OLD | NEW |
| (Empty) |
1 /* | |
2 * jidctred.c | |
3 * | |
4 * Copyright (C) 1994-1998, Thomas G. Lane. | |
5 * This file is part of the Independent JPEG Group's software. | |
6 * For conditions of distribution and use, see the accompanying README file. | |
7 * | |
8 * This file contains inverse-DCT routines that produce reduced-size output: | |
9 * either 4x4, 2x2, or 1x1 pixels from an 8x8 DCT block. | |
10 * | |
11 * The implementation is based on the Loeffler, Ligtenberg and Moschytz (LL&M) | |
12 * algorithm used in jidctint.c. We simply replace each 8-to-8 1-D IDCT step | |
13 * with an 8-to-4 step that produces the four averages of two adjacent outputs | |
14 * (or an 8-to-2 step producing two averages of four outputs, for 2x2 output). | |
15 * These steps were derived by computing the corresponding values at the end | |
16 * of the normal LL&M code, then simplifying as much as possible. | |
17 * | |
18 * 1x1 is trivial: just take the DC coefficient divided by 8. | |
19 * | |
20 * See jidctint.c for additional comments. | |
21 */ | |
22 | |
23 #define JPEG_INTERNALS | |
24 #include "jinclude.h" | |
25 #include "jpeglib.h" | |
26 #include "jdct.h" /* Private declarations for DCT subsystem */ | |
27 | |
28 #ifdef IDCT_SCALING_SUPPORTED | |
29 | |
30 | |
31 /* | |
32 * This module is specialized to the case DCTSIZE = 8. | |
33 */ | |
34 | |
35 #if DCTSIZE != 8 | |
36 Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ | |
37 #endif | |
38 | |
39 | |
40 /* Scaling is the same as in jidctint.c. */ | |
41 | |
42 #if BITS_IN_JSAMPLE == 8 | |
43 #define CONST_BITS 13 | |
44 #define PASS1_BITS 2 | |
45 #else | |
46 #define CONST_BITS 13 | |
47 #define PASS1_BITS 1 /* lose a little precision to avoid overflow */ | |
48 #endif | |
49 | |
50 /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus | |
51 * causing a lot of useless floating-point operations at run time. | |
52 * To get around this we use the following pre-calculated constants. | |
53 * If you change CONST_BITS you may want to add appropriate values. | |
54 * (With a reasonable C compiler, you can just rely on the FIX() macro...) | |
55 */ | |
56 | |
57 #if CONST_BITS == 13 | |
58 #define FIX_0_211164243 ((INT32) 1730) /* FIX(0.211164243) */ | |
59 #define FIX_0_509795579 ((INT32) 4176) /* FIX(0.509795579) */ | |
60 #define FIX_0_601344887 ((INT32) 4926) /* FIX(0.601344887) */ | |
61 #define FIX_0_720959822 ((INT32) 5906) /* FIX(0.720959822) */ | |
62 #define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */ | |
63 #define FIX_0_850430095 ((INT32) 6967) /* FIX(0.850430095) */ | |
64 #define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */ | |
65 #define FIX_1_061594337 ((INT32) 8697) /* FIX(1.061594337) */ | |
66 #define FIX_1_272758580 ((INT32) 10426) /* FIX(1.272758580) */ | |
67 #define FIX_1_451774981 ((INT32) 11893) /* FIX(1.451774981) */ | |
68 #define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */ | |
69 #define FIX_2_172734803 ((INT32) 17799) /* FIX(2.172734803) */ | |
70 #define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */ | |
71 #define FIX_3_624509785 ((INT32) 29692) /* FIX(3.624509785) */ | |
72 #else | |
73 #define FIX_0_211164243 FIX(0.211164243) | |
74 #define FIX_0_509795579 FIX(0.509795579) | |
75 #define FIX_0_601344887 FIX(0.601344887) | |
76 #define FIX_0_720959822 FIX(0.720959822) | |
77 #define FIX_0_765366865 FIX(0.765366865) | |
78 #define FIX_0_850430095 FIX(0.850430095) | |
79 #define FIX_0_899976223 FIX(0.899976223) | |
80 #define FIX_1_061594337 FIX(1.061594337) | |
81 #define FIX_1_272758580 FIX(1.272758580) | |
82 #define FIX_1_451774981 FIX(1.451774981) | |
83 #define FIX_1_847759065 FIX(1.847759065) | |
84 #define FIX_2_172734803 FIX(2.172734803) | |
85 #define FIX_2_562915447 FIX(2.562915447) | |
86 #define FIX_3_624509785 FIX(3.624509785) | |
87 #endif | |
88 | |
89 | |
90 /* Multiply an INT32 variable by an INT32 constant to yield an INT32 result. | |
91 * For 8-bit samples with the recommended scaling, all the variable | |
92 * and constant values involved are no more than 16 bits wide, so a | |
93 * 16x16->32 bit multiply can be used instead of a full 32x32 multiply. | |
94 * For 12-bit samples, a full 32-bit multiplication will be needed. | |
95 */ | |
96 | |
97 #if BITS_IN_JSAMPLE == 8 | |
98 #define MULTIPLY(var,const) MULTIPLY16C16(var,const) | |
99 #else | |
100 #define MULTIPLY(var,const) ((var) * (const)) | |
101 #endif | |
102 | |
103 | |
104 /* Dequantize a coefficient by multiplying it by the multiplier-table | |
105 * entry; produce an int result. In this module, both inputs and result | |
106 * are 16 bits or less, so either int or short multiply will work. | |
107 */ | |
108 | |
109 #define DEQUANTIZE(coef,quantval) (((ISLOW_MULT_TYPE) (coef)) * (quantval)) | |
110 | |
111 | |
112 /* | |
113 * Perform dequantization and inverse DCT on one block of coefficients, | |
114 * producing a reduced-size 4x4 output block. | |
115 */ | |
116 | |
117 GLOBAL(void) | |
118 jpeg_idct_4x4 (j_decompress_ptr cinfo, jpeg_component_info * compptr, | |
119 JCOEFPTR coef_block, | |
120 JSAMPARRAY output_buf, JDIMENSION output_col) | |
121 { | |
122 INT32 tmp0, tmp2, tmp10, tmp12; | |
123 INT32 z1, z2, z3, z4; | |
124 JCOEFPTR inptr; | |
125 ISLOW_MULT_TYPE * quantptr; | |
126 int * wsptr; | |
127 JSAMPROW outptr; | |
128 JSAMPLE *range_limit = IDCT_range_limit(cinfo); | |
129 int ctr; | |
130 int workspace[DCTSIZE*4]; /* buffers data between passes */ | |
131 SHIFT_TEMPS | |
132 | |
133 /* Pass 1: process columns from input, store into work array. */ | |
134 | |
135 inptr = coef_block; | |
136 quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; | |
137 wsptr = workspace; | |
138 for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) { | |
139 /* Don't bother to process column 4, because second pass won't use it */ | |
140 if (ctr == DCTSIZE-4) | |
141 continue; | |
142 if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 && | |
143 inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*5] == 0 && | |
144 inptr[DCTSIZE*6] == 0 && inptr[DCTSIZE*7] == 0) { | |
145 /* AC terms all zero; we need not examine term 4 for 4x4 output */ | |
146 int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BIT
S; | |
147 | |
148 wsptr[DCTSIZE*0] = dcval; | |
149 wsptr[DCTSIZE*1] = dcval; | |
150 wsptr[DCTSIZE*2] = dcval; | |
151 wsptr[DCTSIZE*3] = dcval; | |
152 | |
153 continue; | |
154 } | |
155 | |
156 /* Even part */ | |
157 | |
158 tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); | |
159 tmp0 <<= (CONST_BITS+1); | |
160 | |
161 z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); | |
162 z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); | |
163 | |
164 tmp2 = MULTIPLY(z2, FIX_1_847759065) + MULTIPLY(z3, - FIX_0_765366865); | |
165 | |
166 tmp10 = tmp0 + tmp2; | |
167 tmp12 = tmp0 - tmp2; | |
168 | |
169 /* Odd part */ | |
170 | |
171 z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); | |
172 z2 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); | |
173 z3 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); | |
174 z4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); | |
175 | |
176 tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */ | |
177 + MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */ | |
178 + MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */ | |
179 + MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */ | |
180 | |
181 tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */ | |
182 + MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */ | |
183 + MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */ | |
184 + MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */ | |
185 | |
186 /* Final output stage */ | |
187 | |
188 wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp2, CONST_BITS-PASS1_BITS+1); | |
189 wsptr[DCTSIZE*3] = (int) DESCALE(tmp10 - tmp2, CONST_BITS-PASS1_BITS+1); | |
190 wsptr[DCTSIZE*1] = (int) DESCALE(tmp12 + tmp0, CONST_BITS-PASS1_BITS+1); | |
191 wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 - tmp0, CONST_BITS-PASS1_BITS+1); | |
192 } | |
193 | |
194 /* Pass 2: process 4 rows from work array, store into output array. */ | |
195 | |
196 wsptr = workspace; | |
197 for (ctr = 0; ctr < 4; ctr++) { | |
198 outptr = output_buf[ctr] + output_col; | |
199 /* It's not clear whether a zero row test is worthwhile here ... */ | |
200 | |
201 #ifndef NO_ZERO_ROW_TEST | |
202 if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && | |
203 wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) { | |
204 /* AC terms all zero */ | |
205 JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3) | |
206 & RANGE_MASK]; | |
207 | |
208 outptr[0] = dcval; | |
209 outptr[1] = dcval; | |
210 outptr[2] = dcval; | |
211 outptr[3] = dcval; | |
212 | |
213 wsptr += DCTSIZE; /* advance pointer to next row */ | |
214 continue; | |
215 } | |
216 #endif | |
217 | |
218 /* Even part */ | |
219 | |
220 tmp0 = ((INT32) wsptr[0]) << (CONST_BITS+1); | |
221 | |
222 tmp2 = MULTIPLY((INT32) wsptr[2], FIX_1_847759065) | |
223 + MULTIPLY((INT32) wsptr[6], - FIX_0_765366865); | |
224 | |
225 tmp10 = tmp0 + tmp2; | |
226 tmp12 = tmp0 - tmp2; | |
227 | |
228 /* Odd part */ | |
229 | |
230 z1 = (INT32) wsptr[7]; | |
231 z2 = (INT32) wsptr[5]; | |
232 z3 = (INT32) wsptr[3]; | |
233 z4 = (INT32) wsptr[1]; | |
234 | |
235 tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */ | |
236 + MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */ | |
237 + MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */ | |
238 + MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */ | |
239 | |
240 tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */ | |
241 + MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */ | |
242 + MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */ | |
243 + MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */ | |
244 | |
245 /* Final output stage */ | |
246 | |
247 outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp2, | |
248 CONST_BITS+PASS1_BITS+3+1) | |
249 & RANGE_MASK]; | |
250 outptr[3] = range_limit[(int) DESCALE(tmp10 - tmp2, | |
251 CONST_BITS+PASS1_BITS+3+1) | |
252 & RANGE_MASK]; | |
253 outptr[1] = range_limit[(int) DESCALE(tmp12 + tmp0, | |
254 CONST_BITS+PASS1_BITS+3+1) | |
255 & RANGE_MASK]; | |
256 outptr[2] = range_limit[(int) DESCALE(tmp12 - tmp0, | |
257 CONST_BITS+PASS1_BITS+3+1) | |
258 & RANGE_MASK]; | |
259 | |
260 wsptr += DCTSIZE; /* advance pointer to next row */ | |
261 } | |
262 } | |
263 | |
264 | |
265 /* | |
266 * Perform dequantization and inverse DCT on one block of coefficients, | |
267 * producing a reduced-size 2x2 output block. | |
268 */ | |
269 | |
270 GLOBAL(void) | |
271 jpeg_idct_2x2 (j_decompress_ptr cinfo, jpeg_component_info * compptr, | |
272 JCOEFPTR coef_block, | |
273 JSAMPARRAY output_buf, JDIMENSION output_col) | |
274 { | |
275 INT32 tmp0, tmp10, z1; | |
276 JCOEFPTR inptr; | |
277 ISLOW_MULT_TYPE * quantptr; | |
278 int * wsptr; | |
279 JSAMPROW outptr; | |
280 JSAMPLE *range_limit = IDCT_range_limit(cinfo); | |
281 int ctr; | |
282 int workspace[DCTSIZE*2]; /* buffers data between passes */ | |
283 SHIFT_TEMPS | |
284 | |
285 /* Pass 1: process columns from input, store into work array. */ | |
286 | |
287 inptr = coef_block; | |
288 quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; | |
289 wsptr = workspace; | |
290 for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) { | |
291 /* Don't bother to process columns 2,4,6 */ | |
292 if (ctr == DCTSIZE-2 || ctr == DCTSIZE-4 || ctr == DCTSIZE-6) | |
293 continue; | |
294 if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*3] == 0 && | |
295 inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*7] == 0) { | |
296 /* AC terms all zero; we need not examine terms 2,4,6 for 2x2 output */ | |
297 int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BIT
S; | |
298 | |
299 wsptr[DCTSIZE*0] = dcval; | |
300 wsptr[DCTSIZE*1] = dcval; | |
301 | |
302 continue; | |
303 } | |
304 | |
305 /* Even part */ | |
306 | |
307 z1 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); | |
308 tmp10 = z1 << (CONST_BITS+2); | |
309 | |
310 /* Odd part */ | |
311 | |
312 z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); | |
313 tmp0 = MULTIPLY(z1, - FIX_0_720959822); /* sqrt(2) * (c7-c5+c3-c1) */ | |
314 z1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); | |
315 tmp0 += MULTIPLY(z1, FIX_0_850430095); /* sqrt(2) * (-c1+c3+c5+c7) */ | |
316 z1 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); | |
317 tmp0 += MULTIPLY(z1, - FIX_1_272758580); /* sqrt(2) * (-c1+c3-c5-c7) */ | |
318 z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); | |
319 tmp0 += MULTIPLY(z1, FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */ | |
320 | |
321 /* Final output stage */ | |
322 | |
323 wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp0, CONST_BITS-PASS1_BITS+2); | |
324 wsptr[DCTSIZE*1] = (int) DESCALE(tmp10 - tmp0, CONST_BITS-PASS1_BITS+2); | |
325 } | |
326 | |
327 /* Pass 2: process 2 rows from work array, store into output array. */ | |
328 | |
329 wsptr = workspace; | |
330 for (ctr = 0; ctr < 2; ctr++) { | |
331 outptr = output_buf[ctr] + output_col; | |
332 /* It's not clear whether a zero row test is worthwhile here ... */ | |
333 | |
334 #ifndef NO_ZERO_ROW_TEST | |
335 if (wsptr[1] == 0 && wsptr[3] == 0 && wsptr[5] == 0 && wsptr[7] == 0) { | |
336 /* AC terms all zero */ | |
337 JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3) | |
338 & RANGE_MASK]; | |
339 | |
340 outptr[0] = dcval; | |
341 outptr[1] = dcval; | |
342 | |
343 wsptr += DCTSIZE; /* advance pointer to next row */ | |
344 continue; | |
345 } | |
346 #endif | |
347 | |
348 /* Even part */ | |
349 | |
350 tmp10 = ((INT32) wsptr[0]) << (CONST_BITS+2); | |
351 | |
352 /* Odd part */ | |
353 | |
354 tmp0 = MULTIPLY((INT32) wsptr[7], - FIX_0_720959822) /* sqrt(2) * (c7-c5+c3-
c1) */ | |
355 + MULTIPLY((INT32) wsptr[5], FIX_0_850430095) /* sqrt(2) * (-c1+c3+c5+c
7) */ | |
356 + MULTIPLY((INT32) wsptr[3], - FIX_1_272758580) /* sqrt(2) * (-c1+c3-c5
-c7) */ | |
357 + MULTIPLY((INT32) wsptr[1], FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c
7) */ | |
358 | |
359 /* Final output stage */ | |
360 | |
361 outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp0, | |
362 CONST_BITS+PASS1_BITS+3+2) | |
363 & RANGE_MASK]; | |
364 outptr[1] = range_limit[(int) DESCALE(tmp10 - tmp0, | |
365 CONST_BITS+PASS1_BITS+3+2) | |
366 & RANGE_MASK]; | |
367 | |
368 wsptr += DCTSIZE; /* advance pointer to next row */ | |
369 } | |
370 } | |
371 | |
372 | |
373 /* | |
374 * Perform dequantization and inverse DCT on one block of coefficients, | |
375 * producing a reduced-size 1x1 output block. | |
376 */ | |
377 | |
378 GLOBAL(void) | |
379 jpeg_idct_1x1 (j_decompress_ptr cinfo, jpeg_component_info * compptr, | |
380 JCOEFPTR coef_block, | |
381 JSAMPARRAY output_buf, JDIMENSION output_col) | |
382 { | |
383 int dcval; | |
384 ISLOW_MULT_TYPE * quantptr; | |
385 JSAMPLE *range_limit = IDCT_range_limit(cinfo); | |
386 SHIFT_TEMPS | |
387 | |
388 /* We hardly need an inverse DCT routine for this: just take the | |
389 * average pixel value, which is one-eighth of the DC coefficient. | |
390 */ | |
391 quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; | |
392 dcval = DEQUANTIZE(coef_block[0], quantptr[0]); | |
393 dcval = (int) DESCALE((INT32) dcval, 3); | |
394 | |
395 output_buf[0][output_col] = range_limit[dcval & RANGE_MASK]; | |
396 } | |
397 | |
398 #endif /* IDCT_SCALING_SUPPORTED */ | |
OLD | NEW |