OLD | NEW |
| (Empty) |
1 /* | |
2 * jdsample.c | |
3 * | |
4 * Copyright (C) 1991-1996, Thomas G. Lane. | |
5 * This file is part of the Independent JPEG Group's software. | |
6 * For conditions of distribution and use, see the accompanying README file. | |
7 * | |
8 * This file contains upsampling routines. | |
9 * | |
10 * Upsampling input data is counted in "row groups". A row group | |
11 * is defined to be (v_samp_factor * DCT_scaled_size / min_DCT_scaled_size) | |
12 * sample rows of each component. Upsampling will normally produce | |
13 * max_v_samp_factor pixel rows from each row group (but this could vary | |
14 * if the upsampler is applying a scale factor of its own). | |
15 * | |
16 * An excellent reference for image resampling is | |
17 * Digital Image Warping, George Wolberg, 1990. | |
18 * Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7. | |
19 */ | |
20 | |
21 #define JPEG_INTERNALS | |
22 #include "jinclude.h" | |
23 #include "jpeglib.h" | |
24 | |
25 | |
26 /* Pointer to routine to upsample a single component */ | |
27 typedef JMETHOD(void, upsample1_ptr, | |
28 (j_decompress_ptr cinfo, jpeg_component_info * compptr, | |
29 JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)); | |
30 | |
31 /* Private subobject */ | |
32 | |
33 typedef struct { | |
34 struct jpeg_upsampler pub; /* public fields */ | |
35 | |
36 /* Color conversion buffer. When using separate upsampling and color | |
37 * conversion steps, this buffer holds one upsampled row group until it | |
38 * has been color converted and output. | |
39 * Note: we do not allocate any storage for component(s) which are full-size, | |
40 * ie do not need rescaling. The corresponding entry of color_buf[] is | |
41 * simply set to point to the input data array, thereby avoiding copying. | |
42 */ | |
43 JSAMPARRAY color_buf[MAX_COMPONENTS]; | |
44 | |
45 /* Per-component upsampling method pointers */ | |
46 upsample1_ptr methods[MAX_COMPONENTS]; | |
47 | |
48 int next_row_out; /* counts rows emitted from color_buf */ | |
49 JDIMENSION rows_to_go; /* counts rows remaining in image */ | |
50 | |
51 /* Height of an input row group for each component. */ | |
52 int rowgroup_height[MAX_COMPONENTS]; | |
53 | |
54 /* These arrays save pixel expansion factors so that int_expand need not | |
55 * recompute them each time. They are unused for other upsampling methods. | |
56 */ | |
57 UINT8 h_expand[MAX_COMPONENTS]; | |
58 UINT8 v_expand[MAX_COMPONENTS]; | |
59 } my_upsampler; | |
60 | |
61 typedef my_upsampler * my_upsample_ptr; | |
62 | |
63 | |
64 /* | |
65 * Initialize for an upsampling pass. | |
66 */ | |
67 | |
68 METHODDEF(void) | |
69 start_pass_upsample (j_decompress_ptr cinfo) | |
70 { | |
71 my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; | |
72 | |
73 /* Mark the conversion buffer empty */ | |
74 upsample->next_row_out = cinfo->max_v_samp_factor; | |
75 /* Initialize total-height counter for detecting bottom of image */ | |
76 upsample->rows_to_go = cinfo->output_height; | |
77 } | |
78 | |
79 | |
80 /* | |
81 * Control routine to do upsampling (and color conversion). | |
82 * | |
83 * In this version we upsample each component independently. | |
84 * We upsample one row group into the conversion buffer, then apply | |
85 * color conversion a row at a time. | |
86 */ | |
87 | |
88 METHODDEF(void) | |
89 sep_upsample (j_decompress_ptr cinfo, | |
90 JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, | |
91 JDIMENSION in_row_groups_avail, | |
92 JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, | |
93 JDIMENSION out_rows_avail) | |
94 { | |
95 my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; | |
96 int ci; | |
97 jpeg_component_info * compptr; | |
98 JDIMENSION num_rows; | |
99 | |
100 /* Fill the conversion buffer, if it's empty */ | |
101 if (upsample->next_row_out >= cinfo->max_v_samp_factor) { | |
102 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | |
103 ci++, compptr++) { | |
104 /* Invoke per-component upsample method. Notice we pass a POINTER | |
105 * to color_buf[ci], so that fullsize_upsample can change it. | |
106 */ | |
107 (*upsample->methods[ci]) (cinfo, compptr, | |
108 input_buf[ci] + (*in_row_group_ctr * upsample->rowgroup_height[ci]), | |
109 upsample->color_buf + ci); | |
110 } | |
111 upsample->next_row_out = 0; | |
112 } | |
113 | |
114 /* Color-convert and emit rows */ | |
115 | |
116 /* How many we have in the buffer: */ | |
117 num_rows = (JDIMENSION) (cinfo->max_v_samp_factor - upsample->next_row_out); | |
118 /* Not more than the distance to the end of the image. Need this test | |
119 * in case the image height is not a multiple of max_v_samp_factor: | |
120 */ | |
121 if (num_rows > upsample->rows_to_go) | |
122 num_rows = upsample->rows_to_go; | |
123 /* And not more than what the client can accept: */ | |
124 out_rows_avail -= *out_row_ctr; | |
125 if (num_rows > out_rows_avail) | |
126 num_rows = out_rows_avail; | |
127 | |
128 (*cinfo->cconvert->color_convert) (cinfo, upsample->color_buf, | |
129 (JDIMENSION) upsample->next_row_out, | |
130 output_buf + *out_row_ctr, | |
131 (int) num_rows); | |
132 | |
133 /* Adjust counts */ | |
134 *out_row_ctr += num_rows; | |
135 upsample->rows_to_go -= num_rows; | |
136 upsample->next_row_out += num_rows; | |
137 /* When the buffer is emptied, declare this input row group consumed */ | |
138 if (upsample->next_row_out >= cinfo->max_v_samp_factor) | |
139 (*in_row_group_ctr)++; | |
140 } | |
141 | |
142 | |
143 /* | |
144 * These are the routines invoked by sep_upsample to upsample pixel values | |
145 * of a single component. One row group is processed per call. | |
146 */ | |
147 | |
148 | |
149 /* | |
150 * For full-size components, we just make color_buf[ci] point at the | |
151 * input buffer, and thus avoid copying any data. Note that this is | |
152 * safe only because sep_upsample doesn't declare the input row group | |
153 * "consumed" until we are done color converting and emitting it. | |
154 */ | |
155 | |
156 METHODDEF(void) | |
157 fullsize_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, | |
158 JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) | |
159 { | |
160 *output_data_ptr = input_data; | |
161 } | |
162 | |
163 | |
164 /* | |
165 * This is a no-op version used for "uninteresting" components. | |
166 * These components will not be referenced by color conversion. | |
167 */ | |
168 | |
169 METHODDEF(void) | |
170 noop_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, | |
171 JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) | |
172 { | |
173 *output_data_ptr = NULL; /* safety check */ | |
174 } | |
175 | |
176 | |
177 /* | |
178 * This version handles any integral sampling ratios. | |
179 * This is not used for typical JPEG files, so it need not be fast. | |
180 * Nor, for that matter, is it particularly accurate: the algorithm is | |
181 * simple replication of the input pixel onto the corresponding output | |
182 * pixels. The hi-falutin sampling literature refers to this as a | |
183 * "box filter". A box filter tends to introduce visible artifacts, | |
184 * so if you are actually going to use 3:1 or 4:1 sampling ratios | |
185 * you would be well advised to improve this code. | |
186 */ | |
187 | |
188 METHODDEF(void) | |
189 int_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, | |
190 JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) | |
191 { | |
192 my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; | |
193 JSAMPARRAY output_data = *output_data_ptr; | |
194 register JSAMPROW inptr, outptr; | |
195 register JSAMPLE invalue; | |
196 register int h; | |
197 JSAMPROW outend; | |
198 int h_expand, v_expand; | |
199 int inrow, outrow; | |
200 | |
201 h_expand = upsample->h_expand[compptr->component_index]; | |
202 v_expand = upsample->v_expand[compptr->component_index]; | |
203 | |
204 inrow = outrow = 0; | |
205 while (outrow < cinfo->max_v_samp_factor) { | |
206 /* Generate one output row with proper horizontal expansion */ | |
207 inptr = input_data[inrow]; | |
208 outptr = output_data[outrow]; | |
209 outend = outptr + cinfo->output_width; | |
210 while (outptr < outend) { | |
211 invalue = *inptr++; /* don't need GETJSAMPLE() here */ | |
212 for (h = h_expand; h > 0; h--) { | |
213 *outptr++ = invalue; | |
214 } | |
215 } | |
216 /* Generate any additional output rows by duplicating the first one */ | |
217 if (v_expand > 1) { | |
218 jcopy_sample_rows(output_data, outrow, output_data, outrow+1, | |
219 v_expand-1, cinfo->output_width); | |
220 } | |
221 inrow++; | |
222 outrow += v_expand; | |
223 } | |
224 } | |
225 | |
226 | |
227 /* | |
228 * Fast processing for the common case of 2:1 horizontal and 1:1 vertical. | |
229 * It's still a box filter. | |
230 */ | |
231 | |
232 METHODDEF(void) | |
233 h2v1_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, | |
234 JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) | |
235 { | |
236 JSAMPARRAY output_data = *output_data_ptr; | |
237 register JSAMPROW inptr, outptr; | |
238 register JSAMPLE invalue; | |
239 JSAMPROW outend; | |
240 int inrow; | |
241 | |
242 for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) { | |
243 inptr = input_data[inrow]; | |
244 outptr = output_data[inrow]; | |
245 outend = outptr + cinfo->output_width; | |
246 while (outptr < outend) { | |
247 invalue = *inptr++; /* don't need GETJSAMPLE() here */ | |
248 *outptr++ = invalue; | |
249 *outptr++ = invalue; | |
250 } | |
251 } | |
252 } | |
253 | |
254 | |
255 /* | |
256 * Fast processing for the common case of 2:1 horizontal and 2:1 vertical. | |
257 * It's still a box filter. | |
258 */ | |
259 | |
260 METHODDEF(void) | |
261 h2v2_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, | |
262 JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) | |
263 { | |
264 JSAMPARRAY output_data = *output_data_ptr; | |
265 register JSAMPROW inptr, outptr; | |
266 register JSAMPLE invalue; | |
267 JSAMPROW outend; | |
268 int inrow, outrow; | |
269 | |
270 inrow = outrow = 0; | |
271 while (outrow < cinfo->max_v_samp_factor) { | |
272 inptr = input_data[inrow]; | |
273 outptr = output_data[outrow]; | |
274 outend = outptr + cinfo->output_width; | |
275 while (outptr < outend) { | |
276 invalue = *inptr++; /* don't need GETJSAMPLE() here */ | |
277 *outptr++ = invalue; | |
278 *outptr++ = invalue; | |
279 } | |
280 jcopy_sample_rows(output_data, outrow, output_data, outrow+1, | |
281 1, cinfo->output_width); | |
282 inrow++; | |
283 outrow += 2; | |
284 } | |
285 } | |
286 | |
287 | |
288 /* | |
289 * Fancy processing for the common case of 2:1 horizontal and 1:1 vertical. | |
290 * | |
291 * The upsampling algorithm is linear interpolation between pixel centers, | |
292 * also known as a "triangle filter". This is a good compromise between | |
293 * speed and visual quality. The centers of the output pixels are 1/4 and 3/4 | |
294 * of the way between input pixel centers. | |
295 * | |
296 * A note about the "bias" calculations: when rounding fractional values to | |
297 * integer, we do not want to always round 0.5 up to the next integer. | |
298 * If we did that, we'd introduce a noticeable bias towards larger values. | |
299 * Instead, this code is arranged so that 0.5 will be rounded up or down at | |
300 * alternate pixel locations (a simple ordered dither pattern). | |
301 */ | |
302 | |
303 METHODDEF(void) | |
304 h2v1_fancy_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, | |
305 JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) | |
306 { | |
307 JSAMPARRAY output_data = *output_data_ptr; | |
308 register JSAMPROW inptr, outptr; | |
309 register int invalue; | |
310 register JDIMENSION colctr; | |
311 int inrow; | |
312 | |
313 for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) { | |
314 inptr = input_data[inrow]; | |
315 outptr = output_data[inrow]; | |
316 /* Special case for first column */ | |
317 invalue = GETJSAMPLE(*inptr++); | |
318 *outptr++ = (JSAMPLE) invalue; | |
319 *outptr++ = (JSAMPLE) ((invalue * 3 + GETJSAMPLE(*inptr) + 2) >> 2); | |
320 | |
321 for (colctr = compptr->downsampled_width - 2; colctr > 0; colctr--) { | |
322 /* General case: 3/4 * nearer pixel + 1/4 * further pixel */ | |
323 invalue = GETJSAMPLE(*inptr++) * 3; | |
324 *outptr++ = (JSAMPLE) ((invalue + GETJSAMPLE(inptr[-2]) + 1) >> 2); | |
325 *outptr++ = (JSAMPLE) ((invalue + GETJSAMPLE(*inptr) + 2) >> 2); | |
326 } | |
327 | |
328 /* Special case for last column */ | |
329 invalue = GETJSAMPLE(*inptr); | |
330 *outptr++ = (JSAMPLE) ((invalue * 3 + GETJSAMPLE(inptr[-1]) + 1) >> 2); | |
331 *outptr++ = (JSAMPLE) invalue; | |
332 } | |
333 } | |
334 | |
335 | |
336 /* | |
337 * Fancy processing for the common case of 2:1 horizontal and 2:1 vertical. | |
338 * Again a triangle filter; see comments for h2v1 case, above. | |
339 * | |
340 * It is OK for us to reference the adjacent input rows because we demanded | |
341 * context from the main buffer controller (see initialization code). | |
342 */ | |
343 | |
344 METHODDEF(void) | |
345 h2v2_fancy_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, | |
346 JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) | |
347 { | |
348 JSAMPARRAY output_data = *output_data_ptr; | |
349 register JSAMPROW inptr0, inptr1, outptr; | |
350 #if BITS_IN_JSAMPLE == 8 | |
351 register int thiscolsum, lastcolsum, nextcolsum; | |
352 #else | |
353 register INT32 thiscolsum, lastcolsum, nextcolsum; | |
354 #endif | |
355 register JDIMENSION colctr; | |
356 int inrow, outrow, v; | |
357 | |
358 inrow = outrow = 0; | |
359 while (outrow < cinfo->max_v_samp_factor) { | |
360 for (v = 0; v < 2; v++) { | |
361 /* inptr0 points to nearest input row, inptr1 points to next nearest */ | |
362 inptr0 = input_data[inrow]; | |
363 if (v == 0) /* next nearest is row above */ | |
364 inptr1 = input_data[inrow-1]; | |
365 else /* next nearest is row below */ | |
366 inptr1 = input_data[inrow+1]; | |
367 outptr = output_data[outrow++]; | |
368 | |
369 /* Special case for first column */ | |
370 thiscolsum = GETJSAMPLE(*inptr0++) * 3 + GETJSAMPLE(*inptr1++); | |
371 nextcolsum = GETJSAMPLE(*inptr0++) * 3 + GETJSAMPLE(*inptr1++); | |
372 *outptr++ = (JSAMPLE) ((thiscolsum * 4 + 8) >> 4); | |
373 *outptr++ = (JSAMPLE) ((thiscolsum * 3 + nextcolsum + 7) >> 4); | |
374 lastcolsum = thiscolsum; thiscolsum = nextcolsum; | |
375 | |
376 for (colctr = compptr->downsampled_width - 2; colctr > 0; colctr--) { | |
377 /* General case: 3/4 * nearer pixel + 1/4 * further pixel in each */ | |
378 /* dimension, thus 9/16, 3/16, 3/16, 1/16 overall */ | |
379 nextcolsum = GETJSAMPLE(*inptr0++) * 3 + GETJSAMPLE(*inptr1++); | |
380 *outptr++ = (JSAMPLE) ((thiscolsum * 3 + lastcolsum + 8) >> 4); | |
381 *outptr++ = (JSAMPLE) ((thiscolsum * 3 + nextcolsum + 7) >> 4); | |
382 lastcolsum = thiscolsum; thiscolsum = nextcolsum; | |
383 } | |
384 | |
385 /* Special case for last column */ | |
386 *outptr++ = (JSAMPLE) ((thiscolsum * 3 + lastcolsum + 8) >> 4); | |
387 *outptr++ = (JSAMPLE) ((thiscolsum * 4 + 7) >> 4); | |
388 } | |
389 inrow++; | |
390 } | |
391 } | |
392 | |
393 | |
394 /* | |
395 * Module initialization routine for upsampling. | |
396 */ | |
397 | |
398 GLOBAL(void) | |
399 jinit_upsampler (j_decompress_ptr cinfo) | |
400 { | |
401 my_upsample_ptr upsample; | |
402 int ci; | |
403 jpeg_component_info * compptr; | |
404 boolean need_buffer, do_fancy; | |
405 int h_in_group, v_in_group, h_out_group, v_out_group; | |
406 | |
407 upsample = (my_upsample_ptr) | |
408 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |
409 SIZEOF(my_upsampler)); | |
410 cinfo->upsample = (struct jpeg_upsampler *) upsample; | |
411 upsample->pub.start_pass = start_pass_upsample; | |
412 upsample->pub.upsample = sep_upsample; | |
413 upsample->pub.need_context_rows = FALSE; /* until we find out differently */ | |
414 | |
415 if (cinfo->CCIR601_sampling) /* this isn't supported */ | |
416 ERREXIT(cinfo, JERR_CCIR601_NOTIMPL); | |
417 | |
418 /* jdmainct.c doesn't support context rows when min_DCT_scaled_size = 1, | |
419 * so don't ask for it. | |
420 */ | |
421 do_fancy = cinfo->do_fancy_upsampling && cinfo->min_DCT_scaled_size > 1; | |
422 | |
423 /* Verify we can handle the sampling factors, select per-component methods, | |
424 * and create storage as needed. | |
425 */ | |
426 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | |
427 ci++, compptr++) { | |
428 /* Compute size of an "input group" after IDCT scaling. This many samples | |
429 * are to be converted to max_h_samp_factor * max_v_samp_factor pixels. | |
430 */ | |
431 h_in_group = (compptr->h_samp_factor * compptr->DCT_scaled_size) / | |
432 cinfo->min_DCT_scaled_size; | |
433 v_in_group = (compptr->v_samp_factor * compptr->DCT_scaled_size) / | |
434 cinfo->min_DCT_scaled_size; | |
435 h_out_group = cinfo->max_h_samp_factor; | |
436 v_out_group = cinfo->max_v_samp_factor; | |
437 upsample->rowgroup_height[ci] = v_in_group; /* save for use later */ | |
438 need_buffer = TRUE; | |
439 if (! compptr->component_needed) { | |
440 /* Don't bother to upsample an uninteresting component. */ | |
441 upsample->methods[ci] = noop_upsample; | |
442 need_buffer = FALSE; | |
443 } else if (h_in_group == h_out_group && v_in_group == v_out_group) { | |
444 /* Fullsize components can be processed without any work. */ | |
445 upsample->methods[ci] = fullsize_upsample; | |
446 need_buffer = FALSE; | |
447 } else if (h_in_group * 2 == h_out_group && | |
448 v_in_group == v_out_group) { | |
449 /* Special cases for 2h1v upsampling */ | |
450 if (do_fancy && compptr->downsampled_width > 2) | |
451 upsample->methods[ci] = h2v1_fancy_upsample; | |
452 else | |
453 upsample->methods[ci] = h2v1_upsample; | |
454 } else if (h_in_group * 2 == h_out_group && | |
455 v_in_group * 2 == v_out_group) { | |
456 /* Special cases for 2h2v upsampling */ | |
457 if (do_fancy && compptr->downsampled_width > 2) { | |
458 upsample->methods[ci] = h2v2_fancy_upsample; | |
459 upsample->pub.need_context_rows = TRUE; | |
460 } else | |
461 upsample->methods[ci] = h2v2_upsample; | |
462 } else if ((h_out_group % h_in_group) == 0 && | |
463 (v_out_group % v_in_group) == 0) { | |
464 /* Generic integral-factors upsampling method */ | |
465 upsample->methods[ci] = int_upsample; | |
466 upsample->h_expand[ci] = (UINT8) (h_out_group / h_in_group); | |
467 upsample->v_expand[ci] = (UINT8) (v_out_group / v_in_group); | |
468 } else | |
469 ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL); | |
470 if (need_buffer) { | |
471 upsample->color_buf[ci] = (*cinfo->mem->alloc_sarray) | |
472 ((j_common_ptr) cinfo, JPOOL_IMAGE, | |
473 (JDIMENSION) jround_up((long) cinfo->output_width, | |
474 (long) cinfo->max_h_samp_factor), | |
475 (JDIMENSION) cinfo->max_v_samp_factor); | |
476 } | |
477 } | |
478 } | |
OLD | NEW |