OLD | NEW |
| (Empty) |
1 /* | |
2 * jquant1.c | |
3 * | |
4 * Copyright (C) 1991-1996, Thomas G. Lane. | |
5 * This file is part of the Independent JPEG Group's software. | |
6 * For conditions of distribution and use, see the accompanying README file. | |
7 * | |
8 * This file contains 1-pass color quantization (color mapping) routines. | |
9 * These routines provide mapping to a fixed color map using equally spaced | |
10 * color values. Optional Floyd-Steinberg or ordered dithering is available. | |
11 */ | |
12 | |
13 #define JPEG_INTERNALS | |
14 #include "jinclude.h" | |
15 #include "jpeglib.h" | |
16 | |
17 #ifdef QUANT_1PASS_SUPPORTED | |
18 | |
19 | |
20 /* | |
21 * The main purpose of 1-pass quantization is to provide a fast, if not very | |
22 * high quality, colormapped output capability. A 2-pass quantizer usually | |
23 * gives better visual quality; however, for quantized grayscale output this | |
24 * quantizer is perfectly adequate. Dithering is highly recommended with this | |
25 * quantizer, though you can turn it off if you really want to. | |
26 * | |
27 * In 1-pass quantization the colormap must be chosen in advance of seeing the | |
28 * image. We use a map consisting of all combinations of Ncolors[i] color | |
29 * values for the i'th component. The Ncolors[] values are chosen so that | |
30 * their product, the total number of colors, is no more than that requested. | |
31 * (In most cases, the product will be somewhat less.) | |
32 * | |
33 * Since the colormap is orthogonal, the representative value for each color | |
34 * component can be determined without considering the other components; | |
35 * then these indexes can be combined into a colormap index by a standard | |
36 * N-dimensional-array-subscript calculation. Most of the arithmetic involved | |
37 * can be precalculated and stored in the lookup table colorindex[]. | |
38 * colorindex[i][j] maps pixel value j in component i to the nearest | |
39 * representative value (grid plane) for that component; this index is | |
40 * multiplied by the array stride for component i, so that the | |
41 * index of the colormap entry closest to a given pixel value is just | |
42 * sum( colorindex[component-number][pixel-component-value] ) | |
43 * Aside from being fast, this scheme allows for variable spacing between | |
44 * representative values with no additional lookup cost. | |
45 * | |
46 * If gamma correction has been applied in color conversion, it might be wise | |
47 * to adjust the color grid spacing so that the representative colors are | |
48 * equidistant in linear space. At this writing, gamma correction is not | |
49 * implemented by jdcolor, so nothing is done here. | |
50 */ | |
51 | |
52 | |
53 /* Declarations for ordered dithering. | |
54 * | |
55 * We use a standard 16x16 ordered dither array. The basic concept of ordered | |
56 * dithering is described in many references, for instance Dale Schumacher's | |
57 * chapter II.2 of Graphics Gems II (James Arvo, ed. Academic Press, 1991). | |
58 * In place of Schumacher's comparisons against a "threshold" value, we add a | |
59 * "dither" value to the input pixel and then round the result to the nearest | |
60 * output value. The dither value is equivalent to (0.5 - threshold) times | |
61 * the distance between output values. For ordered dithering, we assume that | |
62 * the output colors are equally spaced; if not, results will probably be | |
63 * worse, since the dither may be too much or too little at a given point. | |
64 * | |
65 * The normal calculation would be to form pixel value + dither, range-limit | |
66 * this to 0..MAXJSAMPLE, and then index into the colorindex table as usual. | |
67 * We can skip the separate range-limiting step by extending the colorindex | |
68 * table in both directions. | |
69 */ | |
70 | |
71 #define ODITHER_SIZE 16 /* dimension of dither matrix */ | |
72 /* NB: if ODITHER_SIZE is not a power of 2, ODITHER_MASK uses will break */ | |
73 #define ODITHER_CELLS (ODITHER_SIZE*ODITHER_SIZE) /* # cells in matrix */ | |
74 #define ODITHER_MASK (ODITHER_SIZE-1) /* mask for wrapping around counters */ | |
75 | |
76 typedef int ODITHER_MATRIX[ODITHER_SIZE][ODITHER_SIZE]; | |
77 typedef int (*ODITHER_MATRIX_PTR)[ODITHER_SIZE]; | |
78 | |
79 static const UINT8 base_dither_matrix[ODITHER_SIZE][ODITHER_SIZE] = { | |
80 /* Bayer's order-4 dither array. Generated by the code given in | |
81 * Stephen Hawley's article "Ordered Dithering" in Graphics Gems I. | |
82 * The values in this array must range from 0 to ODITHER_CELLS-1. | |
83 */ | |
84 { 0,192, 48,240, 12,204, 60,252, 3,195, 51,243, 15,207, 63,255 }, | |
85 { 128, 64,176,112,140, 76,188,124,131, 67,179,115,143, 79,191,127 }, | |
86 { 32,224, 16,208, 44,236, 28,220, 35,227, 19,211, 47,239, 31,223 }, | |
87 { 160, 96,144, 80,172,108,156, 92,163, 99,147, 83,175,111,159, 95 }, | |
88 { 8,200, 56,248, 4,196, 52,244, 11,203, 59,251, 7,199, 55,247 }, | |
89 { 136, 72,184,120,132, 68,180,116,139, 75,187,123,135, 71,183,119 }, | |
90 { 40,232, 24,216, 36,228, 20,212, 43,235, 27,219, 39,231, 23,215 }, | |
91 { 168,104,152, 88,164,100,148, 84,171,107,155, 91,167,103,151, 87 }, | |
92 { 2,194, 50,242, 14,206, 62,254, 1,193, 49,241, 13,205, 61,253 }, | |
93 { 130, 66,178,114,142, 78,190,126,129, 65,177,113,141, 77,189,125 }, | |
94 { 34,226, 18,210, 46,238, 30,222, 33,225, 17,209, 45,237, 29,221 }, | |
95 { 162, 98,146, 82,174,110,158, 94,161, 97,145, 81,173,109,157, 93 }, | |
96 { 10,202, 58,250, 6,198, 54,246, 9,201, 57,249, 5,197, 53,245 }, | |
97 { 138, 74,186,122,134, 70,182,118,137, 73,185,121,133, 69,181,117 }, | |
98 { 42,234, 26,218, 38,230, 22,214, 41,233, 25,217, 37,229, 21,213 }, | |
99 { 170,106,154, 90,166,102,150, 86,169,105,153, 89,165,101,149, 85 } | |
100 }; | |
101 | |
102 | |
103 /* Declarations for Floyd-Steinberg dithering. | |
104 * | |
105 * Errors are accumulated into the array fserrors[], at a resolution of | |
106 * 1/16th of a pixel count. The error at a given pixel is propagated | |
107 * to its not-yet-processed neighbors using the standard F-S fractions, | |
108 * ... (here) 7/16 | |
109 * 3/16 5/16 1/16 | |
110 * We work left-to-right on even rows, right-to-left on odd rows. | |
111 * | |
112 * We can get away with a single array (holding one row's worth of errors) | |
113 * by using it to store the current row's errors at pixel columns not yet | |
114 * processed, but the next row's errors at columns already processed. We | |
115 * need only a few extra variables to hold the errors immediately around the | |
116 * current column. (If we are lucky, those variables are in registers, but | |
117 * even if not, they're probably cheaper to access than array elements are.) | |
118 * | |
119 * The fserrors[] array is indexed [component#][position]. | |
120 * We provide (#columns + 2) entries per component; the extra entry at each | |
121 * end saves us from special-casing the first and last pixels. | |
122 * | |
123 * Note: on a wide image, we might not have enough room in a PC's near data | |
124 * segment to hold the error array; so it is allocated with alloc_large. | |
125 */ | |
126 | |
127 #if BITS_IN_JSAMPLE == 8 | |
128 typedef INT16 FSERROR; /* 16 bits should be enough */ | |
129 typedef int LOCFSERROR; /* use 'int' for calculation temps */ | |
130 #else | |
131 typedef INT32 FSERROR; /* may need more than 16 bits */ | |
132 typedef INT32 LOCFSERROR; /* be sure calculation temps are big enough */ | |
133 #endif | |
134 | |
135 typedef FSERROR FAR *FSERRPTR; /* pointer to error array (in FAR storage!) */ | |
136 | |
137 | |
138 /* Private subobject */ | |
139 | |
140 #define MAX_Q_COMPS 4 /* max components I can handle */ | |
141 | |
142 typedef struct { | |
143 struct jpeg_color_quantizer pub; /* public fields */ | |
144 | |
145 /* Initially allocated colormap is saved here */ | |
146 JSAMPARRAY sv_colormap; /* The color map as a 2-D pixel array */ | |
147 int sv_actual; /* number of entries in use */ | |
148 | |
149 JSAMPARRAY colorindex; /* Precomputed mapping for speed */ | |
150 /* colorindex[i][j] = index of color closest to pixel value j in component i, | |
151 * premultiplied as described above. Since colormap indexes must fit into | |
152 * JSAMPLEs, the entries of this array will too. | |
153 */ | |
154 boolean is_padded; /* is the colorindex padded for odither? */ | |
155 | |
156 int Ncolors[MAX_Q_COMPS]; /* # of values alloced to each component */ | |
157 | |
158 /* Variables for ordered dithering */ | |
159 int row_index; /* cur row's vertical index in dither matrix */ | |
160 ODITHER_MATRIX_PTR odither[MAX_Q_COMPS]; /* one dither array per component */ | |
161 | |
162 /* Variables for Floyd-Steinberg dithering */ | |
163 FSERRPTR fserrors[MAX_Q_COMPS]; /* accumulated errors */ | |
164 boolean on_odd_row; /* flag to remember which row we are on */ | |
165 } my_cquantizer; | |
166 | |
167 typedef my_cquantizer * my_cquantize_ptr; | |
168 | |
169 | |
170 /* | |
171 * Policy-making subroutines for create_colormap and create_colorindex. | |
172 * These routines determine the colormap to be used. The rest of the module | |
173 * only assumes that the colormap is orthogonal. | |
174 * | |
175 * * select_ncolors decides how to divvy up the available colors | |
176 * among the components. | |
177 * * output_value defines the set of representative values for a component. | |
178 * * largest_input_value defines the mapping from input values to | |
179 * representative values for a component. | |
180 * Note that the latter two routines may impose different policies for | |
181 * different components, though this is not currently done. | |
182 */ | |
183 | |
184 | |
185 LOCAL(int) | |
186 select_ncolors (j_decompress_ptr cinfo, int Ncolors[]) | |
187 /* Determine allocation of desired colors to components, */ | |
188 /* and fill in Ncolors[] array to indicate choice. */ | |
189 /* Return value is total number of colors (product of Ncolors[] values). */ | |
190 { | |
191 int nc = cinfo->out_color_components; /* number of color components */ | |
192 int max_colors = cinfo->desired_number_of_colors; | |
193 int total_colors, iroot, i, j; | |
194 boolean changed; | |
195 long temp; | |
196 static const int RGB_order[3] = { RGB_GREEN, RGB_RED, RGB_BLUE }; | |
197 | |
198 /* We can allocate at least the nc'th root of max_colors per component. */ | |
199 /* Compute floor(nc'th root of max_colors). */ | |
200 iroot = 1; | |
201 do { | |
202 iroot++; | |
203 temp = iroot; /* set temp = iroot ** nc */ | |
204 for (i = 1; i < nc; i++) | |
205 temp *= iroot; | |
206 } while (temp <= (long) max_colors); /* repeat till iroot exceeds root */ | |
207 iroot--; /* now iroot = floor(root) */ | |
208 | |
209 /* Must have at least 2 color values per component */ | |
210 if (iroot < 2) | |
211 ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, (int) temp); | |
212 | |
213 /* Initialize to iroot color values for each component */ | |
214 total_colors = 1; | |
215 for (i = 0; i < nc; i++) { | |
216 Ncolors[i] = iroot; | |
217 total_colors *= iroot; | |
218 } | |
219 /* We may be able to increment the count for one or more components without | |
220 * exceeding max_colors, though we know not all can be incremented. | |
221 * Sometimes, the first component can be incremented more than once! | |
222 * (Example: for 16 colors, we start at 2*2*2, go to 3*2*2, then 4*2*2.) | |
223 * In RGB colorspace, try to increment G first, then R, then B. | |
224 */ | |
225 do { | |
226 changed = FALSE; | |
227 for (i = 0; i < nc; i++) { | |
228 j = (cinfo->out_color_space == JCS_RGB ? RGB_order[i] : i); | |
229 /* calculate new total_colors if Ncolors[j] is incremented */ | |
230 temp = total_colors / Ncolors[j]; | |
231 temp *= Ncolors[j]+1; /* done in long arith to avoid oflo */ | |
232 if (temp > (long) max_colors) | |
233 break; /* won't fit, done with this pass */ | |
234 Ncolors[j]++; /* OK, apply the increment */ | |
235 total_colors = (int) temp; | |
236 changed = TRUE; | |
237 } | |
238 } while (changed); | |
239 | |
240 return total_colors; | |
241 } | |
242 | |
243 | |
244 LOCAL(int) | |
245 output_value (j_decompress_ptr cinfo, int ci, int j, int maxj) | |
246 /* Return j'th output value, where j will range from 0 to maxj */ | |
247 /* The output values must fall in 0..MAXJSAMPLE in increasing order */ | |
248 { | |
249 /* We always provide values 0 and MAXJSAMPLE for each component; | |
250 * any additional values are equally spaced between these limits. | |
251 * (Forcing the upper and lower values to the limits ensures that | |
252 * dithering can't produce a color outside the selected gamut.) | |
253 */ | |
254 return (int) (((INT32) j * MAXJSAMPLE + maxj/2) / maxj); | |
255 } | |
256 | |
257 | |
258 LOCAL(int) | |
259 largest_input_value (j_decompress_ptr cinfo, int ci, int j, int maxj) | |
260 /* Return largest input value that should map to j'th output value */ | |
261 /* Must have largest(j=0) >= 0, and largest(j=maxj) >= MAXJSAMPLE */ | |
262 { | |
263 /* Breakpoints are halfway between values returned by output_value */ | |
264 return (int) (((INT32) (2*j + 1) * MAXJSAMPLE + maxj) / (2*maxj)); | |
265 } | |
266 | |
267 | |
268 /* | |
269 * Create the colormap. | |
270 */ | |
271 | |
272 LOCAL(void) | |
273 create_colormap (j_decompress_ptr cinfo) | |
274 { | |
275 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |
276 JSAMPARRAY colormap; /* Created colormap */ | |
277 int total_colors; /* Number of distinct output colors */ | |
278 int i,j,k, nci, blksize, blkdist, ptr, val; | |
279 | |
280 /* Select number of colors for each component */ | |
281 total_colors = select_ncolors(cinfo, cquantize->Ncolors); | |
282 | |
283 /* Report selected color counts */ | |
284 if (cinfo->out_color_components == 3) | |
285 TRACEMS4(cinfo, 1, JTRC_QUANT_3_NCOLORS, | |
286 total_colors, cquantize->Ncolors[0], | |
287 cquantize->Ncolors[1], cquantize->Ncolors[2]); | |
288 else | |
289 TRACEMS1(cinfo, 1, JTRC_QUANT_NCOLORS, total_colors); | |
290 | |
291 /* Allocate and fill in the colormap. */ | |
292 /* The colors are ordered in the map in standard row-major order, */ | |
293 /* i.e. rightmost (highest-indexed) color changes most rapidly. */ | |
294 | |
295 colormap = (*cinfo->mem->alloc_sarray) | |
296 ((j_common_ptr) cinfo, JPOOL_IMAGE, | |
297 (JDIMENSION) total_colors, (JDIMENSION) cinfo->out_color_components); | |
298 | |
299 /* blksize is number of adjacent repeated entries for a component */ | |
300 /* blkdist is distance between groups of identical entries for a component */ | |
301 blkdist = total_colors; | |
302 | |
303 for (i = 0; i < cinfo->out_color_components; i++) { | |
304 /* fill in colormap entries for i'th color component */ | |
305 nci = cquantize->Ncolors[i]; /* # of distinct values for this color */ | |
306 blksize = blkdist / nci; | |
307 for (j = 0; j < nci; j++) { | |
308 /* Compute j'th output value (out of nci) for component */ | |
309 val = output_value(cinfo, i, j, nci-1); | |
310 /* Fill in all colormap entries that have this value of this component */ | |
311 for (ptr = j * blksize; ptr < total_colors; ptr += blkdist) { | |
312 /* fill in blksize entries beginning at ptr */ | |
313 for (k = 0; k < blksize; k++) | |
314 colormap[i][ptr+k] = (JSAMPLE) val; | |
315 } | |
316 } | |
317 blkdist = blksize; /* blksize of this color is blkdist of next */ | |
318 } | |
319 | |
320 /* Save the colormap in private storage, | |
321 * where it will survive color quantization mode changes. | |
322 */ | |
323 cquantize->sv_colormap = colormap; | |
324 cquantize->sv_actual = total_colors; | |
325 } | |
326 | |
327 | |
328 /* | |
329 * Create the color index table. | |
330 */ | |
331 | |
332 LOCAL(void) | |
333 create_colorindex (j_decompress_ptr cinfo) | |
334 { | |
335 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |
336 JSAMPROW indexptr; | |
337 int i,j,k, nci, blksize, val, pad; | |
338 | |
339 /* For ordered dither, we pad the color index tables by MAXJSAMPLE in | |
340 * each direction (input index values can be -MAXJSAMPLE .. 2*MAXJSAMPLE). | |
341 * This is not necessary in the other dithering modes. However, we | |
342 * flag whether it was done in case user changes dithering mode. | |
343 */ | |
344 if (cinfo->dither_mode == JDITHER_ORDERED) { | |
345 pad = MAXJSAMPLE*2; | |
346 cquantize->is_padded = TRUE; | |
347 } else { | |
348 pad = 0; | |
349 cquantize->is_padded = FALSE; | |
350 } | |
351 | |
352 cquantize->colorindex = (*cinfo->mem->alloc_sarray) | |
353 ((j_common_ptr) cinfo, JPOOL_IMAGE, | |
354 (JDIMENSION) (MAXJSAMPLE+1 + pad), | |
355 (JDIMENSION) cinfo->out_color_components); | |
356 | |
357 /* blksize is number of adjacent repeated entries for a component */ | |
358 blksize = cquantize->sv_actual; | |
359 | |
360 for (i = 0; i < cinfo->out_color_components; i++) { | |
361 /* fill in colorindex entries for i'th color component */ | |
362 nci = cquantize->Ncolors[i]; /* # of distinct values for this color */ | |
363 blksize = blksize / nci; | |
364 | |
365 /* adjust colorindex pointers to provide padding at negative indexes. */ | |
366 if (pad) | |
367 cquantize->colorindex[i] += MAXJSAMPLE; | |
368 | |
369 /* in loop, val = index of current output value, */ | |
370 /* and k = largest j that maps to current val */ | |
371 indexptr = cquantize->colorindex[i]; | |
372 val = 0; | |
373 k = largest_input_value(cinfo, i, 0, nci-1); | |
374 for (j = 0; j <= MAXJSAMPLE; j++) { | |
375 while (j > k) /* advance val if past boundary */ | |
376 k = largest_input_value(cinfo, i, ++val, nci-1); | |
377 /* premultiply so that no multiplication needed in main processing */ | |
378 indexptr[j] = (JSAMPLE) (val * blksize); | |
379 } | |
380 /* Pad at both ends if necessary */ | |
381 if (pad) | |
382 for (j = 1; j <= MAXJSAMPLE; j++) { | |
383 indexptr[-j] = indexptr[0]; | |
384 indexptr[MAXJSAMPLE+j] = indexptr[MAXJSAMPLE]; | |
385 } | |
386 } | |
387 } | |
388 | |
389 | |
390 /* | |
391 * Create an ordered-dither array for a component having ncolors | |
392 * distinct output values. | |
393 */ | |
394 | |
395 LOCAL(ODITHER_MATRIX_PTR) | |
396 make_odither_array (j_decompress_ptr cinfo, int ncolors) | |
397 { | |
398 ODITHER_MATRIX_PTR odither; | |
399 int j,k; | |
400 INT32 num,den; | |
401 | |
402 odither = (ODITHER_MATRIX_PTR) | |
403 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |
404 SIZEOF(ODITHER_MATRIX)); | |
405 /* The inter-value distance for this color is MAXJSAMPLE/(ncolors-1). | |
406 * Hence the dither value for the matrix cell with fill order f | |
407 * (f=0..N-1) should be (N-1-2*f)/(2*N) * MAXJSAMPLE/(ncolors-1). | |
408 * On 16-bit-int machine, be careful to avoid overflow. | |
409 */ | |
410 den = 2 * ODITHER_CELLS * ((INT32) (ncolors - 1)); | |
411 for (j = 0; j < ODITHER_SIZE; j++) { | |
412 for (k = 0; k < ODITHER_SIZE; k++) { | |
413 num = ((INT32) (ODITHER_CELLS-1 - 2*((int)base_dither_matrix[j][k]))) | |
414 * MAXJSAMPLE; | |
415 /* Ensure round towards zero despite C's lack of consistency | |
416 * about rounding negative values in integer division... | |
417 */ | |
418 odither[j][k] = (int) (num<0 ? -((-num)/den) : num/den); | |
419 } | |
420 } | |
421 return odither; | |
422 } | |
423 | |
424 | |
425 /* | |
426 * Create the ordered-dither tables. | |
427 * Components having the same number of representative colors may | |
428 * share a dither table. | |
429 */ | |
430 | |
431 LOCAL(void) | |
432 create_odither_tables (j_decompress_ptr cinfo) | |
433 { | |
434 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |
435 ODITHER_MATRIX_PTR odither; | |
436 int i, j, nci; | |
437 | |
438 for (i = 0; i < cinfo->out_color_components; i++) { | |
439 nci = cquantize->Ncolors[i]; /* # of distinct values for this color */ | |
440 odither = NULL; /* search for matching prior component */ | |
441 for (j = 0; j < i; j++) { | |
442 if (nci == cquantize->Ncolors[j]) { | |
443 odither = cquantize->odither[j]; | |
444 break; | |
445 } | |
446 } | |
447 if (odither == NULL) /* need a new table? */ | |
448 odither = make_odither_array(cinfo, nci); | |
449 cquantize->odither[i] = odither; | |
450 } | |
451 } | |
452 | |
453 | |
454 /* | |
455 * Map some rows of pixels to the output colormapped representation. | |
456 */ | |
457 | |
458 METHODDEF(void) | |
459 color_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf, | |
460 JSAMPARRAY output_buf, int num_rows) | |
461 /* General case, no dithering */ | |
462 { | |
463 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |
464 JSAMPARRAY colorindex = cquantize->colorindex; | |
465 register int pixcode, ci; | |
466 register JSAMPROW ptrin, ptrout; | |
467 int row; | |
468 JDIMENSION col; | |
469 JDIMENSION width = cinfo->output_width; | |
470 register int nc = cinfo->out_color_components; | |
471 | |
472 for (row = 0; row < num_rows; row++) { | |
473 ptrin = input_buf[row]; | |
474 ptrout = output_buf[row]; | |
475 for (col = width; col > 0; col--) { | |
476 pixcode = 0; | |
477 for (ci = 0; ci < nc; ci++) { | |
478 pixcode += GETJSAMPLE(colorindex[ci][GETJSAMPLE(*ptrin++)]); | |
479 } | |
480 *ptrout++ = (JSAMPLE) pixcode; | |
481 } | |
482 } | |
483 } | |
484 | |
485 | |
486 METHODDEF(void) | |
487 color_quantize3 (j_decompress_ptr cinfo, JSAMPARRAY input_buf, | |
488 JSAMPARRAY output_buf, int num_rows) | |
489 /* Fast path for out_color_components==3, no dithering */ | |
490 { | |
491 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |
492 register int pixcode; | |
493 register JSAMPROW ptrin, ptrout; | |
494 JSAMPROW colorindex0 = cquantize->colorindex[0]; | |
495 JSAMPROW colorindex1 = cquantize->colorindex[1]; | |
496 JSAMPROW colorindex2 = cquantize->colorindex[2]; | |
497 int row; | |
498 JDIMENSION col; | |
499 JDIMENSION width = cinfo->output_width; | |
500 | |
501 for (row = 0; row < num_rows; row++) { | |
502 ptrin = input_buf[row]; | |
503 ptrout = output_buf[row]; | |
504 for (col = width; col > 0; col--) { | |
505 pixcode = GETJSAMPLE(colorindex0[GETJSAMPLE(*ptrin++)]); | |
506 pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*ptrin++)]); | |
507 pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*ptrin++)]); | |
508 *ptrout++ = (JSAMPLE) pixcode; | |
509 } | |
510 } | |
511 } | |
512 | |
513 | |
514 METHODDEF(void) | |
515 quantize_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf, | |
516 JSAMPARRAY output_buf, int num_rows) | |
517 /* General case, with ordered dithering */ | |
518 { | |
519 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |
520 register JSAMPROW input_ptr; | |
521 register JSAMPROW output_ptr; | |
522 JSAMPROW colorindex_ci; | |
523 int * dither; /* points to active row of dither matrix */ | |
524 int row_index, col_index; /* current indexes into dither matrix */ | |
525 int nc = cinfo->out_color_components; | |
526 int ci; | |
527 int row; | |
528 JDIMENSION col; | |
529 JDIMENSION width = cinfo->output_width; | |
530 | |
531 for (row = 0; row < num_rows; row++) { | |
532 /* Initialize output values to 0 so can process components separately */ | |
533 jzero_far((void FAR *) output_buf[row], | |
534 (size_t) (width * SIZEOF(JSAMPLE))); | |
535 row_index = cquantize->row_index; | |
536 for (ci = 0; ci < nc; ci++) { | |
537 input_ptr = input_buf[row] + ci; | |
538 output_ptr = output_buf[row]; | |
539 colorindex_ci = cquantize->colorindex[ci]; | |
540 dither = cquantize->odither[ci][row_index]; | |
541 col_index = 0; | |
542 | |
543 for (col = width; col > 0; col--) { | |
544 /* Form pixel value + dither, range-limit to 0..MAXJSAMPLE, | |
545 * select output value, accumulate into output code for this pixel. | |
546 * Range-limiting need not be done explicitly, as we have extended | |
547 * the colorindex table to produce the right answers for out-of-range | |
548 * inputs. The maximum dither is +- MAXJSAMPLE; this sets the | |
549 * required amount of padding. | |
550 */ | |
551 *output_ptr += colorindex_ci[GETJSAMPLE(*input_ptr)+dither[col_index]]; | |
552 input_ptr += nc; | |
553 output_ptr++; | |
554 col_index = (col_index + 1) & ODITHER_MASK; | |
555 } | |
556 } | |
557 /* Advance row index for next row */ | |
558 row_index = (row_index + 1) & ODITHER_MASK; | |
559 cquantize->row_index = row_index; | |
560 } | |
561 } | |
562 | |
563 | |
564 METHODDEF(void) | |
565 quantize3_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf, | |
566 JSAMPARRAY output_buf, int num_rows) | |
567 /* Fast path for out_color_components==3, with ordered dithering */ | |
568 { | |
569 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |
570 register int pixcode; | |
571 register JSAMPROW input_ptr; | |
572 register JSAMPROW output_ptr; | |
573 JSAMPROW colorindex0 = cquantize->colorindex[0]; | |
574 JSAMPROW colorindex1 = cquantize->colorindex[1]; | |
575 JSAMPROW colorindex2 = cquantize->colorindex[2]; | |
576 int * dither0; /* points to active row of dither matrix */ | |
577 int * dither1; | |
578 int * dither2; | |
579 int row_index, col_index; /* current indexes into dither matrix */ | |
580 int row; | |
581 JDIMENSION col; | |
582 JDIMENSION width = cinfo->output_width; | |
583 | |
584 for (row = 0; row < num_rows; row++) { | |
585 row_index = cquantize->row_index; | |
586 input_ptr = input_buf[row]; | |
587 output_ptr = output_buf[row]; | |
588 dither0 = cquantize->odither[0][row_index]; | |
589 dither1 = cquantize->odither[1][row_index]; | |
590 dither2 = cquantize->odither[2][row_index]; | |
591 col_index = 0; | |
592 | |
593 for (col = width; col > 0; col--) { | |
594 pixcode = GETJSAMPLE(colorindex0[GETJSAMPLE(*input_ptr++) + | |
595 dither0[col_index]]); | |
596 pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*input_ptr++) + | |
597 dither1[col_index]]); | |
598 pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*input_ptr++) + | |
599 dither2[col_index]]); | |
600 *output_ptr++ = (JSAMPLE) pixcode; | |
601 col_index = (col_index + 1) & ODITHER_MASK; | |
602 } | |
603 row_index = (row_index + 1) & ODITHER_MASK; | |
604 cquantize->row_index = row_index; | |
605 } | |
606 } | |
607 | |
608 | |
609 METHODDEF(void) | |
610 quantize_fs_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf, | |
611 JSAMPARRAY output_buf, int num_rows) | |
612 /* General case, with Floyd-Steinberg dithering */ | |
613 { | |
614 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |
615 register LOCFSERROR cur; /* current error or pixel value */ | |
616 LOCFSERROR belowerr; /* error for pixel below cur */ | |
617 LOCFSERROR bpreverr; /* error for below/prev col */ | |
618 LOCFSERROR bnexterr; /* error for below/next col */ | |
619 LOCFSERROR delta; | |
620 register FSERRPTR errorptr; /* => fserrors[] at column before current */ | |
621 register JSAMPROW input_ptr; | |
622 register JSAMPROW output_ptr; | |
623 JSAMPROW colorindex_ci; | |
624 JSAMPROW colormap_ci; | |
625 int pixcode; | |
626 int nc = cinfo->out_color_components; | |
627 int dir; /* 1 for left-to-right, -1 for right-to-left */ | |
628 int dirnc; /* dir * nc */ | |
629 int ci; | |
630 int row; | |
631 JDIMENSION col; | |
632 JDIMENSION width = cinfo->output_width; | |
633 JSAMPLE *range_limit = cinfo->sample_range_limit; | |
634 SHIFT_TEMPS | |
635 | |
636 for (row = 0; row < num_rows; row++) { | |
637 /* Initialize output values to 0 so can process components separately */ | |
638 jzero_far((void FAR *) output_buf[row], | |
639 (size_t) (width * SIZEOF(JSAMPLE))); | |
640 for (ci = 0; ci < nc; ci++) { | |
641 input_ptr = input_buf[row] + ci; | |
642 output_ptr = output_buf[row]; | |
643 if (cquantize->on_odd_row) { | |
644 /* work right to left in this row */ | |
645 input_ptr += (width-1) * nc; /* so point to rightmost pixel */ | |
646 output_ptr += width-1; | |
647 dir = -1; | |
648 dirnc = -nc; | |
649 errorptr = cquantize->fserrors[ci] + (width+1); /* => entry after last c
olumn */ | |
650 } else { | |
651 /* work left to right in this row */ | |
652 dir = 1; | |
653 dirnc = nc; | |
654 errorptr = cquantize->fserrors[ci]; /* => entry before first column */ | |
655 } | |
656 colorindex_ci = cquantize->colorindex[ci]; | |
657 colormap_ci = cquantize->sv_colormap[ci]; | |
658 /* Preset error values: no error propagated to first pixel from left */ | |
659 cur = 0; | |
660 /* and no error propagated to row below yet */ | |
661 belowerr = bpreverr = 0; | |
662 | |
663 for (col = width; col > 0; col--) { | |
664 /* cur holds the error propagated from the previous pixel on the | |
665 * current line. Add the error propagated from the previous line | |
666 * to form the complete error correction term for this pixel, and | |
667 * round the error term (which is expressed * 16) to an integer. | |
668 * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct | |
669 * for either sign of the error value. | |
670 * Note: errorptr points to *previous* column's array entry. | |
671 */ | |
672 cur = RIGHT_SHIFT(cur + errorptr[dir] + 8, 4); | |
673 /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE. | |
674 * The maximum error is +- MAXJSAMPLE; this sets the required size | |
675 * of the range_limit array. | |
676 */ | |
677 cur += GETJSAMPLE(*input_ptr); | |
678 cur = GETJSAMPLE(range_limit[cur]); | |
679 /* Select output value, accumulate into output code for this pixel */ | |
680 pixcode = GETJSAMPLE(colorindex_ci[cur]); | |
681 *output_ptr += (JSAMPLE) pixcode; | |
682 /* Compute actual representation error at this pixel */ | |
683 /* Note: we can do this even though we don't have the final */ | |
684 /* pixel code, because the colormap is orthogonal. */ | |
685 cur -= GETJSAMPLE(colormap_ci[pixcode]); | |
686 /* Compute error fractions to be propagated to adjacent pixels. | |
687 * Add these into the running sums, and simultaneously shift the | |
688 * next-line error sums left by 1 column. | |
689 */ | |
690 bnexterr = cur; | |
691 delta = cur * 2; | |
692 cur += delta; /* form error * 3 */ | |
693 errorptr[0] = (FSERROR) (bpreverr + cur); | |
694 cur += delta; /* form error * 5 */ | |
695 bpreverr = belowerr + cur; | |
696 belowerr = bnexterr; | |
697 cur += delta; /* form error * 7 */ | |
698 /* At this point cur contains the 7/16 error value to be propagated | |
699 * to the next pixel on the current line, and all the errors for the | |
700 * next line have been shifted over. We are therefore ready to move on. | |
701 */ | |
702 input_ptr += dirnc; /* advance input ptr to next column */ | |
703 output_ptr += dir; /* advance output ptr to next column */ | |
704 errorptr += dir; /* advance errorptr to current column */ | |
705 } | |
706 /* Post-loop cleanup: we must unload the final error value into the | |
707 * final fserrors[] entry. Note we need not unload belowerr because | |
708 * it is for the dummy column before or after the actual array. | |
709 */ | |
710 errorptr[0] = (FSERROR) bpreverr; /* unload prev err into array */ | |
711 } | |
712 cquantize->on_odd_row = (cquantize->on_odd_row ? FALSE : TRUE); | |
713 } | |
714 } | |
715 | |
716 | |
717 /* | |
718 * Allocate workspace for Floyd-Steinberg errors. | |
719 */ | |
720 | |
721 LOCAL(void) | |
722 alloc_fs_workspace (j_decompress_ptr cinfo) | |
723 { | |
724 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |
725 size_t arraysize; | |
726 int i; | |
727 | |
728 arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR)); | |
729 for (i = 0; i < cinfo->out_color_components; i++) { | |
730 cquantize->fserrors[i] = (FSERRPTR) | |
731 (*cinfo->mem->alloc_large)((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize); | |
732 } | |
733 } | |
734 | |
735 | |
736 /* | |
737 * Initialize for one-pass color quantization. | |
738 */ | |
739 | |
740 METHODDEF(void) | |
741 start_pass_1_quant (j_decompress_ptr cinfo, boolean is_pre_scan) | |
742 { | |
743 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |
744 size_t arraysize; | |
745 int i; | |
746 | |
747 /* Install my colormap. */ | |
748 cinfo->colormap = cquantize->sv_colormap; | |
749 cinfo->actual_number_of_colors = cquantize->sv_actual; | |
750 | |
751 /* Initialize for desired dithering mode. */ | |
752 switch (cinfo->dither_mode) { | |
753 case JDITHER_NONE: | |
754 if (cinfo->out_color_components == 3) | |
755 cquantize->pub.color_quantize = color_quantize3; | |
756 else | |
757 cquantize->pub.color_quantize = color_quantize; | |
758 break; | |
759 case JDITHER_ORDERED: | |
760 if (cinfo->out_color_components == 3) | |
761 cquantize->pub.color_quantize = quantize3_ord_dither; | |
762 else | |
763 cquantize->pub.color_quantize = quantize_ord_dither; | |
764 cquantize->row_index = 0; /* initialize state for ordered dither */ | |
765 /* If user changed to ordered dither from another mode, | |
766 * we must recreate the color index table with padding. | |
767 * This will cost extra space, but probably isn't very likely. | |
768 */ | |
769 if (! cquantize->is_padded) | |
770 create_colorindex(cinfo); | |
771 /* Create ordered-dither tables if we didn't already. */ | |
772 if (cquantize->odither[0] == NULL) | |
773 create_odither_tables(cinfo); | |
774 break; | |
775 case JDITHER_FS: | |
776 cquantize->pub.color_quantize = quantize_fs_dither; | |
777 cquantize->on_odd_row = FALSE; /* initialize state for F-S dither */ | |
778 /* Allocate Floyd-Steinberg workspace if didn't already. */ | |
779 if (cquantize->fserrors[0] == NULL) | |
780 alloc_fs_workspace(cinfo); | |
781 /* Initialize the propagated errors to zero. */ | |
782 arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR)); | |
783 for (i = 0; i < cinfo->out_color_components; i++) | |
784 jzero_far((void FAR *) cquantize->fserrors[i], arraysize); | |
785 break; | |
786 default: | |
787 ERREXIT(cinfo, JERR_NOT_COMPILED); | |
788 break; | |
789 } | |
790 } | |
791 | |
792 | |
793 /* | |
794 * Finish up at the end of the pass. | |
795 */ | |
796 | |
797 METHODDEF(void) | |
798 finish_pass_1_quant (j_decompress_ptr cinfo) | |
799 { | |
800 /* no work in 1-pass case */ | |
801 } | |
802 | |
803 | |
804 /* | |
805 * Switch to a new external colormap between output passes. | |
806 * Shouldn't get to this module! | |
807 */ | |
808 | |
809 METHODDEF(void) | |
810 new_color_map_1_quant (j_decompress_ptr cinfo) | |
811 { | |
812 ERREXIT(cinfo, JERR_MODE_CHANGE); | |
813 } | |
814 | |
815 | |
816 /* | |
817 * Module initialization routine for 1-pass color quantization. | |
818 */ | |
819 | |
820 GLOBAL(void) | |
821 jinit_1pass_quantizer (j_decompress_ptr cinfo) | |
822 { | |
823 my_cquantize_ptr cquantize; | |
824 | |
825 cquantize = (my_cquantize_ptr) | |
826 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |
827 SIZEOF(my_cquantizer)); | |
828 cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize; | |
829 cquantize->pub.start_pass = start_pass_1_quant; | |
830 cquantize->pub.finish_pass = finish_pass_1_quant; | |
831 cquantize->pub.new_color_map = new_color_map_1_quant; | |
832 cquantize->fserrors[0] = NULL; /* Flag FS workspace not allocated */ | |
833 cquantize->odither[0] = NULL; /* Also flag odither arrays not allocated */ | |
834 | |
835 /* Make sure my internal arrays won't overflow */ | |
836 if (cinfo->out_color_components > MAX_Q_COMPS) | |
837 ERREXIT1(cinfo, JERR_QUANT_COMPONENTS, MAX_Q_COMPS); | |
838 /* Make sure colormap indexes can be represented by JSAMPLEs */ | |
839 if (cinfo->desired_number_of_colors > (MAXJSAMPLE+1)) | |
840 ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXJSAMPLE+1); | |
841 | |
842 /* Create the colormap and color index table. */ | |
843 create_colormap(cinfo); | |
844 create_colorindex(cinfo); | |
845 | |
846 /* Allocate Floyd-Steinberg workspace now if requested. | |
847 * We do this now since it is FAR storage and may affect the memory | |
848 * manager's space calculations. If the user changes to FS dither | |
849 * mode in a later pass, we will allocate the space then, and will | |
850 * possibly overrun the max_memory_to_use setting. | |
851 */ | |
852 if (cinfo->dither_mode == JDITHER_FS) | |
853 alloc_fs_workspace(cinfo); | |
854 } | |
855 | |
856 #endif /* QUANT_1PASS_SUPPORTED */ | |
OLD | NEW |