OLD | NEW |
| (Empty) |
1 /* | |
2 * jdphuff.c | |
3 * | |
4 * Copyright (C) 1995-1997, Thomas G. Lane. | |
5 * This file is part of the Independent JPEG Group's software. | |
6 * For conditions of distribution and use, see the accompanying README file. | |
7 * | |
8 * This file contains Huffman entropy decoding routines for progressive JPEG. | |
9 * | |
10 * Much of the complexity here has to do with supporting input suspension. | |
11 * If the data source module demands suspension, we want to be able to back | |
12 * up to the start of the current MCU. To do this, we copy state variables | |
13 * into local working storage, and update them back to the permanent | |
14 * storage only upon successful completion of an MCU. | |
15 */ | |
16 | |
17 #define JPEG_INTERNALS | |
18 #include "jinclude.h" | |
19 #include "jpeglib.h" | |
20 #include "jdhuff.h" /* Declarations shared with jdhuff.c */ | |
21 | |
22 | |
23 #ifdef D_PROGRESSIVE_SUPPORTED | |
24 | |
25 /* | |
26 * Expanded entropy decoder object for progressive Huffman decoding. | |
27 * | |
28 * The savable_state subrecord contains fields that change within an MCU, | |
29 * but must not be updated permanently until we complete the MCU. | |
30 */ | |
31 | |
32 typedef struct { | |
33 unsigned int EOBRUN; /* remaining EOBs in EOBRUN */ | |
34 int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ | |
35 } savable_state; | |
36 | |
37 /* This macro is to work around compilers with missing or broken | |
38 * structure assignment. You'll need to fix this code if you have | |
39 * such a compiler and you change MAX_COMPS_IN_SCAN. | |
40 */ | |
41 | |
42 #ifndef NO_STRUCT_ASSIGN | |
43 #define ASSIGN_STATE(dest,src) ((dest) = (src)) | |
44 #else | |
45 #if MAX_COMPS_IN_SCAN == 4 | |
46 #define ASSIGN_STATE(dest,src) \ | |
47 ((dest).EOBRUN = (src).EOBRUN, \ | |
48 (dest).last_dc_val[0] = (src).last_dc_val[0], \ | |
49 (dest).last_dc_val[1] = (src).last_dc_val[1], \ | |
50 (dest).last_dc_val[2] = (src).last_dc_val[2], \ | |
51 (dest).last_dc_val[3] = (src).last_dc_val[3]) | |
52 #endif | |
53 #endif | |
54 | |
55 | |
56 typedef struct { | |
57 struct jpeg_entropy_decoder pub; /* public fields */ | |
58 | |
59 /* These fields are loaded into local variables at start of each MCU. | |
60 * In case of suspension, we exit WITHOUT updating them. | |
61 */ | |
62 bitread_perm_state bitstate; /* Bit buffer at start of MCU */ | |
63 savable_state saved; /* Other state at start of MCU */ | |
64 | |
65 /* These fields are NOT loaded into local working state. */ | |
66 unsigned int restarts_to_go; /* MCUs left in this restart interval */ | |
67 | |
68 /* Pointers to derived tables (these workspaces have image lifespan) */ | |
69 d_derived_tbl * derived_tbls[NUM_HUFF_TBLS]; | |
70 | |
71 d_derived_tbl * ac_derived_tbl; /* active table during an AC scan */ | |
72 } phuff_entropy_decoder; | |
73 | |
74 typedef phuff_entropy_decoder * phuff_entropy_ptr; | |
75 | |
76 /* Forward declarations */ | |
77 METHODDEF(boolean) decode_mcu_DC_first JPP((j_decompress_ptr cinfo, | |
78 JBLOCKROW *MCU_data)); | |
79 METHODDEF(boolean) decode_mcu_AC_first JPP((j_decompress_ptr cinfo, | |
80 JBLOCKROW *MCU_data)); | |
81 METHODDEF(boolean) decode_mcu_DC_refine JPP((j_decompress_ptr cinfo, | |
82 JBLOCKROW *MCU_data)); | |
83 METHODDEF(boolean) decode_mcu_AC_refine JPP((j_decompress_ptr cinfo, | |
84 JBLOCKROW *MCU_data)); | |
85 | |
86 | |
87 /* | |
88 * Initialize for a Huffman-compressed scan. | |
89 */ | |
90 | |
91 METHODDEF(void) | |
92 start_pass_phuff_decoder (j_decompress_ptr cinfo) | |
93 { | |
94 phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; | |
95 boolean is_DC_band, bad; | |
96 int ci, coefi, tbl; | |
97 int *coef_bit_ptr; | |
98 jpeg_component_info * compptr; | |
99 | |
100 is_DC_band = (cinfo->Ss == 0); | |
101 | |
102 /* Validate scan parameters */ | |
103 bad = FALSE; | |
104 if (is_DC_band) { | |
105 if (cinfo->Se != 0) | |
106 bad = TRUE; | |
107 } else { | |
108 /* need not check Ss/Se < 0 since they came from unsigned bytes */ | |
109 if (cinfo->Ss > cinfo->Se || cinfo->Se >= DCTSIZE2) | |
110 bad = TRUE; | |
111 /* AC scans may have only one component */ | |
112 if (cinfo->comps_in_scan != 1) | |
113 bad = TRUE; | |
114 } | |
115 if (cinfo->Ah != 0) { | |
116 /* Successive approximation refinement scan: must have Al = Ah-1. */ | |
117 if (cinfo->Al != cinfo->Ah-1) | |
118 bad = TRUE; | |
119 } | |
120 if (cinfo->Al > 13) /* need not check for < 0 */ | |
121 bad = TRUE; | |
122 /* Arguably the maximum Al value should be less than 13 for 8-bit precision, | |
123 * but the spec doesn't say so, and we try to be liberal about what we | |
124 * accept. Note: large Al values could result in out-of-range DC | |
125 * coefficients during early scans, leading to bizarre displays due to | |
126 * overflows in the IDCT math. But we won't crash. | |
127 */ | |
128 if (bad) | |
129 ERREXIT4(cinfo, JERR_BAD_PROGRESSION, | |
130 cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al); | |
131 /* Update progression status, and verify that scan order is legal. | |
132 * Note that inter-scan inconsistencies are treated as warnings | |
133 * not fatal errors ... not clear if this is right way to behave. | |
134 */ | |
135 for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | |
136 int cindex = cinfo->cur_comp_info[ci]->component_index; | |
137 coef_bit_ptr = & cinfo->coef_bits[cindex][0]; | |
138 if (!is_DC_band && coef_bit_ptr[0] < 0) /* AC without prior DC scan */ | |
139 WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0); | |
140 for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) { | |
141 int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi]; | |
142 if (cinfo->Ah != expected) | |
143 WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi); | |
144 coef_bit_ptr[coefi] = cinfo->Al; | |
145 } | |
146 } | |
147 | |
148 /* Select MCU decoding routine */ | |
149 if (cinfo->Ah == 0) { | |
150 if (is_DC_band) | |
151 entropy->pub.decode_mcu = decode_mcu_DC_first; | |
152 else | |
153 entropy->pub.decode_mcu = decode_mcu_AC_first; | |
154 } else { | |
155 if (is_DC_band) | |
156 entropy->pub.decode_mcu = decode_mcu_DC_refine; | |
157 else | |
158 entropy->pub.decode_mcu = decode_mcu_AC_refine; | |
159 } | |
160 | |
161 for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | |
162 compptr = cinfo->cur_comp_info[ci]; | |
163 /* Make sure requested tables are present, and compute derived tables. | |
164 * We may build same derived table more than once, but it's not expensive. | |
165 */ | |
166 if (is_DC_band) { | |
167 if (cinfo->Ah == 0) { /* DC refinement needs no table */ | |
168 tbl = compptr->dc_tbl_no; | |
169 jpeg_make_d_derived_tbl(cinfo, TRUE, tbl, | |
170 & entropy->derived_tbls[tbl]); | |
171 } | |
172 } else { | |
173 tbl = compptr->ac_tbl_no; | |
174 jpeg_make_d_derived_tbl(cinfo, FALSE, tbl, | |
175 & entropy->derived_tbls[tbl]); | |
176 /* remember the single active table */ | |
177 entropy->ac_derived_tbl = entropy->derived_tbls[tbl]; | |
178 } | |
179 /* Initialize DC predictions to 0 */ | |
180 entropy->saved.last_dc_val[ci] = 0; | |
181 } | |
182 | |
183 /* Initialize bitread state variables */ | |
184 entropy->bitstate.bits_left = 0; | |
185 entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */ | |
186 entropy->pub.insufficient_data = FALSE; | |
187 | |
188 /* Initialize private state variables */ | |
189 entropy->saved.EOBRUN = 0; | |
190 | |
191 /* Initialize restart counter */ | |
192 entropy->restarts_to_go = cinfo->restart_interval; | |
193 } | |
194 | |
195 | |
196 /* | |
197 * Figure F.12: extend sign bit. | |
198 * On some machines, a shift and add will be faster than a table lookup. | |
199 */ | |
200 | |
201 #ifdef AVOID_TABLES | |
202 | |
203 #define HUFF_EXTEND(x,s) ((x) < (1<<((s)-1)) ? (x) + (((-1)<<(s)) + 1) : (x)) | |
204 | |
205 #else | |
206 | |
207 #define HUFF_EXTEND(x,s) ((x) < extend_test[s] ? (x) + extend_offset[s] : (x)) | |
208 | |
209 static const int extend_test[16] = /* entry n is 2**(n-1) */ | |
210 { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, | |
211 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 }; | |
212 | |
213 static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */ | |
214 { 0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1, | |
215 ((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1, | |
216 ((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1, | |
217 ((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1 }; | |
218 | |
219 #endif /* AVOID_TABLES */ | |
220 | |
221 | |
222 /* | |
223 * Check for a restart marker & resynchronize decoder. | |
224 * Returns FALSE if must suspend. | |
225 */ | |
226 | |
227 LOCAL(boolean) | |
228 process_restart (j_decompress_ptr cinfo) | |
229 { | |
230 phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; | |
231 int ci; | |
232 | |
233 /* Throw away any unused bits remaining in bit buffer; */ | |
234 /* include any full bytes in next_marker's count of discarded bytes */ | |
235 cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8; | |
236 entropy->bitstate.bits_left = 0; | |
237 | |
238 /* Advance past the RSTn marker */ | |
239 if (! (*cinfo->marker->read_restart_marker) (cinfo)) | |
240 return FALSE; | |
241 | |
242 /* Re-initialize DC predictions to 0 */ | |
243 for (ci = 0; ci < cinfo->comps_in_scan; ci++) | |
244 entropy->saved.last_dc_val[ci] = 0; | |
245 /* Re-init EOB run count, too */ | |
246 entropy->saved.EOBRUN = 0; | |
247 | |
248 /* Reset restart counter */ | |
249 entropy->restarts_to_go = cinfo->restart_interval; | |
250 | |
251 /* Reset out-of-data flag, unless read_restart_marker left us smack up | |
252 * against a marker. In that case we will end up treating the next data | |
253 * segment as empty, and we can avoid producing bogus output pixels by | |
254 * leaving the flag set. | |
255 */ | |
256 if (cinfo->unread_marker == 0) | |
257 entropy->pub.insufficient_data = FALSE; | |
258 | |
259 return TRUE; | |
260 } | |
261 | |
262 | |
263 /* | |
264 * Huffman MCU decoding. | |
265 * Each of these routines decodes and returns one MCU's worth of | |
266 * Huffman-compressed coefficients. | |
267 * The coefficients are reordered from zigzag order into natural array order, | |
268 * but are not dequantized. | |
269 * | |
270 * The i'th block of the MCU is stored into the block pointed to by | |
271 * MCU_data[i]. WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER. | |
272 * | |
273 * We return FALSE if data source requested suspension. In that case no | |
274 * changes have been made to permanent state. (Exception: some output | |
275 * coefficients may already have been assigned. This is harmless for | |
276 * spectral selection, since we'll just re-assign them on the next call. | |
277 * Successive approximation AC refinement has to be more careful, however.) | |
278 */ | |
279 | |
280 /* | |
281 * MCU decoding for DC initial scan (either spectral selection, | |
282 * or first pass of successive approximation). | |
283 */ | |
284 | |
285 METHODDEF(boolean) | |
286 decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) | |
287 { | |
288 phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; | |
289 int Al = cinfo->Al; | |
290 register int s, r; | |
291 int blkn, ci; | |
292 JBLOCKROW block; | |
293 BITREAD_STATE_VARS; | |
294 savable_state state; | |
295 d_derived_tbl * tbl; | |
296 jpeg_component_info * compptr; | |
297 | |
298 /* Process restart marker if needed; may have to suspend */ | |
299 if (cinfo->restart_interval) { | |
300 if (entropy->restarts_to_go == 0) | |
301 if (! process_restart(cinfo)) | |
302 return FALSE; | |
303 } | |
304 | |
305 /* If we've run out of data, just leave the MCU set to zeroes. | |
306 * This way, we return uniform gray for the remainder of the segment. | |
307 */ | |
308 if (! entropy->pub.insufficient_data) { | |
309 | |
310 /* Load up working state */ | |
311 BITREAD_LOAD_STATE(cinfo,entropy->bitstate); | |
312 ASSIGN_STATE(state, entropy->saved); | |
313 | |
314 /* Outer loop handles each block in the MCU */ | |
315 | |
316 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { | |
317 block = MCU_data[blkn]; | |
318 ci = cinfo->MCU_membership[blkn]; | |
319 compptr = cinfo->cur_comp_info[ci]; | |
320 tbl = entropy->derived_tbls[compptr->dc_tbl_no]; | |
321 | |
322 /* Decode a single block's worth of coefficients */ | |
323 | |
324 /* Section F.2.2.1: decode the DC coefficient difference */ | |
325 HUFF_DECODE(s, br_state, tbl, return FALSE, label1); | |
326 if (s) { | |
327 CHECK_BIT_BUFFER(br_state, s, return FALSE); | |
328 r = GET_BITS(s); | |
329 s = HUFF_EXTEND(r, s); | |
330 } | |
331 | |
332 /* Convert DC difference to actual value, update last_dc_val */ | |
333 s += state.last_dc_val[ci]; | |
334 state.last_dc_val[ci] = s; | |
335 /* Scale and output the coefficient (assumes jpeg_natural_order[0]=0) */ | |
336 (*block)[0] = (JCOEF) (s << Al); | |
337 } | |
338 | |
339 /* Completed MCU, so update state */ | |
340 BITREAD_SAVE_STATE(cinfo,entropy->bitstate); | |
341 ASSIGN_STATE(entropy->saved, state); | |
342 } | |
343 | |
344 /* Account for restart interval (no-op if not using restarts) */ | |
345 entropy->restarts_to_go--; | |
346 | |
347 return TRUE; | |
348 } | |
349 | |
350 | |
351 /* | |
352 * MCU decoding for AC initial scan (either spectral selection, | |
353 * or first pass of successive approximation). | |
354 */ | |
355 | |
356 METHODDEF(boolean) | |
357 decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) | |
358 { | |
359 phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; | |
360 int Se = cinfo->Se; | |
361 int Al = cinfo->Al; | |
362 register int s, k, r; | |
363 unsigned int EOBRUN; | |
364 JBLOCKROW block; | |
365 BITREAD_STATE_VARS; | |
366 d_derived_tbl * tbl; | |
367 | |
368 /* Process restart marker if needed; may have to suspend */ | |
369 if (cinfo->restart_interval) { | |
370 if (entropy->restarts_to_go == 0) | |
371 if (! process_restart(cinfo)) | |
372 return FALSE; | |
373 } | |
374 | |
375 /* If we've run out of data, just leave the MCU set to zeroes. | |
376 * This way, we return uniform gray for the remainder of the segment. | |
377 */ | |
378 if (! entropy->pub.insufficient_data) { | |
379 | |
380 /* Load up working state. | |
381 * We can avoid loading/saving bitread state if in an EOB run. | |
382 */ | |
383 EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */ | |
384 | |
385 /* There is always only one block per MCU */ | |
386 | |
387 if (EOBRUN > 0) /* if it's a band of zeroes... */ | |
388 EOBRUN--; /* ...process it now (we do nothing) */ | |
389 else { | |
390 BITREAD_LOAD_STATE(cinfo,entropy->bitstate); | |
391 block = MCU_data[0]; | |
392 tbl = entropy->ac_derived_tbl; | |
393 | |
394 for (k = cinfo->Ss; k <= Se; k++) { | |
395 HUFF_DECODE(s, br_state, tbl, return FALSE, label2); | |
396 r = s >> 4; | |
397 s &= 15; | |
398 if (s) { | |
399 k += r; | |
400 CHECK_BIT_BUFFER(br_state, s, return FALSE); | |
401 r = GET_BITS(s); | |
402 s = HUFF_EXTEND(r, s); | |
403 /* Scale and output coefficient in natural (dezigzagged) order */ | |
404 (*block)[jpeg_natural_order[k]] = (JCOEF) (s << Al); | |
405 } else { | |
406 if (r == 15) { /* ZRL */ | |
407 k += 15; /* skip 15 zeroes in band */ | |
408 } else { /* EOBr, run length is 2^r + appended bits */ | |
409 EOBRUN = 1 << r; | |
410 if (r) { /* EOBr, r > 0 */ | |
411 CHECK_BIT_BUFFER(br_state, r, return FALSE); | |
412 r = GET_BITS(r); | |
413 EOBRUN += r; | |
414 } | |
415 EOBRUN--; /* this band is processed at this moment */ | |
416 break; /* force end-of-band */ | |
417 } | |
418 } | |
419 } | |
420 | |
421 BITREAD_SAVE_STATE(cinfo,entropy->bitstate); | |
422 } | |
423 | |
424 /* Completed MCU, so update state */ | |
425 entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */ | |
426 } | |
427 | |
428 /* Account for restart interval (no-op if not using restarts) */ | |
429 entropy->restarts_to_go--; | |
430 | |
431 return TRUE; | |
432 } | |
433 | |
434 | |
435 /* | |
436 * MCU decoding for DC successive approximation refinement scan. | |
437 * Note: we assume such scans can be multi-component, although the spec | |
438 * is not very clear on the point. | |
439 */ | |
440 | |
441 METHODDEF(boolean) | |
442 decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) | |
443 { | |
444 phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; | |
445 int p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */ | |
446 int blkn; | |
447 JBLOCKROW block; | |
448 BITREAD_STATE_VARS; | |
449 | |
450 /* Process restart marker if needed; may have to suspend */ | |
451 if (cinfo->restart_interval) { | |
452 if (entropy->restarts_to_go == 0) | |
453 if (! process_restart(cinfo)) | |
454 return FALSE; | |
455 } | |
456 | |
457 /* Not worth the cycles to check insufficient_data here, | |
458 * since we will not change the data anyway if we read zeroes. | |
459 */ | |
460 | |
461 /* Load up working state */ | |
462 BITREAD_LOAD_STATE(cinfo,entropy->bitstate); | |
463 | |
464 /* Outer loop handles each block in the MCU */ | |
465 | |
466 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { | |
467 block = MCU_data[blkn]; | |
468 | |
469 /* Encoded data is simply the next bit of the two's-complement DC value */ | |
470 CHECK_BIT_BUFFER(br_state, 1, return FALSE); | |
471 if (GET_BITS(1)) | |
472 (*block)[0] |= p1; | |
473 /* Note: since we use |=, repeating the assignment later is safe */ | |
474 } | |
475 | |
476 /* Completed MCU, so update state */ | |
477 BITREAD_SAVE_STATE(cinfo,entropy->bitstate); | |
478 | |
479 /* Account for restart interval (no-op if not using restarts) */ | |
480 entropy->restarts_to_go--; | |
481 | |
482 return TRUE; | |
483 } | |
484 | |
485 | |
486 /* | |
487 * MCU decoding for AC successive approximation refinement scan. | |
488 */ | |
489 | |
490 METHODDEF(boolean) | |
491 decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) | |
492 { | |
493 phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; | |
494 int Se = cinfo->Se; | |
495 int p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */ | |
496 int m1 = (-1) << cinfo->Al; /* -1 in the bit position being coded */ | |
497 register int s, k, r; | |
498 unsigned int EOBRUN; | |
499 JBLOCKROW block; | |
500 JCOEFPTR thiscoef; | |
501 BITREAD_STATE_VARS; | |
502 d_derived_tbl * tbl; | |
503 int num_newnz; | |
504 int newnz_pos[DCTSIZE2]; | |
505 | |
506 /* Process restart marker if needed; may have to suspend */ | |
507 if (cinfo->restart_interval) { | |
508 if (entropy->restarts_to_go == 0) | |
509 if (! process_restart(cinfo)) | |
510 return FALSE; | |
511 } | |
512 | |
513 /* If we've run out of data, don't modify the MCU. | |
514 */ | |
515 if (! entropy->pub.insufficient_data) { | |
516 | |
517 /* Load up working state */ | |
518 BITREAD_LOAD_STATE(cinfo,entropy->bitstate); | |
519 EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */ | |
520 | |
521 /* There is always only one block per MCU */ | |
522 block = MCU_data[0]; | |
523 tbl = entropy->ac_derived_tbl; | |
524 | |
525 /* If we are forced to suspend, we must undo the assignments to any newly | |
526 * nonzero coefficients in the block, because otherwise we'd get confused | |
527 * next time about which coefficients were already nonzero. | |
528 * But we need not undo addition of bits to already-nonzero coefficients; | |
529 * instead, we can test the current bit to see if we already did it. | |
530 */ | |
531 num_newnz = 0; | |
532 | |
533 /* initialize coefficient loop counter to start of band */ | |
534 k = cinfo->Ss; | |
535 | |
536 if (EOBRUN == 0) { | |
537 for (; k <= Se; k++) { | |
538 HUFF_DECODE(s, br_state, tbl, goto undoit, label3); | |
539 r = s >> 4; | |
540 s &= 15; | |
541 if (s) { | |
542 if (s != 1) /* size of new coef should always be 1 */ | |
543 WARNMS(cinfo, JWRN_HUFF_BAD_CODE); | |
544 CHECK_BIT_BUFFER(br_state, 1, goto undoit); | |
545 if (GET_BITS(1)) | |
546 s = p1; /* newly nonzero coef is positive */ | |
547 else | |
548 s = m1; /* newly nonzero coef is negative */ | |
549 } else { | |
550 if (r != 15) { | |
551 EOBRUN = 1 << r; /* EOBr, run length is 2^r + appended bits */ | |
552 if (r) { | |
553 CHECK_BIT_BUFFER(br_state, r, goto undoit); | |
554 r = GET_BITS(r); | |
555 EOBRUN += r; | |
556 } | |
557 break; /* rest of block is handled by EOB logic */ | |
558 } | |
559 /* note s = 0 for processing ZRL */ | |
560 } | |
561 /* Advance over already-nonzero coefs and r still-zero coefs, | |
562 * appending correction bits to the nonzeroes. A correction bit is 1 | |
563 * if the absolute value of the coefficient must be increased. | |
564 */ | |
565 do { | |
566 thiscoef = *block + jpeg_natural_order[k]; | |
567 if (*thiscoef != 0) { | |
568 CHECK_BIT_BUFFER(br_state, 1, goto undoit); | |
569 if (GET_BITS(1)) { | |
570 if ((*thiscoef & p1) == 0) { /* do nothing if already set it */ | |
571 if (*thiscoef >= 0) | |
572 *thiscoef += p1; | |
573 else | |
574 *thiscoef += m1; | |
575 } | |
576 } | |
577 } else { | |
578 if (--r < 0) | |
579 break; /* reached target zero coefficient */ | |
580 } | |
581 k++; | |
582 } while (k <= Se); | |
583 if (s) { | |
584 int pos = jpeg_natural_order[k]; | |
585 /* Output newly nonzero coefficient */ | |
586 (*block)[pos] = (JCOEF) s; | |
587 /* Remember its position in case we have to suspend */ | |
588 newnz_pos[num_newnz++] = pos; | |
589 } | |
590 } | |
591 } | |
592 | |
593 if (EOBRUN > 0) { | |
594 /* Scan any remaining coefficient positions after the end-of-band | |
595 * (the last newly nonzero coefficient, if any). Append a correction | |
596 * bit to each already-nonzero coefficient. A correction bit is 1 | |
597 * if the absolute value of the coefficient must be increased. | |
598 */ | |
599 for (; k <= Se; k++) { | |
600 thiscoef = *block + jpeg_natural_order[k]; | |
601 if (*thiscoef != 0) { | |
602 CHECK_BIT_BUFFER(br_state, 1, goto undoit); | |
603 if (GET_BITS(1)) { | |
604 if ((*thiscoef & p1) == 0) { /* do nothing if already changed it */ | |
605 if (*thiscoef >= 0) | |
606 *thiscoef += p1; | |
607 else | |
608 *thiscoef += m1; | |
609 } | |
610 } | |
611 } | |
612 } | |
613 /* Count one block completed in EOB run */ | |
614 EOBRUN--; | |
615 } | |
616 | |
617 /* Completed MCU, so update state */ | |
618 BITREAD_SAVE_STATE(cinfo,entropy->bitstate); | |
619 entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */ | |
620 } | |
621 | |
622 /* Account for restart interval (no-op if not using restarts) */ | |
623 entropy->restarts_to_go--; | |
624 | |
625 return TRUE; | |
626 | |
627 undoit: | |
628 /* Re-zero any output coefficients that we made newly nonzero */ | |
629 while (num_newnz > 0) | |
630 (*block)[newnz_pos[--num_newnz]] = 0; | |
631 | |
632 return FALSE; | |
633 } | |
634 | |
635 | |
636 /* | |
637 * Module initialization routine for progressive Huffman entropy decoding. | |
638 */ | |
639 | |
640 GLOBAL(void) | |
641 jinit_phuff_decoder (j_decompress_ptr cinfo) | |
642 { | |
643 phuff_entropy_ptr entropy; | |
644 int *coef_bit_ptr; | |
645 int ci, i; | |
646 | |
647 entropy = (phuff_entropy_ptr) | |
648 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |
649 SIZEOF(phuff_entropy_decoder)); | |
650 cinfo->entropy = (struct jpeg_entropy_decoder *) entropy; | |
651 entropy->pub.start_pass = start_pass_phuff_decoder; | |
652 | |
653 /* Mark derived tables unallocated */ | |
654 for (i = 0; i < NUM_HUFF_TBLS; i++) { | |
655 entropy->derived_tbls[i] = NULL; | |
656 } | |
657 | |
658 /* Create progression status table */ | |
659 cinfo->coef_bits = (int (*)[DCTSIZE2]) | |
660 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |
661 cinfo->num_components*DCTSIZE2*SIZEOF(int)); | |
662 coef_bit_ptr = & cinfo->coef_bits[0][0]; | |
663 for (ci = 0; ci < cinfo->num_components; ci++) | |
664 for (i = 0; i < DCTSIZE2; i++) | |
665 *coef_bit_ptr++ = -1; | |
666 } | |
667 | |
668 #endif /* D_PROGRESSIVE_SUPPORTED */ | |
OLD | NEW |