OLD | NEW |
| (Empty) |
1 /* | |
2 * jdhuff.c | |
3 * | |
4 * Copyright (C) 1991-1997, Thomas G. Lane. | |
5 * This file is part of the Independent JPEG Group's software. | |
6 * For conditions of distribution and use, see the accompanying README file. | |
7 * | |
8 * This file contains Huffman entropy decoding routines. | |
9 * | |
10 * Much of the complexity here has to do with supporting input suspension. | |
11 * If the data source module demands suspension, we want to be able to back | |
12 * up to the start of the current MCU. To do this, we copy state variables | |
13 * into local working storage, and update them back to the permanent | |
14 * storage only upon successful completion of an MCU. | |
15 */ | |
16 | |
17 #define JPEG_INTERNALS | |
18 #include "jinclude.h" | |
19 #include "jpeglib.h" | |
20 #include "jdhuff.h" /* Declarations shared with jdphuff.c */ | |
21 | |
22 | |
23 /* | |
24 * Expanded entropy decoder object for Huffman decoding. | |
25 * | |
26 * The savable_state subrecord contains fields that change within an MCU, | |
27 * but must not be updated permanently until we complete the MCU. | |
28 */ | |
29 | |
30 typedef struct { | |
31 int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ | |
32 } savable_state; | |
33 | |
34 /* This macro is to work around compilers with missing or broken | |
35 * structure assignment. You'll need to fix this code if you have | |
36 * such a compiler and you change MAX_COMPS_IN_SCAN. | |
37 */ | |
38 | |
39 #ifndef NO_STRUCT_ASSIGN | |
40 #define ASSIGN_STATE(dest,src) ((dest) = (src)) | |
41 #else | |
42 #if MAX_COMPS_IN_SCAN == 4 | |
43 #define ASSIGN_STATE(dest,src) \ | |
44 ((dest).last_dc_val[0] = (src).last_dc_val[0], \ | |
45 (dest).last_dc_val[1] = (src).last_dc_val[1], \ | |
46 (dest).last_dc_val[2] = (src).last_dc_val[2], \ | |
47 (dest).last_dc_val[3] = (src).last_dc_val[3]) | |
48 #endif | |
49 #endif | |
50 | |
51 | |
52 typedef struct { | |
53 struct jpeg_entropy_decoder pub; /* public fields */ | |
54 | |
55 /* These fields are loaded into local variables at start of each MCU. | |
56 * In case of suspension, we exit WITHOUT updating them. | |
57 */ | |
58 bitread_perm_state bitstate; /* Bit buffer at start of MCU */ | |
59 savable_state saved; /* Other state at start of MCU */ | |
60 | |
61 /* These fields are NOT loaded into local working state. */ | |
62 unsigned int restarts_to_go; /* MCUs left in this restart interval */ | |
63 | |
64 /* Pointers to derived tables (these workspaces have image lifespan) */ | |
65 d_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS]; | |
66 d_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS]; | |
67 | |
68 /* Precalculated info set up by start_pass for use in decode_mcu: */ | |
69 | |
70 /* Pointers to derived tables to be used for each block within an MCU */ | |
71 d_derived_tbl * dc_cur_tbls[D_MAX_BLOCKS_IN_MCU]; | |
72 d_derived_tbl * ac_cur_tbls[D_MAX_BLOCKS_IN_MCU]; | |
73 /* Whether we care about the DC and AC coefficient values for each block */ | |
74 boolean dc_needed[D_MAX_BLOCKS_IN_MCU]; | |
75 boolean ac_needed[D_MAX_BLOCKS_IN_MCU]; | |
76 } huff_entropy_decoder; | |
77 | |
78 typedef huff_entropy_decoder * huff_entropy_ptr; | |
79 | |
80 | |
81 /* | |
82 * Initialize for a Huffman-compressed scan. | |
83 */ | |
84 | |
85 METHODDEF(void) | |
86 start_pass_huff_decoder (j_decompress_ptr cinfo) | |
87 { | |
88 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; | |
89 int ci, blkn, dctbl, actbl; | |
90 jpeg_component_info * compptr; | |
91 | |
92 /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG. | |
93 * This ought to be an error condition, but we make it a warning because | |
94 * there are some baseline files out there with all zeroes in these bytes. | |
95 */ | |
96 if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2-1 || | |
97 cinfo->Ah != 0 || cinfo->Al != 0) | |
98 WARNMS(cinfo, JWRN_NOT_SEQUENTIAL); | |
99 | |
100 for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | |
101 compptr = cinfo->cur_comp_info[ci]; | |
102 dctbl = compptr->dc_tbl_no; | |
103 actbl = compptr->ac_tbl_no; | |
104 /* Compute derived values for Huffman tables */ | |
105 /* We may do this more than once for a table, but it's not expensive */ | |
106 jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl, | |
107 & entropy->dc_derived_tbls[dctbl]); | |
108 jpeg_make_d_derived_tbl(cinfo, FALSE, actbl, | |
109 & entropy->ac_derived_tbls[actbl]); | |
110 /* Initialize DC predictions to 0 */ | |
111 entropy->saved.last_dc_val[ci] = 0; | |
112 } | |
113 | |
114 /* Precalculate decoding info for each block in an MCU of this scan */ | |
115 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { | |
116 ci = cinfo->MCU_membership[blkn]; | |
117 compptr = cinfo->cur_comp_info[ci]; | |
118 /* Precalculate which table to use for each block */ | |
119 entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no]; | |
120 entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no]; | |
121 /* Decide whether we really care about the coefficient values */ | |
122 if (compptr->component_needed) { | |
123 entropy->dc_needed[blkn] = TRUE; | |
124 /* we don't need the ACs if producing a 1/8th-size image */ | |
125 entropy->ac_needed[blkn] = (compptr->DCT_scaled_size > 1); | |
126 } else { | |
127 entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE; | |
128 } | |
129 } | |
130 | |
131 /* Initialize bitread state variables */ | |
132 entropy->bitstate.bits_left = 0; | |
133 entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */ | |
134 entropy->pub.insufficient_data = FALSE; | |
135 | |
136 /* Initialize restart counter */ | |
137 entropy->restarts_to_go = cinfo->restart_interval; | |
138 } | |
139 | |
140 | |
141 /* | |
142 * Compute the derived values for a Huffman table. | |
143 * This routine also performs some validation checks on the table. | |
144 * | |
145 * Note this is also used by jdphuff.c. | |
146 */ | |
147 | |
148 GLOBAL(void) | |
149 jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, boolean isDC, int tblno, | |
150 d_derived_tbl ** pdtbl) | |
151 { | |
152 JHUFF_TBL *htbl; | |
153 d_derived_tbl *dtbl; | |
154 int p, i, l, si, numsymbols; | |
155 int lookbits, ctr; | |
156 char huffsize[257]; | |
157 unsigned int huffcode[257]; | |
158 unsigned int code; | |
159 | |
160 /* Note that huffsize[] and huffcode[] are filled in code-length order, | |
161 * paralleling the order of the symbols themselves in htbl->huffval[]. | |
162 */ | |
163 | |
164 /* Find the input Huffman table */ | |
165 if (tblno < 0 || tblno >= NUM_HUFF_TBLS) | |
166 ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); | |
167 htbl = | |
168 isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno]; | |
169 if (htbl == NULL) | |
170 ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); | |
171 | |
172 /* Allocate a workspace if we haven't already done so. */ | |
173 if (*pdtbl == NULL) | |
174 *pdtbl = (d_derived_tbl *) | |
175 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |
176 SIZEOF(d_derived_tbl)); | |
177 dtbl = *pdtbl; | |
178 dtbl->pub = htbl; /* fill in back link */ | |
179 | |
180 /* Figure C.1: make table of Huffman code length for each symbol */ | |
181 | |
182 p = 0; | |
183 for (l = 1; l <= 16; l++) { | |
184 i = (int) htbl->bits[l]; | |
185 if (i < 0 || p + i > 256) /* protect against table overrun */ | |
186 ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); | |
187 while (i--) | |
188 huffsize[p++] = (char) l; | |
189 } | |
190 huffsize[p] = 0; | |
191 numsymbols = p; | |
192 | |
193 /* Figure C.2: generate the codes themselves */ | |
194 /* We also validate that the counts represent a legal Huffman code tree. */ | |
195 | |
196 code = 0; | |
197 si = huffsize[0]; | |
198 p = 0; | |
199 while (huffsize[p]) { | |
200 while (((int) huffsize[p]) == si) { | |
201 huffcode[p++] = code; | |
202 code++; | |
203 } | |
204 /* code is now 1 more than the last code used for codelength si; but | |
205 * it must still fit in si bits, since no code is allowed to be all ones. | |
206 */ | |
207 if (((INT32) code) >= (((INT32) 1) << si)) | |
208 ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); | |
209 code <<= 1; | |
210 si++; | |
211 } | |
212 | |
213 /* Figure F.15: generate decoding tables for bit-sequential decoding */ | |
214 | |
215 p = 0; | |
216 for (l = 1; l <= 16; l++) { | |
217 if (htbl->bits[l]) { | |
218 /* valoffset[l] = huffval[] index of 1st symbol of code length l, | |
219 * minus the minimum code of length l | |
220 */ | |
221 dtbl->valoffset[l] = (INT32) p - (INT32) huffcode[p]; | |
222 p += htbl->bits[l]; | |
223 dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */ | |
224 } else { | |
225 dtbl->maxcode[l] = -1; /* -1 if no codes of this length */ | |
226 } | |
227 } | |
228 dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */ | |
229 | |
230 /* Compute lookahead tables to speed up decoding. | |
231 * First we set all the table entries to 0, indicating "too long"; | |
232 * then we iterate through the Huffman codes that are short enough and | |
233 * fill in all the entries that correspond to bit sequences starting | |
234 * with that code. | |
235 */ | |
236 | |
237 MEMZERO(dtbl->look_nbits, SIZEOF(dtbl->look_nbits)); | |
238 | |
239 p = 0; | |
240 for (l = 1; l <= HUFF_LOOKAHEAD; l++) { | |
241 for (i = 1; i <= (int) htbl->bits[l]; i++, p++) { | |
242 /* l = current code's length, p = its index in huffcode[] & huffval[]. */ | |
243 /* Generate left-justified code followed by all possible bit sequences */ | |
244 lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l); | |
245 for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--) { | |
246 dtbl->look_nbits[lookbits] = l; | |
247 dtbl->look_sym[lookbits] = htbl->huffval[p]; | |
248 lookbits++; | |
249 } | |
250 } | |
251 } | |
252 | |
253 /* Validate symbols as being reasonable. | |
254 * For AC tables, we make no check, but accept all byte values 0..255. | |
255 * For DC tables, we require the symbols to be in range 0..15. | |
256 * (Tighter bounds could be applied depending on the data depth and mode, | |
257 * but this is sufficient to ensure safe decoding.) | |
258 */ | |
259 if (isDC) { | |
260 for (i = 0; i < numsymbols; i++) { | |
261 int sym = htbl->huffval[i]; | |
262 if (sym < 0 || sym > 15) | |
263 ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); | |
264 } | |
265 } | |
266 } | |
267 | |
268 | |
269 /* | |
270 * Out-of-line code for bit fetching (shared with jdphuff.c). | |
271 * See jdhuff.h for info about usage. | |
272 * Note: current values of get_buffer and bits_left are passed as parameters, | |
273 * but are returned in the corresponding fields of the state struct. | |
274 * | |
275 * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width | |
276 * of get_buffer to be used. (On machines with wider words, an even larger | |
277 * buffer could be used.) However, on some machines 32-bit shifts are | |
278 * quite slow and take time proportional to the number of places shifted. | |
279 * (This is true with most PC compilers, for instance.) In this case it may | |
280 * be a win to set MIN_GET_BITS to the minimum value of 15. This reduces the | |
281 * average shift distance at the cost of more calls to jpeg_fill_bit_buffer. | |
282 */ | |
283 | |
284 #ifdef SLOW_SHIFT_32 | |
285 #define MIN_GET_BITS 15 /* minimum allowable value */ | |
286 #else | |
287 #define MIN_GET_BITS (BIT_BUF_SIZE-7) | |
288 #endif | |
289 | |
290 | |
291 GLOBAL(boolean) | |
292 jpeg_fill_bit_buffer (bitread_working_state * state, | |
293 register bit_buf_type get_buffer, register int bits_left, | |
294 int nbits) | |
295 /* Load up the bit buffer to a depth of at least nbits */ | |
296 { | |
297 /* Copy heavily used state fields into locals (hopefully registers) */ | |
298 register const JOCTET * next_input_byte = state->next_input_byte; | |
299 register size_t bytes_in_buffer = state->bytes_in_buffer; | |
300 j_decompress_ptr cinfo = state->cinfo; | |
301 | |
302 /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */ | |
303 /* (It is assumed that no request will be for more than that many bits.) */ | |
304 /* We fail to do so only if we hit a marker or are forced to suspend. */ | |
305 | |
306 if (cinfo->unread_marker == 0) { /* cannot advance past a marker */ | |
307 while (bits_left < MIN_GET_BITS) { | |
308 register int c; | |
309 | |
310 /* Attempt to read a byte */ | |
311 if (bytes_in_buffer == 0) { | |
312 if (! (*cinfo->src->fill_input_buffer) (cinfo)) | |
313 return FALSE; | |
314 next_input_byte = cinfo->src->next_input_byte; | |
315 bytes_in_buffer = cinfo->src->bytes_in_buffer; | |
316 } | |
317 bytes_in_buffer--; | |
318 c = GETJOCTET(*next_input_byte++); | |
319 | |
320 /* If it's 0xFF, check and discard stuffed zero byte */ | |
321 if (c == 0xFF) { | |
322 /* Loop here to discard any padding FF's on terminating marker, | |
323 * so that we can save a valid unread_marker value. NOTE: we will | |
324 * accept multiple FF's followed by a 0 as meaning a single FF data | |
325 * byte. This data pattern is not valid according to the standard. | |
326 */ | |
327 do { | |
328 if (bytes_in_buffer == 0) { | |
329 if (! (*cinfo->src->fill_input_buffer) (cinfo)) | |
330 return FALSE; | |
331 next_input_byte = cinfo->src->next_input_byte; | |
332 bytes_in_buffer = cinfo->src->bytes_in_buffer; | |
333 } | |
334 bytes_in_buffer--; | |
335 c = GETJOCTET(*next_input_byte++); | |
336 } while (c == 0xFF); | |
337 | |
338 if (c == 0) { | |
339 /* Found FF/00, which represents an FF data byte */ | |
340 c = 0xFF; | |
341 } else { | |
342 /* Oops, it's actually a marker indicating end of compressed data. | |
343 * Save the marker code for later use. | |
344 * Fine point: it might appear that we should save the marker into | |
345 * bitread working state, not straight into permanent state. But | |
346 * once we have hit a marker, we cannot need to suspend within the | |
347 * current MCU, because we will read no more bytes from the data | |
348 * source. So it is OK to update permanent state right away. | |
349 */ | |
350 cinfo->unread_marker = c; | |
351 /* See if we need to insert some fake zero bits. */ | |
352 goto no_more_bytes; | |
353 } | |
354 } | |
355 | |
356 /* OK, load c into get_buffer */ | |
357 get_buffer = (get_buffer << 8) | c; | |
358 bits_left += 8; | |
359 } /* end while */ | |
360 } else { | |
361 no_more_bytes: | |
362 /* We get here if we've read the marker that terminates the compressed | |
363 * data segment. There should be enough bits in the buffer register | |
364 * to satisfy the request; if so, no problem. | |
365 */ | |
366 if (nbits > bits_left) { | |
367 /* Uh-oh. Report corrupted data to user and stuff zeroes into | |
368 * the data stream, so that we can produce some kind of image. | |
369 * We use a nonvolatile flag to ensure that only one warning message | |
370 * appears per data segment. | |
371 */ | |
372 if (! cinfo->entropy->insufficient_data) { | |
373 WARNMS(cinfo, JWRN_HIT_MARKER); | |
374 cinfo->entropy->insufficient_data = TRUE; | |
375 } | |
376 /* Fill the buffer with zero bits */ | |
377 get_buffer <<= MIN_GET_BITS - bits_left; | |
378 bits_left = MIN_GET_BITS; | |
379 } | |
380 } | |
381 | |
382 /* Unload the local registers */ | |
383 state->next_input_byte = next_input_byte; | |
384 state->bytes_in_buffer = bytes_in_buffer; | |
385 state->get_buffer = get_buffer; | |
386 state->bits_left = bits_left; | |
387 | |
388 return TRUE; | |
389 } | |
390 | |
391 | |
392 /* | |
393 * Out-of-line code for Huffman code decoding. | |
394 * See jdhuff.h for info about usage. | |
395 */ | |
396 | |
397 GLOBAL(int) | |
398 jpeg_huff_decode (bitread_working_state * state, | |
399 register bit_buf_type get_buffer, register int bits_left, | |
400 d_derived_tbl * htbl, int min_bits) | |
401 { | |
402 register int l = min_bits; | |
403 register INT32 code; | |
404 | |
405 /* HUFF_DECODE has determined that the code is at least min_bits */ | |
406 /* bits long, so fetch that many bits in one swoop. */ | |
407 | |
408 CHECK_BIT_BUFFER(*state, l, return -1); | |
409 code = GET_BITS(l); | |
410 | |
411 /* Collect the rest of the Huffman code one bit at a time. */ | |
412 /* This is per Figure F.16 in the JPEG spec. */ | |
413 | |
414 while (code > htbl->maxcode[l]) { | |
415 code <<= 1; | |
416 CHECK_BIT_BUFFER(*state, 1, return -1); | |
417 code |= GET_BITS(1); | |
418 l++; | |
419 } | |
420 | |
421 /* Unload the local registers */ | |
422 state->get_buffer = get_buffer; | |
423 state->bits_left = bits_left; | |
424 | |
425 /* With garbage input we may reach the sentinel value l = 17. */ | |
426 | |
427 if (l > 16) { | |
428 WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE); | |
429 return 0; /* fake a zero as the safest result */ | |
430 } | |
431 | |
432 return htbl->pub->huffval[ (int) (code + htbl->valoffset[l]) ]; | |
433 } | |
434 | |
435 | |
436 /* | |
437 * Figure F.12: extend sign bit. | |
438 * On some machines, a shift and add will be faster than a table lookup. | |
439 */ | |
440 | |
441 #ifdef AVOID_TABLES | |
442 | |
443 #define HUFF_EXTEND(x,s) ((x) < (1<<((s)-1)) ? (x) + (((-1)<<(s)) + 1) : (x)) | |
444 | |
445 #else | |
446 | |
447 #define HUFF_EXTEND(x,s) ((x) < extend_test[s] ? (x) + extend_offset[s] : (x)) | |
448 | |
449 static const int extend_test[16] = /* entry n is 2**(n-1) */ | |
450 { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, | |
451 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 }; | |
452 | |
453 static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */ | |
454 { 0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1, | |
455 ((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1, | |
456 ((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1, | |
457 ((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1 }; | |
458 | |
459 #endif /* AVOID_TABLES */ | |
460 | |
461 | |
462 /* | |
463 * Check for a restart marker & resynchronize decoder. | |
464 * Returns FALSE if must suspend. | |
465 */ | |
466 | |
467 LOCAL(boolean) | |
468 process_restart (j_decompress_ptr cinfo) | |
469 { | |
470 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; | |
471 int ci; | |
472 | |
473 /* Throw away any unused bits remaining in bit buffer; */ | |
474 /* include any full bytes in next_marker's count of discarded bytes */ | |
475 cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8; | |
476 entropy->bitstate.bits_left = 0; | |
477 | |
478 /* Advance past the RSTn marker */ | |
479 if (! (*cinfo->marker->read_restart_marker) (cinfo)) | |
480 return FALSE; | |
481 | |
482 /* Re-initialize DC predictions to 0 */ | |
483 for (ci = 0; ci < cinfo->comps_in_scan; ci++) | |
484 entropy->saved.last_dc_val[ci] = 0; | |
485 | |
486 /* Reset restart counter */ | |
487 entropy->restarts_to_go = cinfo->restart_interval; | |
488 | |
489 /* Reset out-of-data flag, unless read_restart_marker left us smack up | |
490 * against a marker. In that case we will end up treating the next data | |
491 * segment as empty, and we can avoid producing bogus output pixels by | |
492 * leaving the flag set. | |
493 */ | |
494 if (cinfo->unread_marker == 0) | |
495 entropy->pub.insufficient_data = FALSE; | |
496 | |
497 return TRUE; | |
498 } | |
499 | |
500 | |
501 /* | |
502 * Decode and return one MCU's worth of Huffman-compressed coefficients. | |
503 * The coefficients are reordered from zigzag order into natural array order, | |
504 * but are not dequantized. | |
505 * | |
506 * The i'th block of the MCU is stored into the block pointed to by | |
507 * MCU_data[i]. WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER. | |
508 * (Wholesale zeroing is usually a little faster than retail...) | |
509 * | |
510 * Returns FALSE if data source requested suspension. In that case no | |
511 * changes have been made to permanent state. (Exception: some output | |
512 * coefficients may already have been assigned. This is harmless for | |
513 * this module, since we'll just re-assign them on the next call.) | |
514 */ | |
515 | |
516 METHODDEF(boolean) | |
517 decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) | |
518 { | |
519 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; | |
520 int blkn; | |
521 BITREAD_STATE_VARS; | |
522 savable_state state; | |
523 | |
524 /* Process restart marker if needed; may have to suspend */ | |
525 if (cinfo->restart_interval) { | |
526 if (entropy->restarts_to_go == 0) | |
527 if (! process_restart(cinfo)) | |
528 return FALSE; | |
529 } | |
530 | |
531 /* If we've run out of data, just leave the MCU set to zeroes. | |
532 * This way, we return uniform gray for the remainder of the segment. | |
533 */ | |
534 if (! entropy->pub.insufficient_data) { | |
535 | |
536 /* Load up working state */ | |
537 BITREAD_LOAD_STATE(cinfo,entropy->bitstate); | |
538 ASSIGN_STATE(state, entropy->saved); | |
539 | |
540 /* Outer loop handles each block in the MCU */ | |
541 | |
542 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { | |
543 JBLOCKROW block = MCU_data[blkn]; | |
544 d_derived_tbl * dctbl = entropy->dc_cur_tbls[blkn]; | |
545 d_derived_tbl * actbl = entropy->ac_cur_tbls[blkn]; | |
546 register int s, k, r; | |
547 | |
548 /* Decode a single block's worth of coefficients */ | |
549 | |
550 /* Section F.2.2.1: decode the DC coefficient difference */ | |
551 HUFF_DECODE(s, br_state, dctbl, return FALSE, label1); | |
552 if (s) { | |
553 CHECK_BIT_BUFFER(br_state, s, return FALSE); | |
554 r = GET_BITS(s); | |
555 s = HUFF_EXTEND(r, s); | |
556 } | |
557 | |
558 if (entropy->dc_needed[blkn]) { | |
559 /* Convert DC difference to actual value, update last_dc_val */ | |
560 int ci = cinfo->MCU_membership[blkn]; | |
561 s += state.last_dc_val[ci]; | |
562 state.last_dc_val[ci] = s; | |
563 /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */ | |
564 (*block)[0] = (JCOEF) s; | |
565 } | |
566 | |
567 if (entropy->ac_needed[blkn]) { | |
568 | |
569 /* Section F.2.2.2: decode the AC coefficients */ | |
570 /* Since zeroes are skipped, output area must be cleared beforehand */ | |
571 for (k = 1; k < DCTSIZE2; k++) { | |
572 HUFF_DECODE(s, br_state, actbl, return FALSE, label2); | |
573 | |
574 r = s >> 4; | |
575 s &= 15; | |
576 | |
577 if (s) { | |
578 k += r; | |
579 CHECK_BIT_BUFFER(br_state, s, return FALSE); | |
580 r = GET_BITS(s); | |
581 s = HUFF_EXTEND(r, s); | |
582 /* Output coefficient in natural (dezigzagged) order. | |
583 * Note: the extra entries in jpeg_natural_order[] will save us | |
584 * if k >= DCTSIZE2, which could happen if the data is corrupted. | |
585 */ | |
586 (*block)[jpeg_natural_order[k]] = (JCOEF) s; | |
587 } else { | |
588 if (r != 15) | |
589 break; | |
590 k += 15; | |
591 } | |
592 } | |
593 | |
594 } else { | |
595 | |
596 /* Section F.2.2.2: decode the AC coefficients */ | |
597 /* In this path we just discard the values */ | |
598 for (k = 1; k < DCTSIZE2; k++) { | |
599 HUFF_DECODE(s, br_state, actbl, return FALSE, label3); | |
600 | |
601 r = s >> 4; | |
602 s &= 15; | |
603 | |
604 if (s) { | |
605 k += r; | |
606 CHECK_BIT_BUFFER(br_state, s, return FALSE); | |
607 DROP_BITS(s); | |
608 } else { | |
609 if (r != 15) | |
610 break; | |
611 k += 15; | |
612 } | |
613 } | |
614 | |
615 } | |
616 } | |
617 | |
618 /* Completed MCU, so update state */ | |
619 BITREAD_SAVE_STATE(cinfo,entropy->bitstate); | |
620 ASSIGN_STATE(entropy->saved, state); | |
621 } | |
622 | |
623 /* Account for restart interval (no-op if not using restarts) */ | |
624 entropy->restarts_to_go--; | |
625 | |
626 return TRUE; | |
627 } | |
628 | |
629 | |
630 /* | |
631 * Module initialization routine for Huffman entropy decoding. | |
632 */ | |
633 | |
634 GLOBAL(void) | |
635 jinit_huff_decoder (j_decompress_ptr cinfo) | |
636 { | |
637 huff_entropy_ptr entropy; | |
638 int i; | |
639 | |
640 entropy = (huff_entropy_ptr) | |
641 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |
642 SIZEOF(huff_entropy_decoder)); | |
643 cinfo->entropy = (struct jpeg_entropy_decoder *) entropy; | |
644 entropy->pub.start_pass = start_pass_huff_decoder; | |
645 entropy->pub.decode_mcu = decode_mcu; | |
646 | |
647 /* Mark tables unallocated */ | |
648 for (i = 0; i < NUM_HUFF_TBLS; i++) { | |
649 entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL; | |
650 } | |
651 } | |
OLD | NEW |