OLD | NEW |
| (Empty) |
1 /* | |
2 * jcsample.c | |
3 * | |
4 * Copyright (C) 1991-1996, Thomas G. Lane. | |
5 * This file is part of the Independent JPEG Group's software. | |
6 * For conditions of distribution and use, see the accompanying README file. | |
7 * | |
8 * This file contains downsampling routines. | |
9 * | |
10 * Downsampling input data is counted in "row groups". A row group | |
11 * is defined to be max_v_samp_factor pixel rows of each component, | |
12 * from which the downsampler produces v_samp_factor sample rows. | |
13 * A single row group is processed in each call to the downsampler module. | |
14 * | |
15 * The downsampler is responsible for edge-expansion of its output data | |
16 * to fill an integral number of DCT blocks horizontally. The source buffer | |
17 * may be modified if it is helpful for this purpose (the source buffer is | |
18 * allocated wide enough to correspond to the desired output width). | |
19 * The caller (the prep controller) is responsible for vertical padding. | |
20 * | |
21 * The downsampler may request "context rows" by setting need_context_rows | |
22 * during startup. In this case, the input arrays will contain at least | |
23 * one row group's worth of pixels above and below the passed-in data; | |
24 * the caller will create dummy rows at image top and bottom by replicating | |
25 * the first or last real pixel row. | |
26 * | |
27 * An excellent reference for image resampling is | |
28 * Digital Image Warping, George Wolberg, 1990. | |
29 * Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7. | |
30 * | |
31 * The downsampling algorithm used here is a simple average of the source | |
32 * pixels covered by the output pixel. The hi-falutin sampling literature | |
33 * refers to this as a "box filter". In general the characteristics of a box | |
34 * filter are not very good, but for the specific cases we normally use (1:1 | |
35 * and 2:1 ratios) the box is equivalent to a "triangle filter" which is not | |
36 * nearly so bad. If you intend to use other sampling ratios, you'd be well | |
37 * advised to improve this code. | |
38 * | |
39 * A simple input-smoothing capability is provided. This is mainly intended | |
40 * for cleaning up color-dithered GIF input files (if you find it inadequate, | |
41 * we suggest using an external filtering program such as pnmconvol). When | |
42 * enabled, each input pixel P is replaced by a weighted sum of itself and its | |
43 * eight neighbors. P's weight is 1-8*SF and each neighbor's weight is SF, | |
44 * where SF = (smoothing_factor / 1024). | |
45 * Currently, smoothing is only supported for 2h2v sampling factors. | |
46 */ | |
47 | |
48 #define JPEG_INTERNALS | |
49 #include "jinclude.h" | |
50 #include "jpeglib.h" | |
51 | |
52 | |
53 /* Pointer to routine to downsample a single component */ | |
54 typedef JMETHOD(void, downsample1_ptr, | |
55 (j_compress_ptr cinfo, jpeg_component_info * compptr, | |
56 JSAMPARRAY input_data, JSAMPARRAY output_data)); | |
57 | |
58 /* Private subobject */ | |
59 | |
60 typedef struct { | |
61 struct jpeg_downsampler pub; /* public fields */ | |
62 | |
63 /* Downsampling method pointers, one per component */ | |
64 downsample1_ptr methods[MAX_COMPONENTS]; | |
65 } my_downsampler; | |
66 | |
67 typedef my_downsampler * my_downsample_ptr; | |
68 | |
69 | |
70 /* | |
71 * Initialize for a downsampling pass. | |
72 */ | |
73 | |
74 METHODDEF(void) | |
75 start_pass_downsample (j_compress_ptr cinfo) | |
76 { | |
77 /* no work for now */ | |
78 } | |
79 | |
80 | |
81 /* | |
82 * Expand a component horizontally from width input_cols to width output_cols, | |
83 * by duplicating the rightmost samples. | |
84 */ | |
85 | |
86 LOCAL(void) | |
87 expand_right_edge (JSAMPARRAY image_data, int num_rows, | |
88 JDIMENSION input_cols, JDIMENSION output_cols) | |
89 { | |
90 register JSAMPROW ptr; | |
91 register JSAMPLE pixval; | |
92 register int count; | |
93 int row; | |
94 int numcols = (int) (output_cols - input_cols); | |
95 | |
96 if (numcols > 0) { | |
97 for (row = 0; row < num_rows; row++) { | |
98 ptr = image_data[row] + input_cols; | |
99 pixval = ptr[-1]; /* don't need GETJSAMPLE() here */ | |
100 for (count = numcols; count > 0; count--) | |
101 *ptr++ = pixval; | |
102 } | |
103 } | |
104 } | |
105 | |
106 | |
107 /* | |
108 * Do downsampling for a whole row group (all components). | |
109 * | |
110 * In this version we simply downsample each component independently. | |
111 */ | |
112 | |
113 METHODDEF(void) | |
114 sep_downsample (j_compress_ptr cinfo, | |
115 JSAMPIMAGE input_buf, JDIMENSION in_row_index, | |
116 JSAMPIMAGE output_buf, JDIMENSION out_row_group_index) | |
117 { | |
118 my_downsample_ptr downsample = (my_downsample_ptr) cinfo->downsample; | |
119 int ci; | |
120 jpeg_component_info * compptr; | |
121 JSAMPARRAY in_ptr, out_ptr; | |
122 | |
123 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | |
124 ci++, compptr++) { | |
125 in_ptr = input_buf[ci] + in_row_index; | |
126 out_ptr = output_buf[ci] + (out_row_group_index * compptr->v_samp_factor); | |
127 (*downsample->methods[ci]) (cinfo, compptr, in_ptr, out_ptr); | |
128 } | |
129 } | |
130 | |
131 | |
132 /* | |
133 * Downsample pixel values of a single component. | |
134 * One row group is processed per call. | |
135 * This version handles arbitrary integral sampling ratios, without smoothing. | |
136 * Note that this version is not actually used for customary sampling ratios. | |
137 */ | |
138 | |
139 METHODDEF(void) | |
140 int_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, | |
141 JSAMPARRAY input_data, JSAMPARRAY output_data) | |
142 { | |
143 int inrow, outrow, h_expand, v_expand, numpix, numpix2, h, v; | |
144 JDIMENSION outcol, outcol_h; /* outcol_h == outcol*h_expand */ | |
145 JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE; | |
146 JSAMPROW inptr, outptr; | |
147 INT32 outvalue; | |
148 | |
149 h_expand = cinfo->max_h_samp_factor / compptr->h_samp_factor; | |
150 v_expand = cinfo->max_v_samp_factor / compptr->v_samp_factor; | |
151 numpix = h_expand * v_expand; | |
152 numpix2 = numpix/2; | |
153 | |
154 /* Expand input data enough to let all the output samples be generated | |
155 * by the standard loop. Special-casing padded output would be more | |
156 * efficient. | |
157 */ | |
158 expand_right_edge(input_data, cinfo->max_v_samp_factor, | |
159 cinfo->image_width, output_cols * h_expand); | |
160 | |
161 inrow = 0; | |
162 for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) { | |
163 outptr = output_data[outrow]; | |
164 for (outcol = 0, outcol_h = 0; outcol < output_cols; | |
165 outcol++, outcol_h += h_expand) { | |
166 outvalue = 0; | |
167 for (v = 0; v < v_expand; v++) { | |
168 inptr = input_data[inrow+v] + outcol_h; | |
169 for (h = 0; h < h_expand; h++) { | |
170 outvalue += (INT32) GETJSAMPLE(*inptr++); | |
171 } | |
172 } | |
173 *outptr++ = (JSAMPLE) ((outvalue + numpix2) / numpix); | |
174 } | |
175 inrow += v_expand; | |
176 } | |
177 } | |
178 | |
179 | |
180 /* | |
181 * Downsample pixel values of a single component. | |
182 * This version handles the special case of a full-size component, | |
183 * without smoothing. | |
184 */ | |
185 | |
186 METHODDEF(void) | |
187 fullsize_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, | |
188 JSAMPARRAY input_data, JSAMPARRAY output_data) | |
189 { | |
190 /* Copy the data */ | |
191 jcopy_sample_rows(input_data, 0, output_data, 0, | |
192 cinfo->max_v_samp_factor, cinfo->image_width); | |
193 /* Edge-expand */ | |
194 expand_right_edge(output_data, cinfo->max_v_samp_factor, | |
195 cinfo->image_width, compptr->width_in_blocks * DCTSIZE); | |
196 } | |
197 | |
198 | |
199 /* | |
200 * Downsample pixel values of a single component. | |
201 * This version handles the common case of 2:1 horizontal and 1:1 vertical, | |
202 * without smoothing. | |
203 * | |
204 * A note about the "bias" calculations: when rounding fractional values to | |
205 * integer, we do not want to always round 0.5 up to the next integer. | |
206 * If we did that, we'd introduce a noticeable bias towards larger values. | |
207 * Instead, this code is arranged so that 0.5 will be rounded up or down at | |
208 * alternate pixel locations (a simple ordered dither pattern). | |
209 */ | |
210 | |
211 METHODDEF(void) | |
212 h2v1_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, | |
213 JSAMPARRAY input_data, JSAMPARRAY output_data) | |
214 { | |
215 int outrow; | |
216 JDIMENSION outcol; | |
217 JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE; | |
218 register JSAMPROW inptr, outptr; | |
219 register int bias; | |
220 | |
221 /* Expand input data enough to let all the output samples be generated | |
222 * by the standard loop. Special-casing padded output would be more | |
223 * efficient. | |
224 */ | |
225 expand_right_edge(input_data, cinfo->max_v_samp_factor, | |
226 cinfo->image_width, output_cols * 2); | |
227 | |
228 for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) { | |
229 outptr = output_data[outrow]; | |
230 inptr = input_data[outrow]; | |
231 bias = 0; /* bias = 0,1,0,1,... for successive samples */ | |
232 for (outcol = 0; outcol < output_cols; outcol++) { | |
233 *outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr) + GETJSAMPLE(inptr[1]) | |
234 + bias) >> 1); | |
235 bias ^= 1; /* 0=>1, 1=>0 */ | |
236 inptr += 2; | |
237 } | |
238 } | |
239 } | |
240 | |
241 | |
242 /* | |
243 * Downsample pixel values of a single component. | |
244 * This version handles the standard case of 2:1 horizontal and 2:1 vertical, | |
245 * without smoothing. | |
246 */ | |
247 | |
248 METHODDEF(void) | |
249 h2v2_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, | |
250 JSAMPARRAY input_data, JSAMPARRAY output_data) | |
251 { | |
252 int inrow, outrow; | |
253 JDIMENSION outcol; | |
254 JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE; | |
255 register JSAMPROW inptr0, inptr1, outptr; | |
256 register int bias; | |
257 | |
258 /* Expand input data enough to let all the output samples be generated | |
259 * by the standard loop. Special-casing padded output would be more | |
260 * efficient. | |
261 */ | |
262 expand_right_edge(input_data, cinfo->max_v_samp_factor, | |
263 cinfo->image_width, output_cols * 2); | |
264 | |
265 inrow = 0; | |
266 for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) { | |
267 outptr = output_data[outrow]; | |
268 inptr0 = input_data[inrow]; | |
269 inptr1 = input_data[inrow+1]; | |
270 bias = 1; /* bias = 1,2,1,2,... for successive samples */ | |
271 for (outcol = 0; outcol < output_cols; outcol++) { | |
272 *outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) + | |
273 GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]) | |
274 + bias) >> 2); | |
275 bias ^= 3; /* 1=>2, 2=>1 */ | |
276 inptr0 += 2; inptr1 += 2; | |
277 } | |
278 inrow += 2; | |
279 } | |
280 } | |
281 | |
282 | |
283 #ifdef INPUT_SMOOTHING_SUPPORTED | |
284 | |
285 /* | |
286 * Downsample pixel values of a single component. | |
287 * This version handles the standard case of 2:1 horizontal and 2:1 vertical, | |
288 * with smoothing. One row of context is required. | |
289 */ | |
290 | |
291 METHODDEF(void) | |
292 h2v2_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, | |
293 JSAMPARRAY input_data, JSAMPARRAY output_data) | |
294 { | |
295 int inrow, outrow; | |
296 JDIMENSION colctr; | |
297 JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE; | |
298 register JSAMPROW inptr0, inptr1, above_ptr, below_ptr, outptr; | |
299 INT32 membersum, neighsum, memberscale, neighscale; | |
300 | |
301 /* Expand input data enough to let all the output samples be generated | |
302 * by the standard loop. Special-casing padded output would be more | |
303 * efficient. | |
304 */ | |
305 expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2, | |
306 cinfo->image_width, output_cols * 2); | |
307 | |
308 /* We don't bother to form the individual "smoothed" input pixel values; | |
309 * we can directly compute the output which is the average of the four | |
310 * smoothed values. Each of the four member pixels contributes a fraction | |
311 * (1-8*SF) to its own smoothed image and a fraction SF to each of the three | |
312 * other smoothed pixels, therefore a total fraction (1-5*SF)/4 to the final | |
313 * output. The four corner-adjacent neighbor pixels contribute a fraction | |
314 * SF to just one smoothed pixel, or SF/4 to the final output; while the | |
315 * eight edge-adjacent neighbors contribute SF to each of two smoothed | |
316 * pixels, or SF/2 overall. In order to use integer arithmetic, these | |
317 * factors are scaled by 2^16 = 65536. | |
318 * Also recall that SF = smoothing_factor / 1024. | |
319 */ | |
320 | |
321 memberscale = 16384 - cinfo->smoothing_factor * 80; /* scaled (1-5*SF)/4 */ | |
322 neighscale = cinfo->smoothing_factor * 16; /* scaled SF/4 */ | |
323 | |
324 inrow = 0; | |
325 for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) { | |
326 outptr = output_data[outrow]; | |
327 inptr0 = input_data[inrow]; | |
328 inptr1 = input_data[inrow+1]; | |
329 above_ptr = input_data[inrow-1]; | |
330 below_ptr = input_data[inrow+2]; | |
331 | |
332 /* Special case for first column: pretend column -1 is same as column 0 */ | |
333 membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) + | |
334 GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]); | |
335 neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) + | |
336 GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) + | |
337 GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[2]) + | |
338 GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[2]); | |
339 neighsum += neighsum; | |
340 neighsum += GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[2]) + | |
341 GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[2]); | |
342 membersum = membersum * memberscale + neighsum * neighscale; | |
343 *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16); | |
344 inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2; | |
345 | |
346 for (colctr = output_cols - 2; colctr > 0; colctr--) { | |
347 /* sum of pixels directly mapped to this output element */ | |
348 membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) + | |
349 GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]); | |
350 /* sum of edge-neighbor pixels */ | |
351 neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) + | |
352 GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) + | |
353 GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[2]) + | |
354 GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[2]); | |
355 /* The edge-neighbors count twice as much as corner-neighbors */ | |
356 neighsum += neighsum; | |
357 /* Add in the corner-neighbors */ | |
358 neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[2]) + | |
359 GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[2]); | |
360 /* form final output scaled up by 2^16 */ | |
361 membersum = membersum * memberscale + neighsum * neighscale; | |
362 /* round, descale and output it */ | |
363 *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16); | |
364 inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2; | |
365 } | |
366 | |
367 /* Special case for last column */ | |
368 membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) + | |
369 GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]); | |
370 neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) + | |
371 GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) + | |
372 GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[1]) + | |
373 GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[1]); | |
374 neighsum += neighsum; | |
375 neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[1]) + | |
376 GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[1]); | |
377 membersum = membersum * memberscale + neighsum * neighscale; | |
378 *outptr = (JSAMPLE) ((membersum + 32768) >> 16); | |
379 | |
380 inrow += 2; | |
381 } | |
382 } | |
383 | |
384 | |
385 /* | |
386 * Downsample pixel values of a single component. | |
387 * This version handles the special case of a full-size component, | |
388 * with smoothing. One row of context is required. | |
389 */ | |
390 | |
391 METHODDEF(void) | |
392 fullsize_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info *compptr, | |
393 JSAMPARRAY input_data, JSAMPARRAY output_data) | |
394 { | |
395 int outrow; | |
396 JDIMENSION colctr; | |
397 JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE; | |
398 register JSAMPROW inptr, above_ptr, below_ptr, outptr; | |
399 INT32 membersum, neighsum, memberscale, neighscale; | |
400 int colsum, lastcolsum, nextcolsum; | |
401 | |
402 /* Expand input data enough to let all the output samples be generated | |
403 * by the standard loop. Special-casing padded output would be more | |
404 * efficient. | |
405 */ | |
406 expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2, | |
407 cinfo->image_width, output_cols); | |
408 | |
409 /* Each of the eight neighbor pixels contributes a fraction SF to the | |
410 * smoothed pixel, while the main pixel contributes (1-8*SF). In order | |
411 * to use integer arithmetic, these factors are multiplied by 2^16 = 65536. | |
412 * Also recall that SF = smoothing_factor / 1024. | |
413 */ | |
414 | |
415 memberscale = 65536L - cinfo->smoothing_factor * 512L; /* scaled 1-8*SF */ | |
416 neighscale = cinfo->smoothing_factor * 64; /* scaled SF */ | |
417 | |
418 for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) { | |
419 outptr = output_data[outrow]; | |
420 inptr = input_data[outrow]; | |
421 above_ptr = input_data[outrow-1]; | |
422 below_ptr = input_data[outrow+1]; | |
423 | |
424 /* Special case for first column */ | |
425 colsum = GETJSAMPLE(*above_ptr++) + GETJSAMPLE(*below_ptr++) + | |
426 GETJSAMPLE(*inptr); | |
427 membersum = GETJSAMPLE(*inptr++); | |
428 nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) + | |
429 GETJSAMPLE(*inptr); | |
430 neighsum = colsum + (colsum - membersum) + nextcolsum; | |
431 membersum = membersum * memberscale + neighsum * neighscale; | |
432 *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16); | |
433 lastcolsum = colsum; colsum = nextcolsum; | |
434 | |
435 for (colctr = output_cols - 2; colctr > 0; colctr--) { | |
436 membersum = GETJSAMPLE(*inptr++); | |
437 above_ptr++; below_ptr++; | |
438 nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) + | |
439 GETJSAMPLE(*inptr); | |
440 neighsum = lastcolsum + (colsum - membersum) + nextcolsum; | |
441 membersum = membersum * memberscale + neighsum * neighscale; | |
442 *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16); | |
443 lastcolsum = colsum; colsum = nextcolsum; | |
444 } | |
445 | |
446 /* Special case for last column */ | |
447 membersum = GETJSAMPLE(*inptr); | |
448 neighsum = lastcolsum + (colsum - membersum) + colsum; | |
449 membersum = membersum * memberscale + neighsum * neighscale; | |
450 *outptr = (JSAMPLE) ((membersum + 32768) >> 16); | |
451 | |
452 } | |
453 } | |
454 | |
455 #endif /* INPUT_SMOOTHING_SUPPORTED */ | |
456 | |
457 | |
458 /* | |
459 * Module initialization routine for downsampling. | |
460 * Note that we must select a routine for each component. | |
461 */ | |
462 | |
463 GLOBAL(void) | |
464 jinit_downsampler (j_compress_ptr cinfo) | |
465 { | |
466 my_downsample_ptr downsample; | |
467 int ci; | |
468 jpeg_component_info * compptr; | |
469 boolean smoothok = TRUE; | |
470 | |
471 downsample = (my_downsample_ptr) | |
472 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |
473 SIZEOF(my_downsampler)); | |
474 cinfo->downsample = (struct jpeg_downsampler *) downsample; | |
475 downsample->pub.start_pass = start_pass_downsample; | |
476 downsample->pub.downsample = sep_downsample; | |
477 downsample->pub.need_context_rows = FALSE; | |
478 | |
479 if (cinfo->CCIR601_sampling) | |
480 ERREXIT(cinfo, JERR_CCIR601_NOTIMPL); | |
481 | |
482 /* Verify we can handle the sampling factors, and set up method pointers */ | |
483 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | |
484 ci++, compptr++) { | |
485 if (compptr->h_samp_factor == cinfo->max_h_samp_factor && | |
486 compptr->v_samp_factor == cinfo->max_v_samp_factor) { | |
487 #ifdef INPUT_SMOOTHING_SUPPORTED | |
488 if (cinfo->smoothing_factor) { | |
489 downsample->methods[ci] = fullsize_smooth_downsample; | |
490 downsample->pub.need_context_rows = TRUE; | |
491 } else | |
492 #endif | |
493 downsample->methods[ci] = fullsize_downsample; | |
494 } else if (compptr->h_samp_factor * 2 == cinfo->max_h_samp_factor && | |
495 compptr->v_samp_factor == cinfo->max_v_samp_factor) { | |
496 smoothok = FALSE; | |
497 downsample->methods[ci] = h2v1_downsample; | |
498 } else if (compptr->h_samp_factor * 2 == cinfo->max_h_samp_factor && | |
499 compptr->v_samp_factor * 2 == cinfo->max_v_samp_factor) { | |
500 #ifdef INPUT_SMOOTHING_SUPPORTED | |
501 if (cinfo->smoothing_factor) { | |
502 downsample->methods[ci] = h2v2_smooth_downsample; | |
503 downsample->pub.need_context_rows = TRUE; | |
504 } else | |
505 #endif | |
506 downsample->methods[ci] = h2v2_downsample; | |
507 } else if ((cinfo->max_h_samp_factor % compptr->h_samp_factor) == 0 && | |
508 (cinfo->max_v_samp_factor % compptr->v_samp_factor) == 0) { | |
509 smoothok = FALSE; | |
510 downsample->methods[ci] = int_downsample; | |
511 } else | |
512 ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL); | |
513 } | |
514 | |
515 #ifdef INPUT_SMOOTHING_SUPPORTED | |
516 if (cinfo->smoothing_factor && !smoothok) | |
517 TRACEMS(cinfo, 0, JTRC_SMOOTH_NOTIMPL); | |
518 #endif | |
519 } | |
OLD | NEW |