OLD | NEW |
| (Empty) |
1 /* | |
2 * jidctint.c | |
3 * | |
4 * Copyright (C) 1991-1998, Thomas G. Lane. | |
5 * This file is part of the Independent JPEG Group's software. | |
6 * For conditions of distribution and use, see the accompanying README file. | |
7 * | |
8 * This file contains a slow-but-accurate integer implementation of the | |
9 * inverse DCT (Discrete Cosine Transform). In the IJG code, this routine | |
10 * must also perform dequantization of the input coefficients. | |
11 * | |
12 * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT | |
13 * on each row (or vice versa, but it's more convenient to emit a row at | |
14 * a time). Direct algorithms are also available, but they are much more | |
15 * complex and seem not to be any faster when reduced to code. | |
16 * | |
17 * This implementation is based on an algorithm described in | |
18 * C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT | |
19 * Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics, | |
20 * Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991. | |
21 * The primary algorithm described there uses 11 multiplies and 29 adds. | |
22 * We use their alternate method with 12 multiplies and 32 adds. | |
23 * The advantage of this method is that no data path contains more than one | |
24 * multiplication; this allows a very simple and accurate implementation in | |
25 * scaled fixed-point arithmetic, with a minimal number of shifts. | |
26 */ | |
27 | |
28 #define JPEG_INTERNALS | |
29 #include "jinclude.h" | |
30 #include "jpeglib.h" | |
31 #include "jdct.h" /* Private declarations for DCT subsystem */ | |
32 | |
33 #ifdef DCT_ISLOW_SUPPORTED | |
34 | |
35 | |
36 /* | |
37 * This module is specialized to the case DCTSIZE = 8. | |
38 */ | |
39 | |
40 #if DCTSIZE != 8 | |
41 Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ | |
42 #endif | |
43 | |
44 | |
45 /* | |
46 * The poop on this scaling stuff is as follows: | |
47 * | |
48 * Each 1-D IDCT step produces outputs which are a factor of sqrt(N) | |
49 * larger than the true IDCT outputs. The final outputs are therefore | |
50 * a factor of N larger than desired; since N=8 this can be cured by | |
51 * a simple right shift at the end of the algorithm. The advantage of | |
52 * this arrangement is that we save two multiplications per 1-D IDCT, | |
53 * because the y0 and y4 inputs need not be divided by sqrt(N). | |
54 * | |
55 * We have to do addition and subtraction of the integer inputs, which | |
56 * is no problem, and multiplication by fractional constants, which is | |
57 * a problem to do in integer arithmetic. We multiply all the constants | |
58 * by CONST_SCALE and convert them to integer constants (thus retaining | |
59 * CONST_BITS bits of precision in the constants). After doing a | |
60 * multiplication we have to divide the product by CONST_SCALE, with proper | |
61 * rounding, to produce the correct output. This division can be done | |
62 * cheaply as a right shift of CONST_BITS bits. We postpone shifting | |
63 * as long as possible so that partial sums can be added together with | |
64 * full fractional precision. | |
65 * | |
66 * The outputs of the first pass are scaled up by PASS1_BITS bits so that | |
67 * they are represented to better-than-integral precision. These outputs | |
68 * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word | |
69 * with the recommended scaling. (To scale up 12-bit sample data further, an | |
70 * intermediate INT32 array would be needed.) | |
71 * | |
72 * To avoid overflow of the 32-bit intermediate results in pass 2, we must | |
73 * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis | |
74 * shows that the values given below are the most effective. | |
75 */ | |
76 | |
77 #if BITS_IN_JSAMPLE == 8 | |
78 #define CONST_BITS 13 | |
79 #define PASS1_BITS 2 | |
80 #else | |
81 #define CONST_BITS 13 | |
82 #define PASS1_BITS 1 /* lose a little precision to avoid overflow */ | |
83 #endif | |
84 | |
85 /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus | |
86 * causing a lot of useless floating-point operations at run time. | |
87 * To get around this we use the following pre-calculated constants. | |
88 * If you change CONST_BITS you may want to add appropriate values. | |
89 * (With a reasonable C compiler, you can just rely on the FIX() macro...) | |
90 */ | |
91 | |
92 #if CONST_BITS == 13 | |
93 #define FIX_0_298631336 ((INT32) 2446) /* FIX(0.298631336) */ | |
94 #define FIX_0_390180644 ((INT32) 3196) /* FIX(0.390180644) */ | |
95 #define FIX_0_541196100 ((INT32) 4433) /* FIX(0.541196100) */ | |
96 #define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */ | |
97 #define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */ | |
98 #define FIX_1_175875602 ((INT32) 9633) /* FIX(1.175875602) */ | |
99 #define FIX_1_501321110 ((INT32) 12299) /* FIX(1.501321110) */ | |
100 #define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */ | |
101 #define FIX_1_961570560 ((INT32) 16069) /* FIX(1.961570560) */ | |
102 #define FIX_2_053119869 ((INT32) 16819) /* FIX(2.053119869) */ | |
103 #define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */ | |
104 #define FIX_3_072711026 ((INT32) 25172) /* FIX(3.072711026) */ | |
105 #else | |
106 #define FIX_0_298631336 FIX(0.298631336) | |
107 #define FIX_0_390180644 FIX(0.390180644) | |
108 #define FIX_0_541196100 FIX(0.541196100) | |
109 #define FIX_0_765366865 FIX(0.765366865) | |
110 #define FIX_0_899976223 FIX(0.899976223) | |
111 #define FIX_1_175875602 FIX(1.175875602) | |
112 #define FIX_1_501321110 FIX(1.501321110) | |
113 #define FIX_1_847759065 FIX(1.847759065) | |
114 #define FIX_1_961570560 FIX(1.961570560) | |
115 #define FIX_2_053119869 FIX(2.053119869) | |
116 #define FIX_2_562915447 FIX(2.562915447) | |
117 #define FIX_3_072711026 FIX(3.072711026) | |
118 #endif | |
119 | |
120 | |
121 /* Multiply an INT32 variable by an INT32 constant to yield an INT32 result. | |
122 * For 8-bit samples with the recommended scaling, all the variable | |
123 * and constant values involved are no more than 16 bits wide, so a | |
124 * 16x16->32 bit multiply can be used instead of a full 32x32 multiply. | |
125 * For 12-bit samples, a full 32-bit multiplication will be needed. | |
126 */ | |
127 | |
128 #if BITS_IN_JSAMPLE == 8 | |
129 #define MULTIPLY(var,const) MULTIPLY16C16(var,const) | |
130 #else | |
131 #define MULTIPLY(var,const) ((var) * (const)) | |
132 #endif | |
133 | |
134 | |
135 /* Dequantize a coefficient by multiplying it by the multiplier-table | |
136 * entry; produce an int result. In this module, both inputs and result | |
137 * are 16 bits or less, so either int or short multiply will work. | |
138 */ | |
139 | |
140 #define DEQUANTIZE(coef,quantval) (((ISLOW_MULT_TYPE) (coef)) * (quantval)) | |
141 | |
142 | |
143 /* | |
144 * Perform dequantization and inverse DCT on one block of coefficients. | |
145 */ | |
146 | |
147 GLOBAL(void) | |
148 jpeg_idct_islow (j_decompress_ptr cinfo, jpeg_component_info * compptr, | |
149 JCOEFPTR coef_block, | |
150 JSAMPARRAY output_buf, JDIMENSION output_col) | |
151 { | |
152 INT32 tmp0, tmp1, tmp2, tmp3; | |
153 INT32 tmp10, tmp11, tmp12, tmp13; | |
154 INT32 z1, z2, z3, z4, z5; | |
155 JCOEFPTR inptr; | |
156 ISLOW_MULT_TYPE * quantptr; | |
157 int * wsptr; | |
158 JSAMPROW outptr; | |
159 JSAMPLE *range_limit = IDCT_range_limit(cinfo); | |
160 int ctr; | |
161 int workspace[DCTSIZE2]; /* buffers data between passes */ | |
162 SHIFT_TEMPS | |
163 | |
164 /* Pass 1: process columns from input, store into work array. */ | |
165 /* Note results are scaled up by sqrt(8) compared to a true IDCT; */ | |
166 /* furthermore, we scale the results by 2**PASS1_BITS. */ | |
167 | |
168 inptr = coef_block; | |
169 quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; | |
170 wsptr = workspace; | |
171 for (ctr = DCTSIZE; ctr > 0; ctr--) { | |
172 /* Due to quantization, we will usually find that many of the input | |
173 * coefficients are zero, especially the AC terms. We can exploit this | |
174 * by short-circuiting the IDCT calculation for any column in which all | |
175 * the AC terms are zero. In that case each output is equal to the | |
176 * DC coefficient (with scale factor as needed). | |
177 * With typical images and quantization tables, half or more of the | |
178 * column DCT calculations can be simplified this way. | |
179 */ | |
180 | |
181 if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 && | |
182 inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 && | |
183 inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 && | |
184 inptr[DCTSIZE*7] == 0) { | |
185 /* AC terms all zero */ | |
186 int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BIT
S; | |
187 | |
188 wsptr[DCTSIZE*0] = dcval; | |
189 wsptr[DCTSIZE*1] = dcval; | |
190 wsptr[DCTSIZE*2] = dcval; | |
191 wsptr[DCTSIZE*3] = dcval; | |
192 wsptr[DCTSIZE*4] = dcval; | |
193 wsptr[DCTSIZE*5] = dcval; | |
194 wsptr[DCTSIZE*6] = dcval; | |
195 wsptr[DCTSIZE*7] = dcval; | |
196 | |
197 inptr++; /* advance pointers to next column */ | |
198 quantptr++; | |
199 wsptr++; | |
200 continue; | |
201 } | |
202 | |
203 /* Even part: reverse the even part of the forward DCT. */ | |
204 /* The rotator is sqrt(2)*c(-6). */ | |
205 | |
206 z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); | |
207 z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); | |
208 | |
209 z1 = MULTIPLY(z2 + z3, FIX_0_541196100); | |
210 tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065); | |
211 tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865); | |
212 | |
213 z2 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); | |
214 z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); | |
215 | |
216 tmp0 = (z2 + z3) << CONST_BITS; | |
217 tmp1 = (z2 - z3) << CONST_BITS; | |
218 | |
219 tmp10 = tmp0 + tmp3; | |
220 tmp13 = tmp0 - tmp3; | |
221 tmp11 = tmp1 + tmp2; | |
222 tmp12 = tmp1 - tmp2; | |
223 | |
224 /* Odd part per figure 8; the matrix is unitary and hence its | |
225 * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. | |
226 */ | |
227 | |
228 tmp0 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); | |
229 tmp1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); | |
230 tmp2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); | |
231 tmp3 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); | |
232 | |
233 z1 = tmp0 + tmp3; | |
234 z2 = tmp1 + tmp2; | |
235 z3 = tmp0 + tmp2; | |
236 z4 = tmp1 + tmp3; | |
237 z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */ | |
238 | |
239 tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */ | |
240 tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */ | |
241 tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */ | |
242 tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */ | |
243 z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */ | |
244 z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */ | |
245 z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */ | |
246 z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */ | |
247 | |
248 z3 += z5; | |
249 z4 += z5; | |
250 | |
251 tmp0 += z1 + z3; | |
252 tmp1 += z2 + z4; | |
253 tmp2 += z2 + z3; | |
254 tmp3 += z1 + z4; | |
255 | |
256 /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ | |
257 | |
258 wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp3, CONST_BITS-PASS1_BITS); | |
259 wsptr[DCTSIZE*7] = (int) DESCALE(tmp10 - tmp3, CONST_BITS-PASS1_BITS); | |
260 wsptr[DCTSIZE*1] = (int) DESCALE(tmp11 + tmp2, CONST_BITS-PASS1_BITS); | |
261 wsptr[DCTSIZE*6] = (int) DESCALE(tmp11 - tmp2, CONST_BITS-PASS1_BITS); | |
262 wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 + tmp1, CONST_BITS-PASS1_BITS); | |
263 wsptr[DCTSIZE*5] = (int) DESCALE(tmp12 - tmp1, CONST_BITS-PASS1_BITS); | |
264 wsptr[DCTSIZE*3] = (int) DESCALE(tmp13 + tmp0, CONST_BITS-PASS1_BITS); | |
265 wsptr[DCTSIZE*4] = (int) DESCALE(tmp13 - tmp0, CONST_BITS-PASS1_BITS); | |
266 | |
267 inptr++; /* advance pointers to next column */ | |
268 quantptr++; | |
269 wsptr++; | |
270 } | |
271 | |
272 /* Pass 2: process rows from work array, store into output array. */ | |
273 /* Note that we must descale the results by a factor of 8 == 2**3, */ | |
274 /* and also undo the PASS1_BITS scaling. */ | |
275 | |
276 wsptr = workspace; | |
277 for (ctr = 0; ctr < DCTSIZE; ctr++) { | |
278 outptr = output_buf[ctr] + output_col; | |
279 /* Rows of zeroes can be exploited in the same way as we did with columns. | |
280 * However, the column calculation has created many nonzero AC terms, so | |
281 * the simplification applies less often (typically 5% to 10% of the time). | |
282 * On machines with very fast multiplication, it's possible that the | |
283 * test takes more time than it's worth. In that case this section | |
284 * may be commented out. | |
285 */ | |
286 | |
287 #ifndef NO_ZERO_ROW_TEST | |
288 if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 && | |
289 wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) { | |
290 /* AC terms all zero */ | |
291 JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3) | |
292 & RANGE_MASK]; | |
293 | |
294 outptr[0] = dcval; | |
295 outptr[1] = dcval; | |
296 outptr[2] = dcval; | |
297 outptr[3] = dcval; | |
298 outptr[4] = dcval; | |
299 outptr[5] = dcval; | |
300 outptr[6] = dcval; | |
301 outptr[7] = dcval; | |
302 | |
303 wsptr += DCTSIZE; /* advance pointer to next row */ | |
304 continue; | |
305 } | |
306 #endif | |
307 | |
308 /* Even part: reverse the even part of the forward DCT. */ | |
309 /* The rotator is sqrt(2)*c(-6). */ | |
310 | |
311 z2 = (INT32) wsptr[2]; | |
312 z3 = (INT32) wsptr[6]; | |
313 | |
314 z1 = MULTIPLY(z2 + z3, FIX_0_541196100); | |
315 tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065); | |
316 tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865); | |
317 | |
318 tmp0 = ((INT32) wsptr[0] + (INT32) wsptr[4]) << CONST_BITS; | |
319 tmp1 = ((INT32) wsptr[0] - (INT32) wsptr[4]) << CONST_BITS; | |
320 | |
321 tmp10 = tmp0 + tmp3; | |
322 tmp13 = tmp0 - tmp3; | |
323 tmp11 = tmp1 + tmp2; | |
324 tmp12 = tmp1 - tmp2; | |
325 | |
326 /* Odd part per figure 8; the matrix is unitary and hence its | |
327 * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. | |
328 */ | |
329 | |
330 tmp0 = (INT32) wsptr[7]; | |
331 tmp1 = (INT32) wsptr[5]; | |
332 tmp2 = (INT32) wsptr[3]; | |
333 tmp3 = (INT32) wsptr[1]; | |
334 | |
335 z1 = tmp0 + tmp3; | |
336 z2 = tmp1 + tmp2; | |
337 z3 = tmp0 + tmp2; | |
338 z4 = tmp1 + tmp3; | |
339 z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */ | |
340 | |
341 tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */ | |
342 tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */ | |
343 tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */ | |
344 tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */ | |
345 z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */ | |
346 z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */ | |
347 z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */ | |
348 z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */ | |
349 | |
350 z3 += z5; | |
351 z4 += z5; | |
352 | |
353 tmp0 += z1 + z3; | |
354 tmp1 += z2 + z4; | |
355 tmp2 += z2 + z3; | |
356 tmp3 += z1 + z4; | |
357 | |
358 /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ | |
359 | |
360 outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp3, | |
361 CONST_BITS+PASS1_BITS+3) | |
362 & RANGE_MASK]; | |
363 outptr[7] = range_limit[(int) DESCALE(tmp10 - tmp3, | |
364 CONST_BITS+PASS1_BITS+3) | |
365 & RANGE_MASK]; | |
366 outptr[1] = range_limit[(int) DESCALE(tmp11 + tmp2, | |
367 CONST_BITS+PASS1_BITS+3) | |
368 & RANGE_MASK]; | |
369 outptr[6] = range_limit[(int) DESCALE(tmp11 - tmp2, | |
370 CONST_BITS+PASS1_BITS+3) | |
371 & RANGE_MASK]; | |
372 outptr[2] = range_limit[(int) DESCALE(tmp12 + tmp1, | |
373 CONST_BITS+PASS1_BITS+3) | |
374 & RANGE_MASK]; | |
375 outptr[5] = range_limit[(int) DESCALE(tmp12 - tmp1, | |
376 CONST_BITS+PASS1_BITS+3) | |
377 & RANGE_MASK]; | |
378 outptr[3] = range_limit[(int) DESCALE(tmp13 + tmp0, | |
379 CONST_BITS+PASS1_BITS+3) | |
380 & RANGE_MASK]; | |
381 outptr[4] = range_limit[(int) DESCALE(tmp13 - tmp0, | |
382 CONST_BITS+PASS1_BITS+3) | |
383 & RANGE_MASK]; | |
384 | |
385 wsptr += DCTSIZE; /* advance pointer to next row */ | |
386 } | |
387 } | |
388 | |
389 #endif /* DCT_ISLOW_SUPPORTED */ | |
OLD | NEW |