OLD | NEW |
| (Empty) |
1 /* | |
2 * jcphuff.c | |
3 * | |
4 * Copyright (C) 1995-1997, Thomas G. Lane. | |
5 * This file is part of the Independent JPEG Group's software. | |
6 * For conditions of distribution and use, see the accompanying README file. | |
7 * | |
8 * This file contains Huffman entropy encoding routines for progressive JPEG. | |
9 * | |
10 * We do not support output suspension in this module, since the library | |
11 * currently does not allow multiple-scan files to be written with output | |
12 * suspension. | |
13 */ | |
14 | |
15 #define JPEG_INTERNALS | |
16 #include "jinclude.h" | |
17 #include "jpeglib.h" | |
18 #include "jchuff.h" /* Declarations shared with jchuff.c */ | |
19 | |
20 #ifdef C_PROGRESSIVE_SUPPORTED | |
21 | |
22 /* Expanded entropy encoder object for progressive Huffman encoding. */ | |
23 | |
24 typedef struct { | |
25 struct jpeg_entropy_encoder pub; /* public fields */ | |
26 | |
27 /* Mode flag: TRUE for optimization, FALSE for actual data output */ | |
28 boolean gather_statistics; | |
29 | |
30 /* Bit-level coding status. | |
31 * next_output_byte/free_in_buffer are local copies of cinfo->dest fields. | |
32 */ | |
33 JOCTET * next_output_byte; /* => next byte to write in buffer */ | |
34 size_t free_in_buffer; /* # of byte spaces remaining in buffer */ | |
35 INT32 put_buffer; /* current bit-accumulation buffer */ | |
36 int put_bits; /* # of bits now in it */ | |
37 j_compress_ptr cinfo; /* link to cinfo (needed for dump_buffer) */ | |
38 | |
39 /* Coding status for DC components */ | |
40 int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ | |
41 | |
42 /* Coding status for AC components */ | |
43 int ac_tbl_no; /* the table number of the single component */ | |
44 unsigned int EOBRUN; /* run length of EOBs */ | |
45 unsigned int BE; /* # of buffered correction bits before MCU */ | |
46 char * bit_buffer; /* buffer for correction bits (1 per char) */ | |
47 /* packing correction bits tightly would save some space but cost time... */ | |
48 | |
49 unsigned int restarts_to_go; /* MCUs left in this restart interval */ | |
50 int next_restart_num; /* next restart number to write (0-7) */ | |
51 | |
52 /* Pointers to derived tables (these workspaces have image lifespan). | |
53 * Since any one scan codes only DC or only AC, we only need one set | |
54 * of tables, not one for DC and one for AC. | |
55 */ | |
56 c_derived_tbl * derived_tbls[NUM_HUFF_TBLS]; | |
57 | |
58 /* Statistics tables for optimization; again, one set is enough */ | |
59 long * count_ptrs[NUM_HUFF_TBLS]; | |
60 } phuff_entropy_encoder; | |
61 | |
62 typedef phuff_entropy_encoder * phuff_entropy_ptr; | |
63 | |
64 /* MAX_CORR_BITS is the number of bits the AC refinement correction-bit | |
65 * buffer can hold. Larger sizes may slightly improve compression, but | |
66 * 1000 is already well into the realm of overkill. | |
67 * The minimum safe size is 64 bits. | |
68 */ | |
69 | |
70 #define MAX_CORR_BITS 1000 /* Max # of correction bits I can buffer */ | |
71 | |
72 /* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32. | |
73 * We assume that int right shift is unsigned if INT32 right shift is, | |
74 * which should be safe. | |
75 */ | |
76 | |
77 #ifdef RIGHT_SHIFT_IS_UNSIGNED | |
78 #define ISHIFT_TEMPS int ishift_temp; | |
79 #define IRIGHT_SHIFT(x,shft) \ | |
80 ((ishift_temp = (x)) < 0 ? \ | |
81 (ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \ | |
82 (ishift_temp >> (shft))) | |
83 #else | |
84 #define ISHIFT_TEMPS | |
85 #define IRIGHT_SHIFT(x,shft) ((x) >> (shft)) | |
86 #endif | |
87 | |
88 /* Forward declarations */ | |
89 METHODDEF(boolean) encode_mcu_DC_first JPP((j_compress_ptr cinfo, | |
90 JBLOCKROW *MCU_data)); | |
91 METHODDEF(boolean) encode_mcu_AC_first JPP((j_compress_ptr cinfo, | |
92 JBLOCKROW *MCU_data)); | |
93 METHODDEF(boolean) encode_mcu_DC_refine JPP((j_compress_ptr cinfo, | |
94 JBLOCKROW *MCU_data)); | |
95 METHODDEF(boolean) encode_mcu_AC_refine JPP((j_compress_ptr cinfo, | |
96 JBLOCKROW *MCU_data)); | |
97 METHODDEF(void) finish_pass_phuff JPP((j_compress_ptr cinfo)); | |
98 METHODDEF(void) finish_pass_gather_phuff JPP((j_compress_ptr cinfo)); | |
99 | |
100 | |
101 /* | |
102 * Initialize for a Huffman-compressed scan using progressive JPEG. | |
103 */ | |
104 | |
105 METHODDEF(void) | |
106 start_pass_phuff (j_compress_ptr cinfo, boolean gather_statistics) | |
107 { | |
108 phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; | |
109 boolean is_DC_band; | |
110 int ci, tbl; | |
111 jpeg_component_info * compptr; | |
112 | |
113 entropy->cinfo = cinfo; | |
114 entropy->gather_statistics = gather_statistics; | |
115 | |
116 is_DC_band = (cinfo->Ss == 0); | |
117 | |
118 /* We assume jcmaster.c already validated the scan parameters. */ | |
119 | |
120 /* Select execution routines */ | |
121 if (cinfo->Ah == 0) { | |
122 if (is_DC_band) | |
123 entropy->pub.encode_mcu = encode_mcu_DC_first; | |
124 else | |
125 entropy->pub.encode_mcu = encode_mcu_AC_first; | |
126 } else { | |
127 if (is_DC_band) | |
128 entropy->pub.encode_mcu = encode_mcu_DC_refine; | |
129 else { | |
130 entropy->pub.encode_mcu = encode_mcu_AC_refine; | |
131 /* AC refinement needs a correction bit buffer */ | |
132 if (entropy->bit_buffer == NULL) | |
133 entropy->bit_buffer = (char *) | |
134 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |
135 MAX_CORR_BITS * SIZEOF(char)); | |
136 } | |
137 } | |
138 if (gather_statistics) | |
139 entropy->pub.finish_pass = finish_pass_gather_phuff; | |
140 else | |
141 entropy->pub.finish_pass = finish_pass_phuff; | |
142 | |
143 /* Only DC coefficients may be interleaved, so cinfo->comps_in_scan = 1 | |
144 * for AC coefficients. | |
145 */ | |
146 for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | |
147 compptr = cinfo->cur_comp_info[ci]; | |
148 /* Initialize DC predictions to 0 */ | |
149 entropy->last_dc_val[ci] = 0; | |
150 /* Get table index */ | |
151 if (is_DC_band) { | |
152 if (cinfo->Ah != 0) /* DC refinement needs no table */ | |
153 continue; | |
154 tbl = compptr->dc_tbl_no; | |
155 } else { | |
156 entropy->ac_tbl_no = tbl = compptr->ac_tbl_no; | |
157 } | |
158 if (gather_statistics) { | |
159 /* Check for invalid table index */ | |
160 /* (make_c_derived_tbl does this in the other path) */ | |
161 if (tbl < 0 || tbl >= NUM_HUFF_TBLS) | |
162 ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl); | |
163 /* Allocate and zero the statistics tables */ | |
164 /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */ | |
165 if (entropy->count_ptrs[tbl] == NULL) | |
166 entropy->count_ptrs[tbl] = (long *) | |
167 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |
168 257 * SIZEOF(long)); | |
169 MEMZERO(entropy->count_ptrs[tbl], 257 * SIZEOF(long)); | |
170 } else { | |
171 /* Compute derived values for Huffman table */ | |
172 /* We may do this more than once for a table, but it's not expensive */ | |
173 jpeg_make_c_derived_tbl(cinfo, is_DC_band, tbl, | |
174 & entropy->derived_tbls[tbl]); | |
175 } | |
176 } | |
177 | |
178 /* Initialize AC stuff */ | |
179 entropy->EOBRUN = 0; | |
180 entropy->BE = 0; | |
181 | |
182 /* Initialize bit buffer to empty */ | |
183 entropy->put_buffer = 0; | |
184 entropy->put_bits = 0; | |
185 | |
186 /* Initialize restart stuff */ | |
187 entropy->restarts_to_go = cinfo->restart_interval; | |
188 entropy->next_restart_num = 0; | |
189 } | |
190 | |
191 | |
192 /* Outputting bytes to the file. | |
193 * NB: these must be called only when actually outputting, | |
194 * that is, entropy->gather_statistics == FALSE. | |
195 */ | |
196 | |
197 /* Emit a byte */ | |
198 #define emit_byte(entropy,val) \ | |
199 { *(entropy)->next_output_byte++ = (JOCTET) (val); \ | |
200 if (--(entropy)->free_in_buffer == 0) \ | |
201 dump_buffer(entropy); } | |
202 | |
203 | |
204 LOCAL(void) | |
205 dump_buffer (phuff_entropy_ptr entropy) | |
206 /* Empty the output buffer; we do not support suspension in this module. */ | |
207 { | |
208 struct jpeg_destination_mgr * dest = entropy->cinfo->dest; | |
209 | |
210 if (! (*dest->empty_output_buffer) (entropy->cinfo)) | |
211 ERREXIT(entropy->cinfo, JERR_CANT_SUSPEND); | |
212 /* After a successful buffer dump, must reset buffer pointers */ | |
213 entropy->next_output_byte = dest->next_output_byte; | |
214 entropy->free_in_buffer = dest->free_in_buffer; | |
215 } | |
216 | |
217 | |
218 /* Outputting bits to the file */ | |
219 | |
220 /* Only the right 24 bits of put_buffer are used; the valid bits are | |
221 * left-justified in this part. At most 16 bits can be passed to emit_bits | |
222 * in one call, and we never retain more than 7 bits in put_buffer | |
223 * between calls, so 24 bits are sufficient. | |
224 */ | |
225 | |
226 INLINE | |
227 LOCAL(void) | |
228 emit_bits (phuff_entropy_ptr entropy, unsigned int code, int size) | |
229 /* Emit some bits, unless we are in gather mode */ | |
230 { | |
231 /* This routine is heavily used, so it's worth coding tightly. */ | |
232 register INT32 put_buffer = (INT32) code; | |
233 register int put_bits = entropy->put_bits; | |
234 | |
235 /* if size is 0, caller used an invalid Huffman table entry */ | |
236 if (size == 0) | |
237 ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE); | |
238 | |
239 if (entropy->gather_statistics) | |
240 return; /* do nothing if we're only getting stats */ | |
241 | |
242 put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */ | |
243 | |
244 put_bits += size; /* new number of bits in buffer */ | |
245 | |
246 put_buffer <<= 24 - put_bits; /* align incoming bits */ | |
247 | |
248 put_buffer |= entropy->put_buffer; /* and merge with old buffer contents */ | |
249 | |
250 while (put_bits >= 8) { | |
251 int c = (int) ((put_buffer >> 16) & 0xFF); | |
252 | |
253 emit_byte(entropy, c); | |
254 if (c == 0xFF) { /* need to stuff a zero byte? */ | |
255 emit_byte(entropy, 0); | |
256 } | |
257 put_buffer <<= 8; | |
258 put_bits -= 8; | |
259 } | |
260 | |
261 entropy->put_buffer = put_buffer; /* update variables */ | |
262 entropy->put_bits = put_bits; | |
263 } | |
264 | |
265 | |
266 LOCAL(void) | |
267 flush_bits (phuff_entropy_ptr entropy) | |
268 { | |
269 emit_bits(entropy, 0x7F, 7); /* fill any partial byte with ones */ | |
270 entropy->put_buffer = 0; /* and reset bit-buffer to empty */ | |
271 entropy->put_bits = 0; | |
272 } | |
273 | |
274 | |
275 /* | |
276 * Emit (or just count) a Huffman symbol. | |
277 */ | |
278 | |
279 INLINE | |
280 LOCAL(void) | |
281 emit_symbol (phuff_entropy_ptr entropy, int tbl_no, int symbol) | |
282 { | |
283 if (entropy->gather_statistics) | |
284 entropy->count_ptrs[tbl_no][symbol]++; | |
285 else { | |
286 c_derived_tbl * tbl = entropy->derived_tbls[tbl_no]; | |
287 emit_bits(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]); | |
288 } | |
289 } | |
290 | |
291 | |
292 /* | |
293 * Emit bits from a correction bit buffer. | |
294 */ | |
295 | |
296 LOCAL(void) | |
297 emit_buffered_bits (phuff_entropy_ptr entropy, char * bufstart, | |
298 unsigned int nbits) | |
299 { | |
300 if (entropy->gather_statistics) | |
301 return; /* no real work */ | |
302 | |
303 while (nbits > 0) { | |
304 emit_bits(entropy, (unsigned int) (*bufstart), 1); | |
305 bufstart++; | |
306 nbits--; | |
307 } | |
308 } | |
309 | |
310 | |
311 /* | |
312 * Emit any pending EOBRUN symbol. | |
313 */ | |
314 | |
315 LOCAL(void) | |
316 emit_eobrun (phuff_entropy_ptr entropy) | |
317 { | |
318 register int temp, nbits; | |
319 | |
320 if (entropy->EOBRUN > 0) { /* if there is any pending EOBRUN */ | |
321 temp = entropy->EOBRUN; | |
322 nbits = 0; | |
323 while ((temp >>= 1)) | |
324 nbits++; | |
325 /* safety check: shouldn't happen given limited correction-bit buffer */ | |
326 if (nbits > 14) | |
327 ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE); | |
328 | |
329 emit_symbol(entropy, entropy->ac_tbl_no, nbits << 4); | |
330 if (nbits) | |
331 emit_bits(entropy, entropy->EOBRUN, nbits); | |
332 | |
333 entropy->EOBRUN = 0; | |
334 | |
335 /* Emit any buffered correction bits */ | |
336 emit_buffered_bits(entropy, entropy->bit_buffer, entropy->BE); | |
337 entropy->BE = 0; | |
338 } | |
339 } | |
340 | |
341 | |
342 /* | |
343 * Emit a restart marker & resynchronize predictions. | |
344 */ | |
345 | |
346 LOCAL(void) | |
347 emit_restart (phuff_entropy_ptr entropy, int restart_num) | |
348 { | |
349 int ci; | |
350 | |
351 emit_eobrun(entropy); | |
352 | |
353 if (! entropy->gather_statistics) { | |
354 flush_bits(entropy); | |
355 emit_byte(entropy, 0xFF); | |
356 emit_byte(entropy, JPEG_RST0 + restart_num); | |
357 } | |
358 | |
359 if (entropy->cinfo->Ss == 0) { | |
360 /* Re-initialize DC predictions to 0 */ | |
361 for (ci = 0; ci < entropy->cinfo->comps_in_scan; ci++) | |
362 entropy->last_dc_val[ci] = 0; | |
363 } else { | |
364 /* Re-initialize all AC-related fields to 0 */ | |
365 entropy->EOBRUN = 0; | |
366 entropy->BE = 0; | |
367 } | |
368 } | |
369 | |
370 | |
371 /* | |
372 * MCU encoding for DC initial scan (either spectral selection, | |
373 * or first pass of successive approximation). | |
374 */ | |
375 | |
376 METHODDEF(boolean) | |
377 encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data) | |
378 { | |
379 phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; | |
380 register int temp, temp2; | |
381 register int nbits; | |
382 int blkn, ci; | |
383 int Al = cinfo->Al; | |
384 JBLOCKROW block; | |
385 jpeg_component_info * compptr; | |
386 ISHIFT_TEMPS | |
387 | |
388 entropy->next_output_byte = cinfo->dest->next_output_byte; | |
389 entropy->free_in_buffer = cinfo->dest->free_in_buffer; | |
390 | |
391 /* Emit restart marker if needed */ | |
392 if (cinfo->restart_interval) | |
393 if (entropy->restarts_to_go == 0) | |
394 emit_restart(entropy, entropy->next_restart_num); | |
395 | |
396 /* Encode the MCU data blocks */ | |
397 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { | |
398 block = MCU_data[blkn]; | |
399 ci = cinfo->MCU_membership[blkn]; | |
400 compptr = cinfo->cur_comp_info[ci]; | |
401 | |
402 /* Compute the DC value after the required point transform by Al. | |
403 * This is simply an arithmetic right shift. | |
404 */ | |
405 temp2 = IRIGHT_SHIFT((int) ((*block)[0]), Al); | |
406 | |
407 /* DC differences are figured on the point-transformed values. */ | |
408 temp = temp2 - entropy->last_dc_val[ci]; | |
409 entropy->last_dc_val[ci] = temp2; | |
410 | |
411 /* Encode the DC coefficient difference per section G.1.2.1 */ | |
412 temp2 = temp; | |
413 if (temp < 0) { | |
414 temp = -temp; /* temp is abs value of input */ | |
415 /* For a negative input, want temp2 = bitwise complement of abs(input) */ | |
416 /* This code assumes we are on a two's complement machine */ | |
417 temp2--; | |
418 } | |
419 | |
420 /* Find the number of bits needed for the magnitude of the coefficient */ | |
421 nbits = 0; | |
422 while (temp) { | |
423 nbits++; | |
424 temp >>= 1; | |
425 } | |
426 /* Check for out-of-range coefficient values. | |
427 * Since we're encoding a difference, the range limit is twice as much. | |
428 */ | |
429 if (nbits > MAX_COEF_BITS+1) | |
430 ERREXIT(cinfo, JERR_BAD_DCT_COEF); | |
431 | |
432 /* Count/emit the Huffman-coded symbol for the number of bits */ | |
433 emit_symbol(entropy, compptr->dc_tbl_no, nbits); | |
434 | |
435 /* Emit that number of bits of the value, if positive, */ | |
436 /* or the complement of its magnitude, if negative. */ | |
437 if (nbits) /* emit_bits rejects calls with size 0 */ | |
438 emit_bits(entropy, (unsigned int) temp2, nbits); | |
439 } | |
440 | |
441 cinfo->dest->next_output_byte = entropy->next_output_byte; | |
442 cinfo->dest->free_in_buffer = entropy->free_in_buffer; | |
443 | |
444 /* Update restart-interval state too */ | |
445 if (cinfo->restart_interval) { | |
446 if (entropy->restarts_to_go == 0) { | |
447 entropy->restarts_to_go = cinfo->restart_interval; | |
448 entropy->next_restart_num++; | |
449 entropy->next_restart_num &= 7; | |
450 } | |
451 entropy->restarts_to_go--; | |
452 } | |
453 | |
454 return TRUE; | |
455 } | |
456 | |
457 | |
458 /* | |
459 * MCU encoding for AC initial scan (either spectral selection, | |
460 * or first pass of successive approximation). | |
461 */ | |
462 | |
463 METHODDEF(boolean) | |
464 encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data) | |
465 { | |
466 phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; | |
467 register int temp, temp2; | |
468 register int nbits; | |
469 register int r, k; | |
470 int Se = cinfo->Se; | |
471 int Al = cinfo->Al; | |
472 JBLOCKROW block; | |
473 | |
474 entropy->next_output_byte = cinfo->dest->next_output_byte; | |
475 entropy->free_in_buffer = cinfo->dest->free_in_buffer; | |
476 | |
477 /* Emit restart marker if needed */ | |
478 if (cinfo->restart_interval) | |
479 if (entropy->restarts_to_go == 0) | |
480 emit_restart(entropy, entropy->next_restart_num); | |
481 | |
482 /* Encode the MCU data block */ | |
483 block = MCU_data[0]; | |
484 | |
485 /* Encode the AC coefficients per section G.1.2.2, fig. G.3 */ | |
486 | |
487 r = 0; /* r = run length of zeros */ | |
488 | |
489 for (k = cinfo->Ss; k <= Se; k++) { | |
490 if ((temp = (*block)[jpeg_natural_order[k]]) == 0) { | |
491 r++; | |
492 continue; | |
493 } | |
494 /* We must apply the point transform by Al. For AC coefficients this | |
495 * is an integer division with rounding towards 0. To do this portably | |
496 * in C, we shift after obtaining the absolute value; so the code is | |
497 * interwoven with finding the abs value (temp) and output bits (temp2). | |
498 */ | |
499 if (temp < 0) { | |
500 temp = -temp; /* temp is abs value of input */ | |
501 temp >>= Al; /* apply the point transform */ | |
502 /* For a negative coef, want temp2 = bitwise complement of abs(coef) */ | |
503 temp2 = ~temp; | |
504 } else { | |
505 temp >>= Al; /* apply the point transform */ | |
506 temp2 = temp; | |
507 } | |
508 /* Watch out for case that nonzero coef is zero after point transform */ | |
509 if (temp == 0) { | |
510 r++; | |
511 continue; | |
512 } | |
513 | |
514 /* Emit any pending EOBRUN */ | |
515 if (entropy->EOBRUN > 0) | |
516 emit_eobrun(entropy); | |
517 /* if run length > 15, must emit special run-length-16 codes (0xF0) */ | |
518 while (r > 15) { | |
519 emit_symbol(entropy, entropy->ac_tbl_no, 0xF0); | |
520 r -= 16; | |
521 } | |
522 | |
523 /* Find the number of bits needed for the magnitude of the coefficient */ | |
524 nbits = 1; /* there must be at least one 1 bit */ | |
525 while ((temp >>= 1)) | |
526 nbits++; | |
527 /* Check for out-of-range coefficient values */ | |
528 if (nbits > MAX_COEF_BITS) | |
529 ERREXIT(cinfo, JERR_BAD_DCT_COEF); | |
530 | |
531 /* Count/emit Huffman symbol for run length / number of bits */ | |
532 emit_symbol(entropy, entropy->ac_tbl_no, (r << 4) + nbits); | |
533 | |
534 /* Emit that number of bits of the value, if positive, */ | |
535 /* or the complement of its magnitude, if negative. */ | |
536 emit_bits(entropy, (unsigned int) temp2, nbits); | |
537 | |
538 r = 0; /* reset zero run length */ | |
539 } | |
540 | |
541 if (r > 0) { /* If there are trailing zeroes, */ | |
542 entropy->EOBRUN++; /* count an EOB */ | |
543 if (entropy->EOBRUN == 0x7FFF) | |
544 emit_eobrun(entropy); /* force it out to avoid overflow */ | |
545 } | |
546 | |
547 cinfo->dest->next_output_byte = entropy->next_output_byte; | |
548 cinfo->dest->free_in_buffer = entropy->free_in_buffer; | |
549 | |
550 /* Update restart-interval state too */ | |
551 if (cinfo->restart_interval) { | |
552 if (entropy->restarts_to_go == 0) { | |
553 entropy->restarts_to_go = cinfo->restart_interval; | |
554 entropy->next_restart_num++; | |
555 entropy->next_restart_num &= 7; | |
556 } | |
557 entropy->restarts_to_go--; | |
558 } | |
559 | |
560 return TRUE; | |
561 } | |
562 | |
563 | |
564 /* | |
565 * MCU encoding for DC successive approximation refinement scan. | |
566 * Note: we assume such scans can be multi-component, although the spec | |
567 * is not very clear on the point. | |
568 */ | |
569 | |
570 METHODDEF(boolean) | |
571 encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data) | |
572 { | |
573 phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; | |
574 register int temp; | |
575 int blkn; | |
576 int Al = cinfo->Al; | |
577 JBLOCKROW block; | |
578 | |
579 entropy->next_output_byte = cinfo->dest->next_output_byte; | |
580 entropy->free_in_buffer = cinfo->dest->free_in_buffer; | |
581 | |
582 /* Emit restart marker if needed */ | |
583 if (cinfo->restart_interval) | |
584 if (entropy->restarts_to_go == 0) | |
585 emit_restart(entropy, entropy->next_restart_num); | |
586 | |
587 /* Encode the MCU data blocks */ | |
588 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { | |
589 block = MCU_data[blkn]; | |
590 | |
591 /* We simply emit the Al'th bit of the DC coefficient value. */ | |
592 temp = (*block)[0]; | |
593 emit_bits(entropy, (unsigned int) (temp >> Al), 1); | |
594 } | |
595 | |
596 cinfo->dest->next_output_byte = entropy->next_output_byte; | |
597 cinfo->dest->free_in_buffer = entropy->free_in_buffer; | |
598 | |
599 /* Update restart-interval state too */ | |
600 if (cinfo->restart_interval) { | |
601 if (entropy->restarts_to_go == 0) { | |
602 entropy->restarts_to_go = cinfo->restart_interval; | |
603 entropy->next_restart_num++; | |
604 entropy->next_restart_num &= 7; | |
605 } | |
606 entropy->restarts_to_go--; | |
607 } | |
608 | |
609 return TRUE; | |
610 } | |
611 | |
612 | |
613 /* | |
614 * MCU encoding for AC successive approximation refinement scan. | |
615 */ | |
616 | |
617 METHODDEF(boolean) | |
618 encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data) | |
619 { | |
620 phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; | |
621 register int temp; | |
622 register int r, k; | |
623 int EOB; | |
624 char *BR_buffer; | |
625 unsigned int BR; | |
626 int Se = cinfo->Se; | |
627 int Al = cinfo->Al; | |
628 JBLOCKROW block; | |
629 int absvalues[DCTSIZE2]; | |
630 | |
631 entropy->next_output_byte = cinfo->dest->next_output_byte; | |
632 entropy->free_in_buffer = cinfo->dest->free_in_buffer; | |
633 | |
634 /* Emit restart marker if needed */ | |
635 if (cinfo->restart_interval) | |
636 if (entropy->restarts_to_go == 0) | |
637 emit_restart(entropy, entropy->next_restart_num); | |
638 | |
639 /* Encode the MCU data block */ | |
640 block = MCU_data[0]; | |
641 | |
642 /* It is convenient to make a pre-pass to determine the transformed | |
643 * coefficients' absolute values and the EOB position. | |
644 */ | |
645 EOB = 0; | |
646 for (k = cinfo->Ss; k <= Se; k++) { | |
647 temp = (*block)[jpeg_natural_order[k]]; | |
648 /* We must apply the point transform by Al. For AC coefficients this | |
649 * is an integer division with rounding towards 0. To do this portably | |
650 * in C, we shift after obtaining the absolute value. | |
651 */ | |
652 if (temp < 0) | |
653 temp = -temp; /* temp is abs value of input */ | |
654 temp >>= Al; /* apply the point transform */ | |
655 absvalues[k] = temp; /* save abs value for main pass */ | |
656 if (temp == 1) | |
657 EOB = k; /* EOB = index of last newly-nonzero coef */ | |
658 } | |
659 | |
660 /* Encode the AC coefficients per section G.1.2.3, fig. G.7 */ | |
661 | |
662 r = 0; /* r = run length of zeros */ | |
663 BR = 0; /* BR = count of buffered bits added now */ | |
664 BR_buffer = entropy->bit_buffer + entropy->BE; /* Append bits to buffer */ | |
665 | |
666 for (k = cinfo->Ss; k <= Se; k++) { | |
667 if ((temp = absvalues[k]) == 0) { | |
668 r++; | |
669 continue; | |
670 } | |
671 | |
672 /* Emit any required ZRLs, but not if they can be folded into EOB */ | |
673 while (r > 15 && k <= EOB) { | |
674 /* emit any pending EOBRUN and the BE correction bits */ | |
675 emit_eobrun(entropy); | |
676 /* Emit ZRL */ | |
677 emit_symbol(entropy, entropy->ac_tbl_no, 0xF0); | |
678 r -= 16; | |
679 /* Emit buffered correction bits that must be associated with ZRL */ | |
680 emit_buffered_bits(entropy, BR_buffer, BR); | |
681 BR_buffer = entropy->bit_buffer; /* BE bits are gone now */ | |
682 BR = 0; | |
683 } | |
684 | |
685 /* If the coef was previously nonzero, it only needs a correction bit. | |
686 * NOTE: a straight translation of the spec's figure G.7 would suggest | |
687 * that we also need to test r > 15. But if r > 15, we can only get here | |
688 * if k > EOB, which implies that this coefficient is not 1. | |
689 */ | |
690 if (temp > 1) { | |
691 /* The correction bit is the next bit of the absolute value. */ | |
692 BR_buffer[BR++] = (char) (temp & 1); | |
693 continue; | |
694 } | |
695 | |
696 /* Emit any pending EOBRUN and the BE correction bits */ | |
697 emit_eobrun(entropy); | |
698 | |
699 /* Count/emit Huffman symbol for run length / number of bits */ | |
700 emit_symbol(entropy, entropy->ac_tbl_no, (r << 4) + 1); | |
701 | |
702 /* Emit output bit for newly-nonzero coef */ | |
703 temp = ((*block)[jpeg_natural_order[k]] < 0) ? 0 : 1; | |
704 emit_bits(entropy, (unsigned int) temp, 1); | |
705 | |
706 /* Emit buffered correction bits that must be associated with this code */ | |
707 emit_buffered_bits(entropy, BR_buffer, BR); | |
708 BR_buffer = entropy->bit_buffer; /* BE bits are gone now */ | |
709 BR = 0; | |
710 r = 0; /* reset zero run length */ | |
711 } | |
712 | |
713 if (r > 0 || BR > 0) { /* If there are trailing zeroes, */ | |
714 entropy->EOBRUN++; /* count an EOB */ | |
715 entropy->BE += BR; /* concat my correction bits to older ones */ | |
716 /* We force out the EOB if we risk either: | |
717 * 1. overflow of the EOB counter; | |
718 * 2. overflow of the correction bit buffer during the next MCU. | |
719 */ | |
720 if (entropy->EOBRUN == 0x7FFF || entropy->BE > (MAX_CORR_BITS-DCTSIZE2+1)) | |
721 emit_eobrun(entropy); | |
722 } | |
723 | |
724 cinfo->dest->next_output_byte = entropy->next_output_byte; | |
725 cinfo->dest->free_in_buffer = entropy->free_in_buffer; | |
726 | |
727 /* Update restart-interval state too */ | |
728 if (cinfo->restart_interval) { | |
729 if (entropy->restarts_to_go == 0) { | |
730 entropy->restarts_to_go = cinfo->restart_interval; | |
731 entropy->next_restart_num++; | |
732 entropy->next_restart_num &= 7; | |
733 } | |
734 entropy->restarts_to_go--; | |
735 } | |
736 | |
737 return TRUE; | |
738 } | |
739 | |
740 | |
741 /* | |
742 * Finish up at the end of a Huffman-compressed progressive scan. | |
743 */ | |
744 | |
745 METHODDEF(void) | |
746 finish_pass_phuff (j_compress_ptr cinfo) | |
747 { | |
748 phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; | |
749 | |
750 entropy->next_output_byte = cinfo->dest->next_output_byte; | |
751 entropy->free_in_buffer = cinfo->dest->free_in_buffer; | |
752 | |
753 /* Flush out any buffered data */ | |
754 emit_eobrun(entropy); | |
755 flush_bits(entropy); | |
756 | |
757 cinfo->dest->next_output_byte = entropy->next_output_byte; | |
758 cinfo->dest->free_in_buffer = entropy->free_in_buffer; | |
759 } | |
760 | |
761 | |
762 /* | |
763 * Finish up a statistics-gathering pass and create the new Huffman tables. | |
764 */ | |
765 | |
766 METHODDEF(void) | |
767 finish_pass_gather_phuff (j_compress_ptr cinfo) | |
768 { | |
769 phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; | |
770 boolean is_DC_band; | |
771 int ci, tbl; | |
772 jpeg_component_info * compptr; | |
773 JHUFF_TBL **htblptr; | |
774 boolean did[NUM_HUFF_TBLS]; | |
775 | |
776 /* Flush out buffered data (all we care about is counting the EOB symbol) */ | |
777 emit_eobrun(entropy); | |
778 | |
779 is_DC_band = (cinfo->Ss == 0); | |
780 | |
781 /* It's important not to apply jpeg_gen_optimal_table more than once | |
782 * per table, because it clobbers the input frequency counts! | |
783 */ | |
784 MEMZERO(did, SIZEOF(did)); | |
785 | |
786 for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | |
787 compptr = cinfo->cur_comp_info[ci]; | |
788 if (is_DC_band) { | |
789 if (cinfo->Ah != 0) /* DC refinement needs no table */ | |
790 continue; | |
791 tbl = compptr->dc_tbl_no; | |
792 } else { | |
793 tbl = compptr->ac_tbl_no; | |
794 } | |
795 if (! did[tbl]) { | |
796 if (is_DC_band) | |
797 htblptr = & cinfo->dc_huff_tbl_ptrs[tbl]; | |
798 else | |
799 htblptr = & cinfo->ac_huff_tbl_ptrs[tbl]; | |
800 if (*htblptr == NULL) | |
801 *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo); | |
802 jpeg_gen_optimal_table(cinfo, *htblptr, entropy->count_ptrs[tbl]); | |
803 did[tbl] = TRUE; | |
804 } | |
805 } | |
806 } | |
807 | |
808 | |
809 /* | |
810 * Module initialization routine for progressive Huffman entropy encoding. | |
811 */ | |
812 | |
813 GLOBAL(void) | |
814 jinit_phuff_encoder (j_compress_ptr cinfo) | |
815 { | |
816 phuff_entropy_ptr entropy; | |
817 int i; | |
818 | |
819 entropy = (phuff_entropy_ptr) | |
820 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |
821 SIZEOF(phuff_entropy_encoder)); | |
822 cinfo->entropy = (struct jpeg_entropy_encoder *) entropy; | |
823 entropy->pub.start_pass = start_pass_phuff; | |
824 | |
825 /* Mark tables unallocated */ | |
826 for (i = 0; i < NUM_HUFF_TBLS; i++) { | |
827 entropy->derived_tbls[i] = NULL; | |
828 entropy->count_ptrs[i] = NULL; | |
829 } | |
830 entropy->bit_buffer = NULL; /* needed only in AC refinement scan */ | |
831 } | |
832 | |
833 #endif /* C_PROGRESSIVE_SUPPORTED */ | |
OLD | NEW |