OLD | NEW |
| (Empty) |
1 /* | |
2 * jddctmgr.c | |
3 * | |
4 * Copyright (C) 1994-1996, Thomas G. Lane. | |
5 * This file is part of the Independent JPEG Group's software. | |
6 * For conditions of distribution and use, see the accompanying README file. | |
7 * | |
8 * This file contains the inverse-DCT management logic. | |
9 * This code selects a particular IDCT implementation to be used, | |
10 * and it performs related housekeeping chores. No code in this file | |
11 * is executed per IDCT step, only during output pass setup. | |
12 * | |
13 * Note that the IDCT routines are responsible for performing coefficient | |
14 * dequantization as well as the IDCT proper. This module sets up the | |
15 * dequantization multiplier table needed by the IDCT routine. | |
16 */ | |
17 | |
18 #define JPEG_INTERNALS | |
19 #include "jinclude.h" | |
20 #include "jpeglib.h" | |
21 #include "jdct.h" /* Private declarations for DCT subsystem */ | |
22 | |
23 | |
24 /* | |
25 * The decompressor input side (jdinput.c) saves away the appropriate | |
26 * quantization table for each component at the start of the first scan | |
27 * involving that component. (This is necessary in order to correctly | |
28 * decode files that reuse Q-table slots.) | |
29 * When we are ready to make an output pass, the saved Q-table is converted | |
30 * to a multiplier table that will actually be used by the IDCT routine. | |
31 * The multiplier table contents are IDCT-method-dependent. To support | |
32 * application changes in IDCT method between scans, we can remake the | |
33 * multiplier tables if necessary. | |
34 * In buffered-image mode, the first output pass may occur before any data | |
35 * has been seen for some components, and thus before their Q-tables have | |
36 * been saved away. To handle this case, multiplier tables are preset | |
37 * to zeroes; the result of the IDCT will be a neutral gray level. | |
38 */ | |
39 | |
40 | |
41 /* Private subobject for this module */ | |
42 | |
43 typedef struct { | |
44 struct jpeg_inverse_dct pub; /* public fields */ | |
45 | |
46 /* This array contains the IDCT method code that each multiplier table | |
47 * is currently set up for, or -1 if it's not yet set up. | |
48 * The actual multiplier tables are pointed to by dct_table in the | |
49 * per-component comp_info structures. | |
50 */ | |
51 int cur_method[MAX_COMPONENTS]; | |
52 } my_idct_controller; | |
53 | |
54 typedef my_idct_controller * my_idct_ptr; | |
55 | |
56 | |
57 /* Allocated multiplier tables: big enough for any supported variant */ | |
58 | |
59 typedef union { | |
60 ISLOW_MULT_TYPE islow_array[DCTSIZE2]; | |
61 #ifdef DCT_IFAST_SUPPORTED | |
62 IFAST_MULT_TYPE ifast_array[DCTSIZE2]; | |
63 #endif | |
64 #ifdef DCT_FLOAT_SUPPORTED | |
65 FLOAT_MULT_TYPE float_array[DCTSIZE2]; | |
66 #endif | |
67 } multiplier_table; | |
68 | |
69 | |
70 /* The current scaled-IDCT routines require ISLOW-style multiplier tables, | |
71 * so be sure to compile that code if either ISLOW or SCALING is requested. | |
72 */ | |
73 #ifdef DCT_ISLOW_SUPPORTED | |
74 #define PROVIDE_ISLOW_TABLES | |
75 #else | |
76 #ifdef IDCT_SCALING_SUPPORTED | |
77 #define PROVIDE_ISLOW_TABLES | |
78 #endif | |
79 #endif | |
80 | |
81 | |
82 /* | |
83 * Prepare for an output pass. | |
84 * Here we select the proper IDCT routine for each component and build | |
85 * a matching multiplier table. | |
86 */ | |
87 | |
88 METHODDEF(void) | |
89 start_pass (j_decompress_ptr cinfo) | |
90 { | |
91 my_idct_ptr idct = (my_idct_ptr) cinfo->idct; | |
92 int ci, i; | |
93 jpeg_component_info *compptr; | |
94 int method = 0; | |
95 inverse_DCT_method_ptr method_ptr = NULL; | |
96 JQUANT_TBL * qtbl; | |
97 | |
98 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | |
99 ci++, compptr++) { | |
100 /* Select the proper IDCT routine for this component's scaling */ | |
101 switch (compptr->DCT_scaled_size) { | |
102 #ifdef IDCT_SCALING_SUPPORTED | |
103 case 1: | |
104 method_ptr = jpeg_idct_1x1; | |
105 method = JDCT_ISLOW; /* jidctred uses islow-style table */ | |
106 break; | |
107 case 2: | |
108 method_ptr = jpeg_idct_2x2; | |
109 method = JDCT_ISLOW; /* jidctred uses islow-style table */ | |
110 break; | |
111 case 4: | |
112 method_ptr = jpeg_idct_4x4; | |
113 method = JDCT_ISLOW; /* jidctred uses islow-style table */ | |
114 break; | |
115 #endif | |
116 case DCTSIZE: | |
117 switch (cinfo->dct_method) { | |
118 #ifdef DCT_ISLOW_SUPPORTED | |
119 case JDCT_ISLOW: | |
120 method_ptr = jpeg_idct_islow; | |
121 method = JDCT_ISLOW; | |
122 break; | |
123 #endif | |
124 #ifdef DCT_IFAST_SUPPORTED | |
125 case JDCT_IFAST: | |
126 method_ptr = jpeg_idct_ifast; | |
127 method = JDCT_IFAST; | |
128 break; | |
129 #endif | |
130 #ifdef DCT_FLOAT_SUPPORTED | |
131 case JDCT_FLOAT: | |
132 method_ptr = jpeg_idct_float; | |
133 method = JDCT_FLOAT; | |
134 break; | |
135 #endif | |
136 default: | |
137 ERREXIT(cinfo, JERR_NOT_COMPILED); | |
138 break; | |
139 } | |
140 break; | |
141 default: | |
142 ERREXIT1(cinfo, JERR_BAD_DCTSIZE, compptr->DCT_scaled_size); | |
143 break; | |
144 } | |
145 idct->pub.inverse_DCT[ci] = method_ptr; | |
146 /* Create multiplier table from quant table. | |
147 * However, we can skip this if the component is uninteresting | |
148 * or if we already built the table. Also, if no quant table | |
149 * has yet been saved for the component, we leave the | |
150 * multiplier table all-zero; we'll be reading zeroes from the | |
151 * coefficient controller's buffer anyway. | |
152 */ | |
153 if (! compptr->component_needed || idct->cur_method[ci] == method) | |
154 continue; | |
155 qtbl = compptr->quant_table; | |
156 if (qtbl == NULL) /* happens if no data yet for component */ | |
157 continue; | |
158 idct->cur_method[ci] = method; | |
159 switch (method) { | |
160 #ifdef PROVIDE_ISLOW_TABLES | |
161 case JDCT_ISLOW: | |
162 { | |
163 /* For LL&M IDCT method, multipliers are equal to raw quantization | |
164 * coefficients, but are stored as ints to ensure access efficiency. | |
165 */ | |
166 ISLOW_MULT_TYPE * ismtbl = (ISLOW_MULT_TYPE *) compptr->dct_table; | |
167 for (i = 0; i < DCTSIZE2; i++) { | |
168 ismtbl[i] = (ISLOW_MULT_TYPE) qtbl->quantval[i]; | |
169 } | |
170 } | |
171 break; | |
172 #endif | |
173 #ifdef DCT_IFAST_SUPPORTED | |
174 case JDCT_IFAST: | |
175 { | |
176 /* For AA&N IDCT method, multipliers are equal to quantization | |
177 * coefficients scaled by scalefactor[row]*scalefactor[col], where | |
178 * scalefactor[0] = 1 | |
179 * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 | |
180 * For integer operation, the multiplier table is to be scaled by | |
181 * IFAST_SCALE_BITS. | |
182 */ | |
183 IFAST_MULT_TYPE * ifmtbl = (IFAST_MULT_TYPE *) compptr->dct_table; | |
184 #define CONST_BITS 14 | |
185 static const INT16 aanscales[DCTSIZE2] = { | |
186 /* precomputed values scaled up by 14 bits */ | |
187 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, | |
188 22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270, | |
189 21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906, | |
190 19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315, | |
191 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, | |
192 12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552, | |
193 8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446, | |
194 4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247 | |
195 }; | |
196 SHIFT_TEMPS | |
197 | |
198 for (i = 0; i < DCTSIZE2; i++) { | |
199 ifmtbl[i] = (IFAST_MULT_TYPE) | |
200 DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i], | |
201 (INT32) aanscales[i]), | |
202 CONST_BITS-IFAST_SCALE_BITS); | |
203 } | |
204 } | |
205 break; | |
206 #endif | |
207 #ifdef DCT_FLOAT_SUPPORTED | |
208 case JDCT_FLOAT: | |
209 { | |
210 /* For float AA&N IDCT method, multipliers are equal to quantization | |
211 * coefficients scaled by scalefactor[row]*scalefactor[col], where | |
212 * scalefactor[0] = 1 | |
213 * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 | |
214 */ | |
215 FLOAT_MULT_TYPE * fmtbl = (FLOAT_MULT_TYPE *) compptr->dct_table; | |
216 int row, col; | |
217 static const double aanscalefactor[DCTSIZE] = { | |
218 1.0, 1.387039845, 1.306562965, 1.175875602, | |
219 1.0, 0.785694958, 0.541196100, 0.275899379 | |
220 }; | |
221 | |
222 i = 0; | |
223 for (row = 0; row < DCTSIZE; row++) { | |
224 for (col = 0; col < DCTSIZE; col++) { | |
225 fmtbl[i] = (FLOAT_MULT_TYPE) | |
226 ((double) qtbl->quantval[i] * | |
227 aanscalefactor[row] * aanscalefactor[col]); | |
228 i++; | |
229 } | |
230 } | |
231 } | |
232 break; | |
233 #endif | |
234 default: | |
235 ERREXIT(cinfo, JERR_NOT_COMPILED); | |
236 break; | |
237 } | |
238 } | |
239 } | |
240 | |
241 | |
242 /* | |
243 * Initialize IDCT manager. | |
244 */ | |
245 | |
246 GLOBAL(void) | |
247 jinit_inverse_dct (j_decompress_ptr cinfo) | |
248 { | |
249 my_idct_ptr idct; | |
250 int ci; | |
251 jpeg_component_info *compptr; | |
252 | |
253 idct = (my_idct_ptr) | |
254 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |
255 SIZEOF(my_idct_controller)); | |
256 cinfo->idct = (struct jpeg_inverse_dct *) idct; | |
257 idct->pub.start_pass = start_pass; | |
258 | |
259 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | |
260 ci++, compptr++) { | |
261 /* Allocate and pre-zero a multiplier table for each component */ | |
262 compptr->dct_table = | |
263 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |
264 SIZEOF(multiplier_table)); | |
265 MEMZERO(compptr->dct_table, SIZEOF(multiplier_table)); | |
266 /* Mark multiplier table not yet set up for any method */ | |
267 idct->cur_method[ci] = -1; | |
268 } | |
269 } | |
OLD | NEW |