previous* column's array entry. | |
1006 */ | |
1007 cur0 = RIGHT_SHIFT(cur0 + errorptr[dir3+0] + 8, 4); | |
1008 cur1 = RIGHT_SHIFT(cur1 + errorptr[dir3+1] + 8, 4); | |
1009 cur2 = RIGHT_SHIFT(cur2 + errorptr[dir3+2] + 8, 4); | |
1010 /* Limit the error using transfer function set by init_error_limit. | |
1011 * See comments with init_error_limit for rationale. | |
1012 */ | |
1013 cur0 = error_limit[cur0]; | |
1014 cur1 = error_limit[cur1]; | |
1015 cur2 = error_limit[cur2]; | |
1016 /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE. | |
1017 * The maximum error is +- MAXJSAMPLE (or less with error limiting); | |
1018 * this sets the required size of the range_limit array. | |
1019 */ | |
1020 cur0 += GETJSAMPLE(inptr[0]); | |
1021 cur1 += GETJSAMPLE(inptr[1]); | |
1022 cur2 += GETJSAMPLE(inptr[2]); | |
1023 cur0 = GETJSAMPLE(range_limit[cur0]); | |
1024 cur1 = GETJSAMPLE(range_limit[cur1]); | |
1025 cur2 = GETJSAMPLE(range_limit[cur2]); | |
1026 /* Index into the cache with adjusted pixel value */ | |
1027 cachep = & histogram[cur0>>C0_SHIFT][cur1>>C1_SHIFT][cur2>>C2_SHIFT]; | |
1028 /* If we have not seen this color before, find nearest colormap */ | |
1029 /* entry and update the cache */ | |
1030 if (*cachep == 0) | |
1031 fill_inverse_cmap(cinfo, cur0>>C0_SHIFT,cur1>>C1_SHIFT,cur2>>C2_SHIFT); | |
1032 /* Now emit the colormap index for this cell */ | |
1033 { register int pixcode = *cachep - 1; | |
1034 *outptr = (JSAMPLE) pixcode; | |
1035 /* Compute representation error for this pixel */ | |
1036 cur0 -= GETJSAMPLE(colormap0[pixcode]); | |
1037 cur1 -= GETJSAMPLE(colormap1[pixcode]); | |
1038 cur2 -= GETJSAMPLE(colormap2[pixcode]); | |
1039 } | |
1040 /* Compute error fractions to be propagated to adjacent pixels. | |
1041 * Add these into the running sums, and simultaneously shift the | |
1042 * next-line error sums left by 1 column. | |
1043 */ | |
1044 { register LOCFSERROR bnexterr, delta; | |
1045 | |
1046 bnexterr = cur0; /* Process component 0 */ | |
1047 delta = cur0 * 2; | |
1048 cur0 += delta; /* form error * 3 */ | |
1049 errorptr[0] = (FSERROR) (bpreverr0 + cur0); | |
1050 cur0 += delta; /* form error * 5 */ | |
1051 bpreverr0 = belowerr0 + cur0; | |
1052 belowerr0 = bnexterr; | |
1053 cur0 += delta; /* form error * 7 */ | |
1054 bnexterr = cur1; /* Process component 1 */ | |
1055 delta = cur1 * 2; | |
1056 cur1 += delta; /* form error * 3 */ | |
1057 errorptr[1] = (FSERROR) (bpreverr1 + cur1); | |
1058 cur1 += delta; /* form error * 5 */ | |
1059 bpreverr1 = belowerr1 + cur1; | |
1060 belowerr1 = bnexterr; | |
1061 cur1 += delta; /* form error * 7 */ | |
1062 bnexterr = cur2; /* Process component 2 */ | |
1063 delta = cur2 * 2; | |
1064 cur2 += delta; /* form error * 3 */ | |
1065 errorptr[2] = (FSERROR) (bpreverr2 + cur2); | |
1066 cur2 += delta; /* form error * 5 */ | |
1067 bpreverr2 = belowerr2 + cur2; | |
1068 belowerr2 = bnexterr; | |
1069 cur2 += delta; /* form error * 7 */ | |
1070 } | |
1071 /* At this point curN contains the 7/16 error value to be propagated | |
1072 * to the next pixel on the current line, and all the errors for the | |
1073 * next line have been shifted over. We are therefore ready to move on. | |
1074 */ | |
1075 inptr += dir3; /* Advance pixel pointers to next column */ | |
1076 outptr += dir; | |
1077 errorptr += dir3; /* advance errorptr to current column */ | |
1078 } | |
1079 /* Post-loop cleanup: we must unload the final error values into the | |
1080 * final fserrors[] entry. Note we need not unload belowerrN because | |
1081 * it is for the dummy column before or after the actual array. | |
1082 */ | |
1083 errorptr[0] = (FSERROR) bpreverr0; /* unload prev errs into array */ | |
1084 errorptr[1] = (FSERROR) bpreverr1; | |
1085 errorptr[2] = (FSERROR) bpreverr2; | |
1086 } | |
1087 } | |
1088 | |
1089 | |
1090 /* | |
1091 * Initialize the error-limiting transfer function (lookup table). | |
1092 * The raw F-S error computation can potentially compute error values of up to | |
1093 * +- MAXJSAMPLE. But we want the maximum correction applied to a pixel to be | |
1094 * much less, otherwise obviously wrong pixels will be created. (Typical | |
1095 * effects include weird fringes at color-area boundaries, isolated bright | |
1096 * pixels in a dark area, etc.) The standard advice for avoiding this problem | |
1097 * is to ensure that the "corners" of the color cube are allocated as output | |
1098 * colors; then repeated errors in the same direction cannot cause cascading | |
1099 * error buildup. However, that only prevents the error from getting | |
1100 * completely out of hand; Aaron Giles reports that error limiting improves | |
1101 * the results even with corner colors allocated. | |
1102 * A simple clamping of the error values to about +- MAXJSAMPLE/8 works pretty | |
1103 * well, but the smoother transfer function used below is even better. Thanks | |
1104 * to Aaron Giles for this idea. | |
1105 */ | |
1106 | |
1107 LOCAL(void) | |
1108 init_error_limit (j_decompress_ptr cinfo) | |
1109 /* Allocate and fill in the error_limiter table */ | |
1110 { | |
1111 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |
1112 int * table; | |
1113 int in, out; | |
1114 | |
1115 table = (int *) (*cinfo->mem->alloc_small) | |
1116 ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE*2+1) * SIZEOF(int)); | |
1117 table += MAXJSAMPLE; /* so can index -MAXJSAMPLE .. +MAXJSAMPLE */ | |
1118 cquantize->error_limiter = table; | |
1119 | |
1120 #define STEPSIZE ((MAXJSAMPLE+1)/16) | |
1121 /* Map errors 1:1 up to +- MAXJSAMPLE/16 */ | |
1122 out = 0; | |
1123 for (in = 0; in < STEPSIZE; in++, out++) { | |
1124 table[in] = out; table[-in] = -out; | |
1125 } | |
1126 /* Map errors 1:2 up to +- 3*MAXJSAMPLE/16 */ | |
1127 for (; in < STEPSIZE*3; in++, out += (in&1) ? 0 : 1) { | |
1128 table[in] = out; table[-in] = -out; | |
1129 } | |
1130 /* Clamp the rest to final out value (which is (MAXJSAMPLE+1)/8) */ | |
1131 for (; in <= MAXJSAMPLE; in++) { | |
1132 table[in] = out; table[-in] = -out; | |
1133 } | |
1134 #undef STEPSIZE | |
1135 } | |
1136 | |
1137 | |
1138 /* | |
1139 * Finish up at the end of each pass. | |
1140 */ | |
1141 | |
1142 METHODDEF(void) | |
1143 finish_pass1 (j_decompress_ptr cinfo) | |
1144 { | |
1145 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |
1146 | |
1147 /* Select the representative colors and fill in cinfo->colormap */ | |
1148 cinfo->colormap = cquantize->sv_colormap; | |
1149 select_colors(cinfo, cquantize->desired); | |
1150 /* Force next pass to zero the color index table */ | |
1151 cquantize->needs_zeroed = TRUE; | |
1152 } | |
1153 | |
1154 | |
1155 METHODDEF(void) | |
1156 finish_pass2 (j_decompress_ptr cinfo) | |
1157 { | |
1158 /* no work */ | |
1159 } | |
1160 | |
1161 | |
1162 /* | |
1163 * Initialize for each processing pass. | |
1164 */ | |
1165 | |
1166 METHODDEF(void) | |
1167 start_pass_2_quant (j_decompress_ptr cinfo, boolean is_pre_scan) | |
1168 { | |
1169 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |
1170 hist3d histogram = cquantize->histogram; | |
1171 int i; | |
1172 | |
1173 /* Only F-S dithering or no dithering is supported. */ | |
1174 /* If user asks for ordered dither, give him F-S. */ | |
1175 if (cinfo->dither_mode != JDITHER_NONE) | |
1176 cinfo->dither_mode = JDITHER_FS; | |
1177 | |
1178 if (is_pre_scan) { | |
1179 /* Set up method pointers */ | |
1180 cquantize->pub.color_quantize = prescan_quantize; | |
1181 cquantize->pub.finish_pass = finish_pass1; | |
1182 cquantize->needs_zeroed = TRUE; /* Always zero histogram */ | |
1183 } else { | |
1184 /* Set up method pointers */ | |
1185 if (cinfo->dither_mode == JDITHER_FS) | |
1186 cquantize->pub.color_quantize = pass2_fs_dither; | |
1187 else | |
1188 cquantize->pub.color_quantize = pass2_no_dither; | |
1189 cquantize->pub.finish_pass = finish_pass2; | |
1190 | |
1191 /* Make sure color count is acceptable */ | |
1192 i = cinfo->actual_number_of_colors; | |
1193 if (i < 1) | |
1194 ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 1); | |
1195 if (i > MAXNUMCOLORS) | |
1196 ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS); | |
1197 | |
1198 if (cinfo->dither_mode == JDITHER_FS) { | |
1199 size_t arraysize = (size_t) ((cinfo->output_width + 2) * | |
1200 (3 * SIZEOF(FSERROR))); | |
1201 /* Allocate Floyd-Steinberg workspace if we didn't already. */ | |
1202 if (cquantize->fserrors == NULL) | |
1203 cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large) | |
1204 ((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize); | |
1205 /* Initialize the propagated errors to zero. */ | |
1206 jzero_far((void FAR *) cquantize->fserrors, arraysize); | |
1207 /* Make the error-limit table if we didn't already. */ | |
1208 if (cquantize->error_limiter == NULL) | |
1209 init_error_limit(cinfo); | |
1210 cquantize->on_odd_row = FALSE; | |
1211 } | |
1212 | |
1213 } | |
1214 /* Zero the histogram or inverse color map, if necessary */ | |
1215 if (cquantize->needs_zeroed) { | |
1216 for (i = 0; i < HIST_C0_ELEMS; i++) { | |
1217 jzero_far((void FAR *) histogram[i], | |
1218 HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell)); | |
1219 } | |
1220 cquantize->needs_zeroed = FALSE; | |
1221 } | |
1222 } | |
1223 | |
1224 | |
1225 /* | |
1226 * Switch to a new external colormap between output passes. | |
1227 */ | |
1228 | |
1229 METHODDEF(void) | |
1230 new_color_map_2_quant (j_decompress_ptr cinfo) | |
1231 { | |
1232 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |
1233 | |
1234 /* Reset the inverse color map */ | |
1235 cquantize->needs_zeroed = TRUE; | |
1236 } | |
1237 | |
1238 | |
1239 /* | |
1240 * Module initialization routine for 2-pass color quantization. | |
1241 */ | |
1242 | |
1243 GLOBAL(void) | |
1244 jinit_2pass_quantizer (j_decompress_ptr cinfo) | |
1245 { | |
1246 my_cquantize_ptr cquantize; | |
1247 int i; | |
1248 | |
1249 cquantize = (my_cquantize_ptr) | |
1250 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |
1251 SIZEOF(my_cquantizer)); | |
1252 cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize; | |
1253 cquantize->pub.start_pass = start_pass_2_quant; | |
1254 cquantize->pub.new_color_map = new_color_map_2_quant; | |
1255 cquantize->fserrors = NULL; /* flag optional arrays not allocated */ | |
1256 cquantize->error_limiter = NULL; | |
1257 | |
1258 /* Make sure jdmaster didn't give me a case I can't handle */ | |
1259 if (cinfo->out_color_components != 3) | |
1260 ERREXIT(cinfo, JERR_NOTIMPL); | |
1261 | |
1262 /* Allocate the histogram/inverse colormap storage */ | |
1263 cquantize->histogram = (hist3d) (*cinfo->mem->alloc_small) | |
1264 ((j_common_ptr) cinfo, JPOOL_IMAGE, HIST_C0_ELEMS * SIZEOF(hist2d)); | |
1265 for (i = 0; i < HIST_C0_ELEMS; i++) { | |
1266 cquantize->histogram[i] = (hist2d) (*cinfo->mem->alloc_large) | |
1267 ((j_common_ptr) cinfo, JPOOL_IMAGE, | |
1268 HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell)); | |
1269 } | |
1270 cquantize->needs_zeroed = TRUE; /* histogram is garbage now */ | |
1271 | |
1272 /* Allocate storage for the completed colormap, if required. | |
1273 * We do this now since it is FAR storage and may affect | |
1274 * the memory manager's space calculations. | |
1275 */ | |
1276 if (cinfo->enable_2pass_quant) { | |
1277 /* Make sure color count is acceptable */ | |
1278 int desired = cinfo->desired_number_of_colors; | |
1279 /* Lower bound on # of colors ... somewhat arbitrary as long as > 0 */ | |
1280 if (desired < 8) | |
1281 ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 8); | |
1282 /* Make sure colormap indexes can be represented by JSAMPLEs */ | |
1283 if (desired > MAXNUMCOLORS) | |
1284 ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS); | |
1285 cquantize->sv_colormap = (*cinfo->mem->alloc_sarray) | |
1286 ((j_common_ptr) cinfo,JPOOL_IMAGE, (JDIMENSION) desired, (JDIMENSION) 3); | |
1287 cquantize->desired = desired; | |
1288 } else | |
1289 cquantize->sv_colormap = NULL; | |
1290 | |
1291 /* Only F-S dithering or no dithering is supported. */ | |
1292 /* If user asks for ordered dither, give him F-S. */ | |
1293 if (cinfo->dither_mode != JDITHER_NONE) | |
1294 cinfo->dither_mode = JDITHER_FS; | |
1295 | |
1296 /* Allocate Floyd-Steinberg workspace if necessary. | |
1297 * This isn't really needed until pass 2, but again it is FAR storage. | |
1298 * Although we will cope with a later change in dither_mode, | |
1299 * we do not promise to honor max_memory_to_use if dither_mode changes. | |
1300 */ | |
1301 if (cinfo->dither_mode == JDITHER_FS) { | |
1302 cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large) | |
1303 ((j_common_ptr) cinfo, JPOOL_IMAGE, | |
1304 (size_t) ((cinfo->output_width + 2) * (3 * SIZEOF(FSERROR)))); | |
1305 /* Might as well create the error-limiting table too. */ | |
1306 init_error_limit(cinfo); | |
1307 } | |
1308 } | |
1309 | |
1310 #endif /* QUANT_2PASS_SUPPORTED */ | |
OLD | NEW |