OLD | NEW |
| (Empty) |
1 /* | |
2 * jidctflt.c | |
3 * | |
4 * Copyright (C) 1994-1998, Thomas G. Lane. | |
5 * This file is part of the Independent JPEG Group's software. | |
6 * For conditions of distribution and use, see the accompanying README file. | |
7 * | |
8 * This file contains a floating-point implementation of the | |
9 * inverse DCT (Discrete Cosine Transform). In the IJG code, this routine | |
10 * must also perform dequantization of the input coefficients. | |
11 * | |
12 * This implementation should be more accurate than either of the integer | |
13 * IDCT implementations. However, it may not give the same results on all | |
14 * machines because of differences in roundoff behavior. Speed will depend | |
15 * on the hardware's floating point capacity. | |
16 * | |
17 * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT | |
18 * on each row (or vice versa, but it's more convenient to emit a row at | |
19 * a time). Direct algorithms are also available, but they are much more | |
20 * complex and seem not to be any faster when reduced to code. | |
21 * | |
22 * This implementation is based on Arai, Agui, and Nakajima's algorithm for | |
23 * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in | |
24 * Japanese, but the algorithm is described in the Pennebaker & Mitchell | |
25 * JPEG textbook (see REFERENCES section in file README). The following code | |
26 * is based directly on figure 4-8 in P&M. | |
27 * While an 8-point DCT cannot be done in less than 11 multiplies, it is | |
28 * possible to arrange the computation so that many of the multiplies are | |
29 * simple scalings of the final outputs. These multiplies can then be | |
30 * folded into the multiplications or divisions by the JPEG quantization | |
31 * table entries. The AA&N method leaves only 5 multiplies and 29 adds | |
32 * to be done in the DCT itself. | |
33 * The primary disadvantage of this method is that with a fixed-point | |
34 * implementation, accuracy is lost due to imprecise representation of the | |
35 * scaled quantization values. However, that problem does not arise if | |
36 * we use floating point arithmetic. | |
37 */ | |
38 | |
39 #define JPEG_INTERNALS | |
40 #include "jinclude.h" | |
41 #include "jpeglib.h" | |
42 #include "jdct.h" /* Private declarations for DCT subsystem */ | |
43 | |
44 #ifdef DCT_FLOAT_SUPPORTED | |
45 | |
46 | |
47 /* | |
48 * This module is specialized to the case DCTSIZE = 8. | |
49 */ | |
50 | |
51 #if DCTSIZE != 8 | |
52 Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ | |
53 #endif | |
54 | |
55 | |
56 /* Dequantize a coefficient by multiplying it by the multiplier-table | |
57 * entry; produce a float result. | |
58 */ | |
59 | |
60 #define DEQUANTIZE(coef,quantval) (((FAST_FLOAT) (coef)) * (quantval)) | |
61 | |
62 | |
63 /* | |
64 * Perform dequantization and inverse DCT on one block of coefficients. | |
65 */ | |
66 | |
67 GLOBAL(void) | |
68 jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr, | |
69 JCOEFPTR coef_block, | |
70 JSAMPARRAY output_buf, JDIMENSION output_col) | |
71 { | |
72 FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; | |
73 FAST_FLOAT tmp10, tmp11, tmp12, tmp13; | |
74 FAST_FLOAT z5, z10, z11, z12, z13; | |
75 JCOEFPTR inptr; | |
76 FLOAT_MULT_TYPE * quantptr; | |
77 FAST_FLOAT * wsptr; | |
78 JSAMPROW outptr; | |
79 JSAMPLE *range_limit = IDCT_range_limit(cinfo); | |
80 int ctr; | |
81 FAST_FLOAT workspace[DCTSIZE2]; /* buffers data between passes */ | |
82 SHIFT_TEMPS | |
83 | |
84 /* Pass 1: process columns from input, store into work array. */ | |
85 | |
86 inptr = coef_block; | |
87 quantptr = (FLOAT_MULT_TYPE *) compptr->dct_table; | |
88 wsptr = workspace; | |
89 for (ctr = DCTSIZE; ctr > 0; ctr--) { | |
90 /* Due to quantization, we will usually find that many of the input | |
91 * coefficients are zero, especially the AC terms. We can exploit this | |
92 * by short-circuiting the IDCT calculation for any column in which all | |
93 * the AC terms are zero. In that case each output is equal to the | |
94 * DC coefficient (with scale factor as needed). | |
95 * With typical images and quantization tables, half or more of the | |
96 * column DCT calculations can be simplified this way. | |
97 */ | |
98 | |
99 if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 && | |
100 inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 && | |
101 inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 && | |
102 inptr[DCTSIZE*7] == 0) { | |
103 /* AC terms all zero */ | |
104 FAST_FLOAT dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); | |
105 | |
106 wsptr[DCTSIZE*0] = dcval; | |
107 wsptr[DCTSIZE*1] = dcval; | |
108 wsptr[DCTSIZE*2] = dcval; | |
109 wsptr[DCTSIZE*3] = dcval; | |
110 wsptr[DCTSIZE*4] = dcval; | |
111 wsptr[DCTSIZE*5] = dcval; | |
112 wsptr[DCTSIZE*6] = dcval; | |
113 wsptr[DCTSIZE*7] = dcval; | |
114 | |
115 inptr++; /* advance pointers to next column */ | |
116 quantptr++; | |
117 wsptr++; | |
118 continue; | |
119 } | |
120 | |
121 /* Even part */ | |
122 | |
123 tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); | |
124 tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); | |
125 tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); | |
126 tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); | |
127 | |
128 tmp10 = tmp0 + tmp2; /* phase 3 */ | |
129 tmp11 = tmp0 - tmp2; | |
130 | |
131 tmp13 = tmp1 + tmp3; /* phases 5-3 */ | |
132 tmp12 = (tmp1 - tmp3) * ((FAST_FLOAT) 1.414213562) - tmp13; /* 2*c4 */ | |
133 | |
134 tmp0 = tmp10 + tmp13; /* phase 2 */ | |
135 tmp3 = tmp10 - tmp13; | |
136 tmp1 = tmp11 + tmp12; | |
137 tmp2 = tmp11 - tmp12; | |
138 | |
139 /* Odd part */ | |
140 | |
141 tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); | |
142 tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); | |
143 tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); | |
144 tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); | |
145 | |
146 z13 = tmp6 + tmp5; /* phase 6 */ | |
147 z10 = tmp6 - tmp5; | |
148 z11 = tmp4 + tmp7; | |
149 z12 = tmp4 - tmp7; | |
150 | |
151 tmp7 = z11 + z13; /* phase 5 */ | |
152 tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); /* 2*c4 */ | |
153 | |
154 z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */ | |
155 tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */ | |
156 tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */ | |
157 | |
158 tmp6 = tmp12 - tmp7; /* phase 2 */ | |
159 tmp5 = tmp11 - tmp6; | |
160 tmp4 = tmp10 + tmp5; | |
161 | |
162 wsptr[DCTSIZE*0] = tmp0 + tmp7; | |
163 wsptr[DCTSIZE*7] = tmp0 - tmp7; | |
164 wsptr[DCTSIZE*1] = tmp1 + tmp6; | |
165 wsptr[DCTSIZE*6] = tmp1 - tmp6; | |
166 wsptr[DCTSIZE*2] = tmp2 + tmp5; | |
167 wsptr[DCTSIZE*5] = tmp2 - tmp5; | |
168 wsptr[DCTSIZE*4] = tmp3 + tmp4; | |
169 wsptr[DCTSIZE*3] = tmp3 - tmp4; | |
170 | |
171 inptr++; /* advance pointers to next column */ | |
172 quantptr++; | |
173 wsptr++; | |
174 } | |
175 | |
176 /* Pass 2: process rows from work array, store into output array. */ | |
177 /* Note that we must descale the results by a factor of 8 == 2**3. */ | |
178 | |
179 wsptr = workspace; | |
180 for (ctr = 0; ctr < DCTSIZE; ctr++) { | |
181 outptr = output_buf[ctr] + output_col; | |
182 /* Rows of zeroes can be exploited in the same way as we did with columns. | |
183 * However, the column calculation has created many nonzero AC terms, so | |
184 * the simplification applies less often (typically 5% to 10% of the time). | |
185 * And testing floats for zero is relatively expensive, so we don't bother. | |
186 */ | |
187 | |
188 /* Even part */ | |
189 | |
190 tmp10 = wsptr[0] + wsptr[4]; | |
191 tmp11 = wsptr[0] - wsptr[4]; | |
192 | |
193 tmp13 = wsptr[2] + wsptr[6]; | |
194 tmp12 = (wsptr[2] - wsptr[6]) * ((FAST_FLOAT) 1.414213562) - tmp13; | |
195 | |
196 tmp0 = tmp10 + tmp13; | |
197 tmp3 = tmp10 - tmp13; | |
198 tmp1 = tmp11 + tmp12; | |
199 tmp2 = tmp11 - tmp12; | |
200 | |
201 /* Odd part */ | |
202 | |
203 z13 = wsptr[5] + wsptr[3]; | |
204 z10 = wsptr[5] - wsptr[3]; | |
205 z11 = wsptr[1] + wsptr[7]; | |
206 z12 = wsptr[1] - wsptr[7]; | |
207 | |
208 tmp7 = z11 + z13; | |
209 tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); | |
210 | |
211 z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */ | |
212 tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */ | |
213 tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */ | |
214 | |
215 tmp6 = tmp12 - tmp7; | |
216 tmp5 = tmp11 - tmp6; | |
217 tmp4 = tmp10 + tmp5; | |
218 | |
219 /* Final output stage: scale down by a factor of 8 and range-limit */ | |
220 | |
221 outptr[0] = range_limit[(int) DESCALE((INT32) (tmp0 + tmp7), 3) | |
222 & RANGE_MASK]; | |
223 outptr[7] = range_limit[(int) DESCALE((INT32) (tmp0 - tmp7), 3) | |
224 & RANGE_MASK]; | |
225 outptr[1] = range_limit[(int) DESCALE((INT32) (tmp1 + tmp6), 3) | |
226 & RANGE_MASK]; | |
227 outptr[6] = range_limit[(int) DESCALE((INT32) (tmp1 - tmp6), 3) | |
228 & RANGE_MASK]; | |
229 outptr[2] = range_limit[(int) DESCALE((INT32) (tmp2 + tmp5), 3) | |
230 & RANGE_MASK]; | |
231 outptr[5] = range_limit[(int) DESCALE((INT32) (tmp2 - tmp5), 3) | |
232 & RANGE_MASK]; | |
233 outptr[4] = range_limit[(int) DESCALE((INT32) (tmp3 + tmp4), 3) | |
234 & RANGE_MASK]; | |
235 outptr[3] = range_limit[(int) DESCALE((INT32) (tmp3 - tmp4), 3) | |
236 & RANGE_MASK]; | |
237 | |
238 wsptr += DCTSIZE; /* advance pointer to next row */ | |
239 } | |
240 } | |
241 | |
242 #endif /* DCT_FLOAT_SUPPORTED */ | |
OLD | NEW |