OLD | NEW |
| (Empty) |
1 /* | |
2 * jmemmgr.c | |
3 * | |
4 * Copyright (C) 1991-1997, Thomas G. Lane. | |
5 * This file is part of the Independent JPEG Group's software. | |
6 * For conditions of distribution and use, see the accompanying README file. | |
7 * | |
8 * This file contains the JPEG system-independent memory management | |
9 * routines. This code is usable across a wide variety of machines; most | |
10 * of the system dependencies have been isolated in a separate file. | |
11 * The major functions provided here are: | |
12 * * pool-based allocation and freeing of memory; | |
13 * * policy decisions about how to divide available memory among the | |
14 * virtual arrays; | |
15 * * control logic for swapping virtual arrays between main memory and | |
16 * backing storage. | |
17 * The separate system-dependent file provides the actual backing-storage | |
18 * access code, and it contains the policy decision about how much total | |
19 * main memory to use. | |
20 * This file is system-dependent in the sense that some of its functions | |
21 * are unnecessary in some systems. For example, if there is enough virtual | |
22 * memory so that backing storage will never be used, much of the virtual | |
23 * array control logic could be removed. (Of course, if you have that much | |
24 * memory then you shouldn't care about a little bit of unused code...) | |
25 */ | |
26 | |
27 #define JPEG_INTERNALS | |
28 #define AM_MEMORY_MANAGER /* we define jvirt_Xarray_control structs */ | |
29 #include "jinclude.h" | |
30 #include "jpeglib.h" | |
31 #include "jmemsys.h" /* import the system-dependent declarations */ | |
32 | |
33 #ifndef NO_GETENV | |
34 #ifndef HAVE_STDLIB_H /* <stdlib.h> should declare getenv() */ | |
35 extern char * getenv JPP((const char * name)); | |
36 #endif | |
37 #endif | |
38 | |
39 | |
40 /* | |
41 * Some important notes: | |
42 * The allocation routines provided here must never return NULL. | |
43 * They should exit to error_exit if unsuccessful. | |
44 * | |
45 * It's not a good idea to try to merge the sarray and barray routines, | |
46 * even though they are textually almost the same, because samples are | |
47 * usually stored as bytes while coefficients are shorts or ints. Thus, | |
48 * in machines where byte pointers have a different representation from | |
49 * word pointers, the resulting machine code could not be the same. | |
50 */ | |
51 | |
52 | |
53 /* | |
54 * Many machines require storage alignment: longs must start on 4-byte | |
55 * boundaries, doubles on 8-byte boundaries, etc. On such machines, malloc() | |
56 * always returns pointers that are multiples of the worst-case alignment | |
57 * requirement, and we had better do so too. | |
58 * There isn't any really portable way to determine the worst-case alignment | |
59 * requirement. This module assumes that the alignment requirement is | |
60 * multiples of sizeof(ALIGN_TYPE). | |
61 * By default, we define ALIGN_TYPE as double. This is necessary on some | |
62 * workstations (where doubles really do need 8-byte alignment) and will work | |
63 * fine on nearly everything. If your machine has lesser alignment needs, | |
64 * you can save a few bytes by making ALIGN_TYPE smaller. | |
65 * The only place I know of where this will NOT work is certain Macintosh | |
66 * 680x0 compilers that define double as a 10-byte IEEE extended float. | |
67 * Doing 10-byte alignment is counterproductive because longwords won't be | |
68 * aligned well. Put "#define ALIGN_TYPE long" in jconfig.h if you have | |
69 * such a compiler. | |
70 */ | |
71 | |
72 #ifndef ALIGN_TYPE /* so can override from jconfig.h */ | |
73 #define ALIGN_TYPE double | |
74 #endif | |
75 | |
76 | |
77 /* | |
78 * We allocate objects from "pools", where each pool is gotten with a single | |
79 * request to jpeg_get_small() or jpeg_get_large(). There is no per-object | |
80 * overhead within a pool, except for alignment padding. Each pool has a | |
81 * header with a link to the next pool of the same class. | |
82 * Small and large pool headers are identical except that the latter's | |
83 * link pointer must be FAR on 80x86 machines. | |
84 * Notice that the "real" header fields are union'ed with a dummy ALIGN_TYPE | |
85 * field. This forces the compiler to make SIZEOF(small_pool_hdr) a multiple | |
86 * of the alignment requirement of ALIGN_TYPE. | |
87 */ | |
88 | |
89 typedef union small_pool_struct * small_pool_ptr; | |
90 | |
91 typedef union small_pool_struct { | |
92 struct { | |
93 small_pool_ptr next; /* next in list of pools */ | |
94 size_t bytes_used; /* how many bytes already used within pool */ | |
95 size_t bytes_left; /* bytes still available in this pool */ | |
96 } hdr; | |
97 ALIGN_TYPE dummy; /* included in union to ensure alignment */ | |
98 } small_pool_hdr; | |
99 | |
100 typedef union large_pool_struct FAR * large_pool_ptr; | |
101 | |
102 typedef union large_pool_struct { | |
103 struct { | |
104 large_pool_ptr next; /* next in list of pools */ | |
105 size_t bytes_used; /* how many bytes already used within pool */ | |
106 size_t bytes_left; /* bytes still available in this pool */ | |
107 } hdr; | |
108 ALIGN_TYPE dummy; /* included in union to ensure alignment */ | |
109 } large_pool_hdr; | |
110 | |
111 | |
112 /* | |
113 * Here is the full definition of a memory manager object. | |
114 */ | |
115 | |
116 typedef struct { | |
117 struct jpeg_memory_mgr pub; /* public fields */ | |
118 | |
119 /* Each pool identifier (lifetime class) names a linked list of pools. */ | |
120 small_pool_ptr small_list[JPOOL_NUMPOOLS]; | |
121 large_pool_ptr large_list[JPOOL_NUMPOOLS]; | |
122 | |
123 /* Since we only have one lifetime class of virtual arrays, only one | |
124 * linked list is necessary (for each datatype). Note that the virtual | |
125 * array control blocks being linked together are actually stored somewhere | |
126 * in the small-pool list. | |
127 */ | |
128 jvirt_sarray_ptr virt_sarray_list; | |
129 jvirt_barray_ptr virt_barray_list; | |
130 | |
131 /* This counts total space obtained from jpeg_get_small/large */ | |
132 long total_space_allocated; | |
133 | |
134 /* alloc_sarray and alloc_barray set this value for use by virtual | |
135 * array routines. | |
136 */ | |
137 JDIMENSION last_rowsperchunk; /* from most recent alloc_sarray/barray */ | |
138 } my_memory_mgr; | |
139 | |
140 typedef my_memory_mgr * my_mem_ptr; | |
141 | |
142 | |
143 /* | |
144 * The control blocks for virtual arrays. | |
145 * Note that these blocks are allocated in the "small" pool area. | |
146 * System-dependent info for the associated backing store (if any) is hidden | |
147 * inside the backing_store_info struct. | |
148 */ | |
149 | |
150 struct jvirt_sarray_control { | |
151 JSAMPARRAY mem_buffer; /* => the in-memory buffer */ | |
152 JDIMENSION rows_in_array; /* total virtual array height */ | |
153 JDIMENSION samplesperrow; /* width of array (and of memory buffer) */ | |
154 JDIMENSION maxaccess; /* max rows accessed by access_virt_sarray */ | |
155 JDIMENSION rows_in_mem; /* height of memory buffer */ | |
156 JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */ | |
157 JDIMENSION cur_start_row; /* first logical row # in the buffer */ | |
158 JDIMENSION first_undef_row; /* row # of first uninitialized row */ | |
159 boolean pre_zero; /* pre-zero mode requested? */ | |
160 boolean dirty; /* do current buffer contents need written? */ | |
161 boolean b_s_open; /* is backing-store data valid? */ | |
162 jvirt_sarray_ptr next; /* link to next virtual sarray control block */ | |
163 backing_store_info b_s_info; /* System-dependent control info */ | |
164 }; | |
165 | |
166 struct jvirt_barray_control { | |
167 JBLOCKARRAY mem_buffer; /* => the in-memory buffer */ | |
168 JDIMENSION rows_in_array; /* total virtual array height */ | |
169 JDIMENSION blocksperrow; /* width of array (and of memory buffer) */ | |
170 JDIMENSION maxaccess; /* max rows accessed by access_virt_barray */ | |
171 JDIMENSION rows_in_mem; /* height of memory buffer */ | |
172 JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */ | |
173 JDIMENSION cur_start_row; /* first logical row # in the buffer */ | |
174 JDIMENSION first_undef_row; /* row # of first uninitialized row */ | |
175 boolean pre_zero; /* pre-zero mode requested? */ | |
176 boolean dirty; /* do current buffer contents need written? */ | |
177 boolean b_s_open; /* is backing-store data valid? */ | |
178 jvirt_barray_ptr next; /* link to next virtual barray control block */ | |
179 backing_store_info b_s_info; /* System-dependent control info */ | |
180 }; | |
181 | |
182 | |
183 #ifdef MEM_STATS /* optional extra stuff for statistics */ | |
184 | |
185 LOCAL(void) | |
186 print_mem_stats (j_common_ptr cinfo, int pool_id) | |
187 { | |
188 my_mem_ptr mem = (my_mem_ptr) cinfo->mem; | |
189 small_pool_ptr shdr_ptr; | |
190 large_pool_ptr lhdr_ptr; | |
191 | |
192 /* Since this is only a debugging stub, we can cheat a little by using | |
193 * fprintf directly rather than going through the trace message code. | |
194 * This is helpful because message parm array can't handle longs. | |
195 */ | |
196 fprintf(stderr, "Freeing pool %d, total space = %ld\n", | |
197 pool_id, mem->total_space_allocated); | |
198 | |
199 for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL; | |
200 lhdr_ptr = lhdr_ptr->hdr.next) { | |
201 fprintf(stderr, " Large chunk used %ld\n", | |
202 (long) lhdr_ptr->hdr.bytes_used); | |
203 } | |
204 | |
205 for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL; | |
206 shdr_ptr = shdr_ptr->hdr.next) { | |
207 fprintf(stderr, " Small chunk used %ld free %ld\n", | |
208 (long) shdr_ptr->hdr.bytes_used, | |
209 (long) shdr_ptr->hdr.bytes_left); | |
210 } | |
211 } | |
212 | |
213 #endif /* MEM_STATS */ | |
214 | |
215 | |
216 LOCAL(void) | |
217 out_of_memory (j_common_ptr cinfo, int which) | |
218 /* Report an out-of-memory error and stop execution */ | |
219 /* If we compiled MEM_STATS support, report alloc requests before dying */ | |
220 { | |
221 #ifdef MEM_STATS | |
222 cinfo->err->trace_level = 2; /* force self_destruct to report stats */ | |
223 #endif | |
224 ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which); | |
225 } | |
226 | |
227 | |
228 /* | |
229 * Allocation of "small" objects. | |
230 * | |
231 * For these, we use pooled storage. When a new pool must be created, | |
232 * we try to get enough space for the current request plus a "slop" factor, | |
233 * where the slop will be the amount of leftover space in the new pool. | |
234 * The speed vs. space tradeoff is largely determined by the slop values. | |
235 * A different slop value is provided for each pool class (lifetime), | |
236 * and we also distinguish the first pool of a class from later ones. | |
237 * NOTE: the values given work fairly well on both 16- and 32-bit-int | |
238 * machines, but may be too small if longs are 64 bits or more. | |
239 */ | |
240 | |
241 static const size_t first_pool_slop[JPOOL_NUMPOOLS] = | |
242 { | |
243 1600, /* first PERMANENT pool */ | |
244 16000 /* first IMAGE pool */ | |
245 }; | |
246 | |
247 static const size_t extra_pool_slop[JPOOL_NUMPOOLS] = | |
248 { | |
249 0, /* additional PERMANENT pools */ | |
250 5000 /* additional IMAGE pools */ | |
251 }; | |
252 | |
253 #define MIN_SLOP 50 /* greater than 0 to avoid futile looping */ | |
254 | |
255 | |
256 METHODDEF(void *) | |
257 alloc_small (j_common_ptr cinfo, int pool_id, size_t sizeofobject) | |
258 /* Allocate a "small" object */ | |
259 { | |
260 my_mem_ptr mem = (my_mem_ptr) cinfo->mem; | |
261 small_pool_ptr hdr_ptr, prev_hdr_ptr; | |
262 char * data_ptr; | |
263 size_t odd_bytes, min_request, slop; | |
264 | |
265 /* Check for unsatisfiable request (do now to ensure no overflow below) */ | |
266 if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(small_pool_hdr))) | |
267 out_of_memory(cinfo, 1); /* request exceeds malloc's ability */ | |
268 | |
269 /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */ | |
270 odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE); | |
271 if (odd_bytes > 0) | |
272 sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes; | |
273 | |
274 /* See if space is available in any existing pool */ | |
275 if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS) | |
276 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ | |
277 prev_hdr_ptr = NULL; | |
278 hdr_ptr = mem->small_list[pool_id]; | |
279 while (hdr_ptr != NULL) { | |
280 if (hdr_ptr->hdr.bytes_left >= sizeofobject) | |
281 break; /* found pool with enough space */ | |
282 prev_hdr_ptr = hdr_ptr; | |
283 hdr_ptr = hdr_ptr->hdr.next; | |
284 } | |
285 | |
286 /* Time to make a new pool? */ | |
287 if (hdr_ptr == NULL) { | |
288 /* min_request is what we need now, slop is what will be leftover */ | |
289 min_request = sizeofobject + SIZEOF(small_pool_hdr); | |
290 if (prev_hdr_ptr == NULL) /* first pool in class? */ | |
291 slop = first_pool_slop[pool_id]; | |
292 else | |
293 slop = extra_pool_slop[pool_id]; | |
294 /* Don't ask for more than MAX_ALLOC_CHUNK */ | |
295 if (slop > (size_t) (MAX_ALLOC_CHUNK-min_request)) | |
296 slop = (size_t) (MAX_ALLOC_CHUNK-min_request); | |
297 /* Try to get space, if fail reduce slop and try again */ | |
298 for (;;) { | |
299 hdr_ptr = (small_pool_ptr) jpeg_get_small(cinfo, min_request + slop); | |
300 if (hdr_ptr != NULL) | |
301 break; | |
302 slop /= 2; | |
303 if (slop < MIN_SLOP) /* give up when it gets real small */ | |
304 out_of_memory(cinfo, 2); /* jpeg_get_small failed */ | |
305 } | |
306 mem->total_space_allocated += min_request + slop; | |
307 /* Success, initialize the new pool header and add to end of list */ | |
308 hdr_ptr->hdr.next = NULL; | |
309 hdr_ptr->hdr.bytes_used = 0; | |
310 hdr_ptr->hdr.bytes_left = sizeofobject + slop; | |
311 if (prev_hdr_ptr == NULL) /* first pool in class? */ | |
312 mem->small_list[pool_id] = hdr_ptr; | |
313 else | |
314 prev_hdr_ptr->hdr.next = hdr_ptr; | |
315 } | |
316 | |
317 /* OK, allocate the object from the current pool */ | |
318 data_ptr = (char *) (hdr_ptr + 1); /* point to first data byte in pool */ | |
319 data_ptr += hdr_ptr->hdr.bytes_used; /* point to place for object */ | |
320 hdr_ptr->hdr.bytes_used += sizeofobject; | |
321 hdr_ptr->hdr.bytes_left -= sizeofobject; | |
322 | |
323 return (void *) data_ptr; | |
324 } | |
325 | |
326 | |
327 /* | |
328 * Allocation of "large" objects. | |
329 * | |
330 * The external semantics of these are the same as "small" objects, | |
331 * except that FAR pointers are used on 80x86. However the pool | |
332 * management heuristics are quite different. We assume that each | |
333 * request is large enough that it may as well be passed directly to | |
334 * jpeg_get_large; the pool management just links everything together | |
335 * so that we can free it all on demand. | |
336 * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY | |
337 * structures. The routines that create these structures (see below) | |
338 * deliberately bunch rows together to ensure a large request size. | |
339 */ | |
340 | |
341 METHODDEF(void FAR *) | |
342 alloc_large (j_common_ptr cinfo, int pool_id, size_t sizeofobject) | |
343 /* Allocate a "large" object */ | |
344 { | |
345 my_mem_ptr mem = (my_mem_ptr) cinfo->mem; | |
346 large_pool_ptr hdr_ptr; | |
347 size_t odd_bytes; | |
348 | |
349 /* Check for unsatisfiable request (do now to ensure no overflow below) */ | |
350 if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr))) | |
351 out_of_memory(cinfo, 3); /* request exceeds malloc's ability */ | |
352 | |
353 /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */ | |
354 odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE); | |
355 if (odd_bytes > 0) | |
356 sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes; | |
357 | |
358 /* Always make a new pool */ | |
359 if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS) | |
360 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ | |
361 | |
362 hdr_ptr = (large_pool_ptr) jpeg_get_large(cinfo, sizeofobject + | |
363 SIZEOF(large_pool_hdr)); | |
364 if (hdr_ptr == NULL) | |
365 out_of_memory(cinfo, 4); /* jpeg_get_large failed */ | |
366 mem->total_space_allocated += sizeofobject + SIZEOF(large_pool_hdr); | |
367 | |
368 /* Success, initialize the new pool header and add to list */ | |
369 hdr_ptr->hdr.next = mem->large_list[pool_id]; | |
370 /* We maintain space counts in each pool header for statistical purposes, | |
371 * even though they are not needed for allocation. | |
372 */ | |
373 hdr_ptr->hdr.bytes_used = sizeofobject; | |
374 hdr_ptr->hdr.bytes_left = 0; | |
375 mem->large_list[pool_id] = hdr_ptr; | |
376 | |
377 return (void FAR *) (hdr_ptr + 1); /* point to first data byte in pool */ | |
378 } | |
379 | |
380 | |
381 /* | |
382 * Creation of 2-D sample arrays. | |
383 * The pointers are in near heap, the samples themselves in FAR heap. | |
384 * | |
385 * To minimize allocation overhead and to allow I/O of large contiguous | |
386 * blocks, we allocate the sample rows in groups of as many rows as possible | |
387 * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request. | |
388 * NB: the virtual array control routines, later in this file, know about | |
389 * this chunking of rows. The rowsperchunk value is left in the mem manager | |
390 * object so that it can be saved away if this sarray is the workspace for | |
391 * a virtual array. | |
392 */ | |
393 | |
394 METHODDEF(JSAMPARRAY) | |
395 alloc_sarray (j_common_ptr cinfo, int pool_id, | |
396 JDIMENSION samplesperrow, JDIMENSION numrows) | |
397 /* Allocate a 2-D sample array */ | |
398 { | |
399 my_mem_ptr mem = (my_mem_ptr) cinfo->mem; | |
400 JSAMPARRAY result; | |
401 JSAMPROW workspace; | |
402 JDIMENSION rowsperchunk, currow, i; | |
403 long ltemp; | |
404 | |
405 /* Calculate max # of rows allowed in one allocation chunk */ | |
406 ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) / | |
407 ((long) samplesperrow * SIZEOF(JSAMPLE)); | |
408 if (ltemp <= 0) | |
409 ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); | |
410 if (ltemp < (long) numrows) | |
411 rowsperchunk = (JDIMENSION) ltemp; | |
412 else | |
413 rowsperchunk = numrows; | |
414 mem->last_rowsperchunk = rowsperchunk; | |
415 | |
416 /* Get space for row pointers (small object) */ | |
417 result = (JSAMPARRAY) alloc_small(cinfo, pool_id, | |
418 (size_t) (numrows * SIZEOF(JSAMPROW))); | |
419 | |
420 /* Get the rows themselves (large objects) */ | |
421 currow = 0; | |
422 while (currow < numrows) { | |
423 rowsperchunk = MIN(rowsperchunk, numrows - currow); | |
424 workspace = (JSAMPROW) alloc_large(cinfo, pool_id, | |
425 (size_t) ((size_t) rowsperchunk * (size_t) samplesperrow | |
426 * SIZEOF(JSAMPLE))); | |
427 for (i = rowsperchunk; i > 0; i--) { | |
428 result[currow++] = workspace; | |
429 workspace += samplesperrow; | |
430 } | |
431 } | |
432 | |
433 return result; | |
434 } | |
435 | |
436 | |
437 /* | |
438 * Creation of 2-D coefficient-block arrays. | |
439 * This is essentially the same as the code for sample arrays, above. | |
440 */ | |
441 | |
442 METHODDEF(JBLOCKARRAY) | |
443 alloc_barray (j_common_ptr cinfo, int pool_id, | |
444 JDIMENSION blocksperrow, JDIMENSION numrows) | |
445 /* Allocate a 2-D coefficient-block array */ | |
446 { | |
447 my_mem_ptr mem = (my_mem_ptr) cinfo->mem; | |
448 JBLOCKARRAY result; | |
449 JBLOCKROW workspace; | |
450 JDIMENSION rowsperchunk, currow, i; | |
451 long ltemp; | |
452 | |
453 /* Calculate max # of rows allowed in one allocation chunk */ | |
454 ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) / | |
455 ((long) blocksperrow * SIZEOF(JBLOCK)); | |
456 if (ltemp <= 0) | |
457 ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); | |
458 if (ltemp < (long) numrows) | |
459 rowsperchunk = (JDIMENSION) ltemp; | |
460 else | |
461 rowsperchunk = numrows; | |
462 mem->last_rowsperchunk = rowsperchunk; | |
463 | |
464 /* Get space for row pointers (small object) */ | |
465 result = (JBLOCKARRAY) alloc_small(cinfo, pool_id, | |
466 (size_t) (numrows * SIZEOF(JBLOCKROW))); | |
467 | |
468 /* Get the rows themselves (large objects) */ | |
469 currow = 0; | |
470 while (currow < numrows) { | |
471 rowsperchunk = MIN(rowsperchunk, numrows - currow); | |
472 workspace = (JBLOCKROW) alloc_large(cinfo, pool_id, | |
473 (size_t) ((size_t) rowsperchunk * (size_t) blocksperrow | |
474 * SIZEOF(JBLOCK))); | |
475 for (i = rowsperchunk; i > 0; i--) { | |
476 result[currow++] = workspace; | |
477 workspace += blocksperrow; | |
478 } | |
479 } | |
480 | |
481 return result; | |
482 } | |
483 | |
484 | |
485 /* | |
486 * About virtual array management: | |
487 * | |
488 * The above "normal" array routines are only used to allocate strip buffers | |
489 * (as wide as the image, but just a few rows high). Full-image-sized buffers | |
490 * are handled as "virtual" arrays. The array is still accessed a strip at a | |
491 * time, but the memory manager must save the whole array for repeated | |
492 * accesses. The intended implementation is that there is a strip buffer in | |
493 * memory (as high as is possible given the desired memory limit), plus a | |
494 * backing file that holds the rest of the array. | |
495 * | |
496 * The request_virt_array routines are told the total size of the image and | |
497 * the maximum number of rows that will be accessed at once. The in-memory | |
498 * buffer must be at least as large as the maxaccess value. | |
499 * | |
500 * The request routines create control blocks but not the in-memory buffers. | |
501 * That is postponed until realize_virt_arrays is called. At that time the | |
502 * total amount of space needed is known (approximately, anyway), so free | |
503 * memory can be divided up fairly. | |
504 * | |
505 * The access_virt_array routines are responsible for making a specific strip | |
506 * area accessible (after reading or writing the backing file, if necessary). | |
507 * Note that the access routines are told whether the caller intends to modify | |
508 * the accessed strip; during a read-only pass this saves having to rewrite | |
509 * data to disk. The access routines are also responsible for pre-zeroing | |
510 * any newly accessed rows, if pre-zeroing was requested. | |
511 * | |
512 * In current usage, the access requests are usually for nonoverlapping | |
513 * strips; that is, successive access start_row numbers differ by exactly | |
514 * num_rows = maxaccess. This means we can get good performance with simple | |
515 * buffer dump/reload logic, by making the in-memory buffer be a multiple | |
516 * of the access height; then there will never be accesses across bufferload | |
517 * boundaries. The code will still work with overlapping access requests, | |
518 * but it doesn't handle bufferload overlaps very efficiently. | |
519 */ | |
520 | |
521 | |
522 METHODDEF(jvirt_sarray_ptr) | |
523 request_virt_sarray (j_common_ptr cinfo, int pool_id, boolean pre_zero, | |
524 JDIMENSION samplesperrow, JDIMENSION numrows, | |
525 JDIMENSION maxaccess) | |
526 /* Request a virtual 2-D sample array */ | |
527 { | |
528 my_mem_ptr mem = (my_mem_ptr) cinfo->mem; | |
529 jvirt_sarray_ptr result; | |
530 | |
531 /* Only IMAGE-lifetime virtual arrays are currently supported */ | |
532 if (pool_id != JPOOL_IMAGE) | |
533 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ | |
534 | |
535 /* get control block */ | |
536 result = (jvirt_sarray_ptr) alloc_small(cinfo, pool_id, | |
537 SIZEOF(struct jvirt_sarray_control)); | |
538 | |
539 result->mem_buffer = NULL; /* marks array not yet realized */ | |
540 result->rows_in_array = numrows; | |
541 result->samplesperrow = samplesperrow; | |
542 result->maxaccess = maxaccess; | |
543 result->pre_zero = pre_zero; | |
544 result->b_s_open = FALSE; /* no associated backing-store object */ | |
545 result->next = mem->virt_sarray_list; /* add to list of virtual arrays */ | |
546 mem->virt_sarray_list = result; | |
547 | |
548 return result; | |
549 } | |
550 | |
551 | |
552 METHODDEF(jvirt_barray_ptr) | |
553 request_virt_barray (j_common_ptr cinfo, int pool_id, boolean pre_zero, | |
554 JDIMENSION blocksperrow, JDIMENSION numrows, | |
555 JDIMENSION maxaccess) | |
556 /* Request a virtual 2-D coefficient-block array */ | |
557 { | |
558 my_mem_ptr mem = (my_mem_ptr) cinfo->mem; | |
559 jvirt_barray_ptr result; | |
560 | |
561 /* Only IMAGE-lifetime virtual arrays are currently supported */ | |
562 if (pool_id != JPOOL_IMAGE) | |
563 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ | |
564 | |
565 /* get control block */ | |
566 result = (jvirt_barray_ptr) alloc_small(cinfo, pool_id, | |
567 SIZEOF(struct jvirt_barray_control)); | |
568 | |
569 result->mem_buffer = NULL; /* marks array not yet realized */ | |
570 result->rows_in_array = numrows; | |
571 result->blocksperrow = blocksperrow; | |
572 result->maxaccess = maxaccess; | |
573 result->pre_zero = pre_zero; | |
574 result->b_s_open = FALSE; /* no associated backing-store object */ | |
575 result->next = mem->virt_barray_list; /* add to list of virtual arrays */ | |
576 mem->virt_barray_list = result; | |
577 | |
578 return result; | |
579 } | |
580 | |
581 | |
582 METHODDEF(void) | |
583 realize_virt_arrays (j_common_ptr cinfo) | |
584 /* Allocate the in-memory buffers for any unrealized virtual arrays */ | |
585 { | |
586 my_mem_ptr mem = (my_mem_ptr) cinfo->mem; | |
587 long space_per_minheight, maximum_space, avail_mem; | |
588 long minheights, max_minheights; | |
589 jvirt_sarray_ptr sptr; | |
590 jvirt_barray_ptr bptr; | |
591 | |
592 /* Compute the minimum space needed (maxaccess rows in each buffer) | |
593 * and the maximum space needed (full image height in each buffer). | |
594 * These may be of use to the system-dependent jpeg_mem_available routine. | |
595 */ | |
596 space_per_minheight = 0; | |
597 maximum_space = 0; | |
598 for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { | |
599 if (sptr->mem_buffer == NULL) { /* if not realized yet */ | |
600 space_per_minheight += (long) sptr->maxaccess * | |
601 (long) sptr->samplesperrow * SIZEOF(JSAMPLE); | |
602 maximum_space += (long) sptr->rows_in_array * | |
603 (long) sptr->samplesperrow * SIZEOF(JSAMPLE); | |
604 } | |
605 } | |
606 for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { | |
607 if (bptr->mem_buffer == NULL) { /* if not realized yet */ | |
608 space_per_minheight += (long) bptr->maxaccess * | |
609 (long) bptr->blocksperrow * SIZEOF(JBLOCK); | |
610 maximum_space += (long) bptr->rows_in_array * | |
611 (long) bptr->blocksperrow * SIZEOF(JBLOCK); | |
612 } | |
613 } | |
614 | |
615 if (space_per_minheight <= 0) | |
616 return; /* no unrealized arrays, no work */ | |
617 | |
618 /* Determine amount of memory to actually use; this is system-dependent. */ | |
619 avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space, | |
620 mem->total_space_allocated); | |
621 | |
622 /* If the maximum space needed is available, make all the buffers full | |
623 * height; otherwise parcel it out with the same number of minheights | |
624 * in each buffer. | |
625 */ | |
626 if (avail_mem >= maximum_space) | |
627 max_minheights = 1000000000L; | |
628 else { | |
629 max_minheights = avail_mem / space_per_minheight; | |
630 /* If there doesn't seem to be enough space, try to get the minimum | |
631 * anyway. This allows a "stub" implementation of jpeg_mem_available(). | |
632 */ | |
633 if (max_minheights <= 0) | |
634 max_minheights = 1; | |
635 } | |
636 | |
637 /* Allocate the in-memory buffers and initialize backing store as needed. */ | |
638 | |
639 for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { | |
640 if (sptr->mem_buffer == NULL) { /* if not realized yet */ | |
641 minheights = ((long) sptr->rows_in_array - 1L) / sptr->maxaccess + 1L; | |
642 if (minheights <= max_minheights) { | |
643 /* This buffer fits in memory */ | |
644 sptr->rows_in_mem = sptr->rows_in_array; | |
645 } else { | |
646 /* It doesn't fit in memory, create backing store. */ | |
647 sptr->rows_in_mem = (JDIMENSION) (max_minheights * sptr->maxaccess); | |
648 jpeg_open_backing_store(cinfo, & sptr->b_s_info, | |
649 (long) sptr->rows_in_array * | |
650 (long) sptr->samplesperrow * | |
651 (long) SIZEOF(JSAMPLE)); | |
652 sptr->b_s_open = TRUE; | |
653 } | |
654 sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE, | |
655 sptr->samplesperrow, sptr->rows_in_mem); | |
656 sptr->rowsperchunk = mem->last_rowsperchunk; | |
657 sptr->cur_start_row = 0; | |
658 sptr->first_undef_row = 0; | |
659 sptr->dirty = FALSE; | |
660 } | |
661 } | |
662 | |
663 for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { | |
664 if (bptr->mem_buffer == NULL) { /* if not realized yet */ | |
665 minheights = ((long) bptr->rows_in_array - 1L) / bptr->maxaccess + 1L; | |
666 if (minheights <= max_minheights) { | |
667 /* This buffer fits in memory */ | |
668 bptr->rows_in_mem = bptr->rows_in_array; | |
669 } else { | |
670 /* It doesn't fit in memory, create backing store. */ | |
671 bptr->rows_in_mem = (JDIMENSION) (max_minheights * bptr->maxaccess); | |
672 jpeg_open_backing_store(cinfo, & bptr->b_s_info, | |
673 (long) bptr->rows_in_array * | |
674 (long) bptr->blocksperrow * | |
675 (long) SIZEOF(JBLOCK)); | |
676 bptr->b_s_open = TRUE; | |
677 } | |
678 bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE, | |
679 bptr->blocksperrow, bptr->rows_in_mem); | |
680 bptr->rowsperchunk = mem->last_rowsperchunk; | |
681 bptr->cur_start_row = 0; | |
682 bptr->first_undef_row = 0; | |
683 bptr->dirty = FALSE; | |
684 } | |
685 } | |
686 } | |
687 | |
688 | |
689 LOCAL(void) | |
690 do_sarray_io (j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing) | |
691 /* Do backing store read or write of a virtual sample array */ | |
692 { | |
693 long bytesperrow, file_offset, byte_count, rows, thisrow, i; | |
694 | |
695 bytesperrow = (long) ptr->samplesperrow * SIZEOF(JSAMPLE); | |
696 file_offset = ptr->cur_start_row * bytesperrow; | |
697 /* Loop to read or write each allocation chunk in mem_buffer */ | |
698 for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) { | |
699 /* One chunk, but check for short chunk at end of buffer */ | |
700 rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i); | |
701 /* Transfer no more than is currently defined */ | |
702 thisrow = (long) ptr->cur_start_row + i; | |
703 rows = MIN(rows, (long) ptr->first_undef_row - thisrow); | |
704 /* Transfer no more than fits in file */ | |
705 rows = MIN(rows, (long) ptr->rows_in_array - thisrow); | |
706 if (rows <= 0) /* this chunk might be past end of file! */ | |
707 break; | |
708 byte_count = rows * bytesperrow; | |
709 if (writing) | |
710 (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info, | |
711 (void FAR *) ptr->mem_buffer[i], | |
712 file_offset, byte_count); | |
713 else | |
714 (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info, | |
715 (void FAR *) ptr->mem_buffer[i], | |
716 file_offset, byte_count); | |
717 file_offset += byte_count; | |
718 } | |
719 } | |
720 | |
721 | |
722 LOCAL(void) | |
723 do_barray_io (j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing) | |
724 /* Do backing store read or write of a virtual coefficient-block array */ | |
725 { | |
726 long bytesperrow, file_offset, byte_count, rows, thisrow, i; | |
727 | |
728 bytesperrow = (long) ptr->blocksperrow * SIZEOF(JBLOCK); | |
729 file_offset = ptr->cur_start_row * bytesperrow; | |
730 /* Loop to read or write each allocation chunk in mem_buffer */ | |
731 for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) { | |
732 /* One chunk, but check for short chunk at end of buffer */ | |
733 rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i); | |
734 /* Transfer no more than is currently defined */ | |
735 thisrow = (long) ptr->cur_start_row + i; | |
736 rows = MIN(rows, (long) ptr->first_undef_row - thisrow); | |
737 /* Transfer no more than fits in file */ | |
738 rows = MIN(rows, (long) ptr->rows_in_array - thisrow); | |
739 if (rows <= 0) /* this chunk might be past end of file! */ | |
740 break; | |
741 byte_count = rows * bytesperrow; | |
742 if (writing) | |
743 (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info, | |
744 (void FAR *) ptr->mem_buffer[i], | |
745 file_offset, byte_count); | |
746 else | |
747 (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info, | |
748 (void FAR *) ptr->mem_buffer[i], | |
749 file_offset, byte_count); | |
750 file_offset += byte_count; | |
751 } | |
752 } | |
753 | |
754 | |
755 METHODDEF(JSAMPARRAY) | |
756 access_virt_sarray (j_common_ptr cinfo, jvirt_sarray_ptr ptr, | |
757 JDIMENSION start_row, JDIMENSION num_rows, | |
758 boolean writable) | |
759 /* Access the part of a virtual sample array starting at start_row */ | |
760 /* and extending for num_rows rows. writable is true if */ | |
761 /* caller intends to modify the accessed area. */ | |
762 { | |
763 JDIMENSION end_row = start_row + num_rows; | |
764 JDIMENSION undef_row; | |
765 | |
766 /* debugging check */ | |
767 if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess || | |
768 ptr->mem_buffer == NULL) | |
769 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); | |
770 | |
771 /* Make the desired part of the virtual array accessible */ | |
772 if (start_row < ptr->cur_start_row || | |
773 end_row > ptr->cur_start_row+ptr->rows_in_mem) { | |
774 if (! ptr->b_s_open) | |
775 ERREXIT(cinfo, JERR_VIRTUAL_BUG); | |
776 /* Flush old buffer contents if necessary */ | |
777 if (ptr->dirty) { | |
778 do_sarray_io(cinfo, ptr, TRUE); | |
779 ptr->dirty = FALSE; | |
780 } | |
781 /* Decide what part of virtual array to access. | |
782 * Algorithm: if target address > current window, assume forward scan, | |
783 * load starting at target address. If target address < current window, | |
784 * assume backward scan, load so that target area is top of window. | |
785 * Note that when switching from forward write to forward read, will have | |
786 * start_row = 0, so the limiting case applies and we load from 0 anyway. | |
787 */ | |
788 if (start_row > ptr->cur_start_row) { | |
789 ptr->cur_start_row = start_row; | |
790 } else { | |
791 /* use long arithmetic here to avoid overflow & unsigned problems */ | |
792 long ltemp; | |
793 | |
794 ltemp = (long) end_row - (long) ptr->rows_in_mem; | |
795 if (ltemp < 0) | |
796 ltemp = 0; /* don't fall off front end of file */ | |
797 ptr->cur_start_row = (JDIMENSION) ltemp; | |
798 } | |
799 /* Read in the selected part of the array. | |
800 * During the initial write pass, we will do no actual read | |
801 * because the selected part is all undefined. | |
802 */ | |
803 do_sarray_io(cinfo, ptr, FALSE); | |
804 } | |
805 /* Ensure the accessed part of the array is defined; prezero if needed. | |
806 * To improve locality of access, we only prezero the part of the array | |
807 * that the caller is about to access, not the entire in-memory array. | |
808 */ | |
809 if (ptr->first_undef_row < end_row) { | |
810 if (ptr->first_undef_row < start_row) { | |
811 if (writable) /* writer skipped over a section of array */ | |
812 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); | |
813 undef_row = start_row; /* but reader is allowed to read ahead */ | |
814 } else { | |
815 undef_row = ptr->first_undef_row; | |
816 } | |
817 if (writable) | |
818 ptr->first_undef_row = end_row; | |
819 if (ptr->pre_zero) { | |
820 size_t bytesperrow = (size_t) ptr->samplesperrow * SIZEOF(JSAMPLE); | |
821 undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */ | |
822 end_row -= ptr->cur_start_row; | |
823 while (undef_row < end_row) { | |
824 jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow); | |
825 undef_row++; | |
826 } | |
827 } else { | |
828 if (! writable) /* reader looking at undefined data */ | |
829 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); | |
830 } | |
831 } | |
832 /* Flag the buffer dirty if caller will write in it */ | |
833 if (writable) | |
834 ptr->dirty = TRUE; | |
835 /* Return address of proper part of the buffer */ | |
836 return ptr->mem_buffer + (start_row - ptr->cur_start_row); | |
837 } | |
838 | |
839 | |
840 METHODDEF(JBLOCKARRAY) | |
841 access_virt_barray (j_common_ptr cinfo, jvirt_barray_ptr ptr, | |
842 JDIMENSION start_row, JDIMENSION num_rows, | |
843 boolean writable) | |
844 /* Access the part of a virtual block array starting at start_row */ | |
845 /* and extending for num_rows rows. writable is true if */ | |
846 /* caller intends to modify the accessed area. */ | |
847 { | |
848 JDIMENSION end_row = start_row + num_rows; | |
849 JDIMENSION undef_row; | |
850 | |
851 /* debugging check */ | |
852 if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess || | |
853 ptr->mem_buffer == NULL) | |
854 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); | |
855 | |
856 /* Make the desired part of the virtual array accessible */ | |
857 if (start_row < ptr->cur_start_row || | |
858 end_row > ptr->cur_start_row+ptr->rows_in_mem) { | |
859 if (! ptr->b_s_open) | |
860 ERREXIT(cinfo, JERR_VIRTUAL_BUG); | |
861 /* Flush old buffer contents if necessary */ | |
862 if (ptr->dirty) { | |
863 do_barray_io(cinfo, ptr, TRUE); | |
864 ptr->dirty = FALSE; | |
865 } | |
866 /* Decide what part of virtual array to access. | |
867 * Algorithm: if target address > current window, assume forward scan, | |
868 * load starting at target address. If target address < current window, | |
869 * assume backward scan, load so that target area is top of window. | |
870 * Note that when switching from forward write to forward read, will have | |
871 * start_row = 0, so the limiting case applies and we load from 0 anyway. | |
872 */ | |
873 if (start_row > ptr->cur_start_row) { | |
874 ptr->cur_start_row = start_row; | |
875 } else { | |
876 /* use long arithmetic here to avoid overflow & unsigned problems */ | |
877 long ltemp; | |
878 | |
879 ltemp = (long) end_row - (long) ptr->rows_in_mem; | |
880 if (ltemp < 0) | |
881 ltemp = 0; /* don't fall off front end of file */ | |
882 ptr->cur_start_row = (JDIMENSION) ltemp; | |
883 } | |
884 /* Read in the selected part of the array. | |
885 * During the initial write pass, we will do no actual read | |
886 * because the selected part is all undefined. | |
887 */ | |
888 do_barray_io(cinfo, ptr, FALSE); | |
889 } | |
890 /* Ensure the accessed part of the array is defined; prezero if needed. | |
891 * To improve locality of access, we only prezero the part of the array | |
892 * that the caller is about to access, not the entire in-memory array. | |
893 */ | |
894 if (ptr->first_undef_row < end_row) { | |
895 if (ptr->first_undef_row < start_row) { | |
896 if (writable) /* writer skipped over a section of array */ | |
897 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); | |
898 undef_row = start_row; /* but reader is allowed to read ahead */ | |
899 } else { | |
900 undef_row = ptr->first_undef_row; | |
901 } | |
902 if (writable) | |
903 ptr->first_undef_row = end_row; | |
904 if (ptr->pre_zero) { | |
905 size_t bytesperrow = (size_t) ptr->blocksperrow * SIZEOF(JBLOCK); | |
906 undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */ | |
907 end_row -= ptr->cur_start_row; | |
908 while (undef_row < end_row) { | |
909 jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow); | |
910 undef_row++; | |
911 } | |
912 } else { | |
913 if (! writable) /* reader looking at undefined data */ | |
914 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); | |
915 } | |
916 } | |
917 /* Flag the buffer dirty if caller will write in it */ | |
918 if (writable) | |
919 ptr->dirty = TRUE; | |
920 /* Return address of proper part of the buffer */ | |
921 return ptr->mem_buffer + (start_row - ptr->cur_start_row); | |
922 } | |
923 | |
924 | |
925 /* | |
926 * Release all objects belonging to a specified pool. | |
927 */ | |
928 | |
929 METHODDEF(void) | |
930 free_pool (j_common_ptr cinfo, int pool_id) | |
931 { | |
932 my_mem_ptr mem = (my_mem_ptr) cinfo->mem; | |
933 small_pool_ptr shdr_ptr; | |
934 large_pool_ptr lhdr_ptr; | |
935 size_t space_freed; | |
936 | |
937 if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS) | |
938 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ | |
939 | |
940 #ifdef MEM_STATS | |
941 if (cinfo->err->trace_level > 1) | |
942 print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */ | |
943 #endif | |
944 | |
945 /* If freeing IMAGE pool, close any virtual arrays first */ | |
946 if (pool_id == JPOOL_IMAGE) { | |
947 jvirt_sarray_ptr sptr; | |
948 jvirt_barray_ptr bptr; | |
949 | |
950 for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { | |
951 if (sptr->b_s_open) { /* there may be no backing store */ | |
952 sptr->b_s_open = FALSE; /* prevent recursive close if error */ | |
953 (*sptr->b_s_info.close_backing_store) (cinfo, & sptr->b_s_info); | |
954 } | |
955 } | |
956 mem->virt_sarray_list = NULL; | |
957 for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { | |
958 if (bptr->b_s_open) { /* there may be no backing store */ | |
959 bptr->b_s_open = FALSE; /* prevent recursive close if error */ | |
960 (*bptr->b_s_info.close_backing_store) (cinfo, & bptr->b_s_info); | |
961 } | |
962 } | |
963 mem->virt_barray_list = NULL; | |
964 } | |
965 | |
966 /* Release large objects */ | |
967 lhdr_ptr = mem->large_list[pool_id]; | |
968 mem->large_list[pool_id] = NULL; | |
969 | |
970 while (lhdr_ptr != NULL) { | |
971 large_pool_ptr next_lhdr_ptr = lhdr_ptr->hdr.next; | |
972 space_freed = lhdr_ptr->hdr.bytes_used + | |
973 lhdr_ptr->hdr.bytes_left + | |
974 SIZEOF(large_pool_hdr); | |
975 jpeg_free_large(cinfo, (void FAR *) lhdr_ptr, space_freed); | |
976 mem->total_space_allocated -= space_freed; | |
977 lhdr_ptr = next_lhdr_ptr; | |
978 } | |
979 | |
980 /* Release small objects */ | |
981 shdr_ptr = mem->small_list[pool_id]; | |
982 mem->small_list[pool_id] = NULL; | |
983 | |
984 while (shdr_ptr != NULL) { | |
985 small_pool_ptr next_shdr_ptr = shdr_ptr->hdr.next; | |
986 space_freed = shdr_ptr->hdr.bytes_used + | |
987 shdr_ptr->hdr.bytes_left + | |
988 SIZEOF(small_pool_hdr); | |
989 jpeg_free_small(cinfo, (void *) shdr_ptr, space_freed); | |
990 mem->total_space_allocated -= space_freed; | |
991 shdr_ptr = next_shdr_ptr; | |
992 } | |
993 } | |
994 | |
995 | |
996 /* | |
997 * Close up shop entirely. | |
998 * Note that this cannot be called unless cinfo->mem is non-NULL. | |
999 */ | |
1000 | |
1001 METHODDEF(void) | |
1002 self_destruct (j_common_ptr cinfo) | |
1003 { | |
1004 int pool; | |
1005 | |
1006 /* Close all backing store, release all memory. | |
1007 * Releasing pools in reverse order might help avoid fragmentation | |
1008 * with some (brain-damaged) malloc libraries. | |
1009 */ | |
1010 for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) { | |
1011 free_pool(cinfo, pool); | |
1012 } | |
1013 | |
1014 /* Release the memory manager control block too. */ | |
1015 jpeg_free_small(cinfo, (void *) cinfo->mem, SIZEOF(my_memory_mgr)); | |
1016 cinfo->mem = NULL; /* ensures I will be called only once */ | |
1017 | |
1018 jpeg_mem_term(cinfo); /* system-dependent cleanup */ | |
1019 } | |
1020 | |
1021 | |
1022 /* | |
1023 * Memory manager initialization. | |
1024 * When this is called, only the error manager pointer is valid in cinfo! | |
1025 */ | |
1026 | |
1027 GLOBAL(void) | |
1028 jinit_memory_mgr (j_common_ptr cinfo) | |
1029 { | |
1030 my_mem_ptr mem; | |
1031 long max_to_use; | |
1032 int pool; | |
1033 size_t test_mac; | |
1034 | |
1035 cinfo->mem = NULL; /* for safety if init fails */ | |
1036 | |
1037 /* Check for configuration errors. | |
1038 * SIZEOF(ALIGN_TYPE) should be a power of 2; otherwise, it probably | |
1039 * doesn't reflect any real hardware alignment requirement. | |
1040 * The test is a little tricky: for X>0, X and X-1 have no one-bits | |
1041 * in common if and only if X is a power of 2, ie has only one one-bit. | |
1042 * Some compilers may give an "unreachable code" warning here; ignore it. | |
1043 */ | |
1044 if ((SIZEOF(ALIGN_TYPE) & (SIZEOF(ALIGN_TYPE)-1)) != 0) | |
1045 ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE); | |
1046 /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be | |
1047 * a multiple of SIZEOF(ALIGN_TYPE). | |
1048 * Again, an "unreachable code" warning may be ignored here. | |
1049 * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK. | |
1050 */ | |
1051 test_mac = (size_t) MAX_ALLOC_CHUNK; | |
1052 if ((long) test_mac != MAX_ALLOC_CHUNK || | |
1053 (MAX_ALLOC_CHUNK % SIZEOF(ALIGN_TYPE)) != 0) | |
1054 ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK); | |
1055 | |
1056 max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */ | |
1057 | |
1058 /* Attempt to allocate memory manager's control block */ | |
1059 mem = (my_mem_ptr) jpeg_get_small(cinfo, SIZEOF(my_memory_mgr)); | |
1060 | |
1061 if (mem == NULL) { | |
1062 jpeg_mem_term(cinfo); /* system-dependent cleanup */ | |
1063 ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0); | |
1064 } | |
1065 | |
1066 /* OK, fill in the method pointers */ | |
1067 mem->pub.alloc_small = alloc_small; | |
1068 mem->pub.alloc_large = alloc_large; | |
1069 mem->pub.alloc_sarray = alloc_sarray; | |
1070 mem->pub.alloc_barray = alloc_barray; | |
1071 mem->pub.request_virt_sarray = request_virt_sarray; | |
1072 mem->pub.request_virt_barray = request_virt_barray; | |
1073 mem->pub.realize_virt_arrays = realize_virt_arrays; | |
1074 mem->pub.access_virt_sarray = access_virt_sarray; | |
1075 mem->pub.access_virt_barray = access_virt_barray; | |
1076 mem->pub.free_pool = free_pool; | |
1077 mem->pub.self_destruct = self_destruct; | |
1078 | |
1079 /* Make MAX_ALLOC_CHUNK accessible to other modules */ | |
1080 mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK; | |
1081 | |
1082 /* Initialize working state */ | |
1083 mem->pub.max_memory_to_use = max_to_use; | |
1084 | |
1085 for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) { | |
1086 mem->small_list[pool] = NULL; | |
1087 mem->large_list[pool] = NULL; | |
1088 } | |
1089 mem->virt_sarray_list = NULL; | |
1090 mem->virt_barray_list = NULL; | |
1091 | |
1092 mem->total_space_allocated = SIZEOF(my_memory_mgr); | |
1093 | |
1094 /* Declare ourselves open for business */ | |
1095 cinfo->mem = & mem->pub; | |
1096 | |
1097 /* Check for an environment variable JPEGMEM; if found, override the | |
1098 * default max_memory setting from jpeg_mem_init. Note that the | |
1099 * surrounding application may again override this value. | |
1100 * If your system doesn't support getenv(), define NO_GETENV to disable | |
1101 * this feature. | |
1102 */ | |
1103 #ifndef NO_GETENV | |
1104 { char * memenv; | |
1105 | |
1106 if ((memenv = getenv("JPEGMEM")) != NULL) { | |
1107 char ch = 'x'; | |
1108 | |
1109 if (sscanf(memenv, "%ld%c", &max_to_use, &ch) > 0) { | |
1110 if (ch == 'm' || ch == 'M') | |
1111 max_to_use *= 1000L; | |
1112 mem->pub.max_memory_to_use = max_to_use * 1000L; | |
1113 } | |
1114 } | |
1115 } | |
1116 #endif | |
1117 | |
1118 } | |
OLD | NEW |