OLD | NEW |
| (Empty) |
1 /* | |
2 * jchuff.c | |
3 * | |
4 * Copyright (C) 1991-1997, Thomas G. Lane. | |
5 * This file is part of the Independent JPEG Group's software. | |
6 * For conditions of distribution and use, see the accompanying README file. | |
7 * | |
8 * This file contains Huffman entropy encoding routines. | |
9 * | |
10 * Much of the complexity here has to do with supporting output suspension. | |
11 * If the data destination module demands suspension, we want to be able to | |
12 * back up to the start of the current MCU. To do this, we copy state | |
13 * variables into local working storage, and update them back to the | |
14 * permanent JPEG objects only upon successful completion of an MCU. | |
15 */ | |
16 | |
17 #define JPEG_INTERNALS | |
18 #include "jinclude.h" | |
19 #include "jpeglib.h" | |
20 #include "jchuff.h" /* Declarations shared with jcphuff.c */ | |
21 | |
22 | |
23 /* Expanded entropy encoder object for Huffman encoding. | |
24 * | |
25 * The savable_state subrecord contains fields that change within an MCU, | |
26 * but must not be updated permanently until we complete the MCU. | |
27 */ | |
28 | |
29 typedef struct { | |
30 INT32 put_buffer; /* current bit-accumulation buffer */ | |
31 int put_bits; /* # of bits now in it */ | |
32 int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ | |
33 } savable_state; | |
34 | |
35 /* This macro is to work around compilers with missing or broken | |
36 * structure assignment. You'll need to fix this code if you have | |
37 * such a compiler and you change MAX_COMPS_IN_SCAN. | |
38 */ | |
39 | |
40 #ifndef NO_STRUCT_ASSIGN | |
41 #define ASSIGN_STATE(dest,src) ((dest) = (src)) | |
42 #else | |
43 #if MAX_COMPS_IN_SCAN == 4 | |
44 #define ASSIGN_STATE(dest,src) \ | |
45 ((dest).put_buffer = (src).put_buffer, \ | |
46 (dest).put_bits = (src).put_bits, \ | |
47 (dest).last_dc_val[0] = (src).last_dc_val[0], \ | |
48 (dest).last_dc_val[1] = (src).last_dc_val[1], \ | |
49 (dest).last_dc_val[2] = (src).last_dc_val[2], \ | |
50 (dest).last_dc_val[3] = (src).last_dc_val[3]) | |
51 #endif | |
52 #endif | |
53 | |
54 | |
55 typedef struct { | |
56 struct jpeg_entropy_encoder pub; /* public fields */ | |
57 | |
58 savable_state saved; /* Bit buffer & DC state at start of MCU */ | |
59 | |
60 /* These fields are NOT loaded into local working state. */ | |
61 unsigned int restarts_to_go; /* MCUs left in this restart interval */ | |
62 int next_restart_num; /* next restart number to write (0-7) */ | |
63 | |
64 /* Pointers to derived tables (these workspaces have image lifespan) */ | |
65 c_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS]; | |
66 c_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS]; | |
67 | |
68 #ifdef ENTROPY_OPT_SUPPORTED /* Statistics tables for optimization */ | |
69 long * dc_count_ptrs[NUM_HUFF_TBLS]; | |
70 long * ac_count_ptrs[NUM_HUFF_TBLS]; | |
71 #endif | |
72 } huff_entropy_encoder; | |
73 | |
74 typedef huff_entropy_encoder * huff_entropy_ptr; | |
75 | |
76 /* Working state while writing an MCU. | |
77 * This struct contains all the fields that are needed by subroutines. | |
78 */ | |
79 | |
80 typedef struct { | |
81 JOCTET * next_output_byte; /* => next byte to write in buffer */ | |
82 size_t free_in_buffer; /* # of byte spaces remaining in buffer */ | |
83 savable_state cur; /* Current bit buffer & DC state */ | |
84 j_compress_ptr cinfo; /* dump_buffer needs access to this */ | |
85 } working_state; | |
86 | |
87 | |
88 /* Forward declarations */ | |
89 METHODDEF(boolean) encode_mcu_huff JPP((j_compress_ptr cinfo, | |
90 JBLOCKROW *MCU_data)); | |
91 METHODDEF(void) finish_pass_huff JPP((j_compress_ptr cinfo)); | |
92 #ifdef ENTROPY_OPT_SUPPORTED | |
93 METHODDEF(boolean) encode_mcu_gather JPP((j_compress_ptr cinfo, | |
94 JBLOCKROW *MCU_data)); | |
95 METHODDEF(void) finish_pass_gather JPP((j_compress_ptr cinfo)); | |
96 #endif | |
97 | |
98 | |
99 /* | |
100 * Initialize for a Huffman-compressed scan. | |
101 * If gather_statistics is TRUE, we do not output anything during the scan, | |
102 * just count the Huffman symbols used and generate Huffman code tables. | |
103 */ | |
104 | |
105 METHODDEF(void) | |
106 start_pass_huff (j_compress_ptr cinfo, boolean gather_statistics) | |
107 { | |
108 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; | |
109 int ci, dctbl, actbl; | |
110 jpeg_component_info * compptr; | |
111 | |
112 if (gather_statistics) { | |
113 #ifdef ENTROPY_OPT_SUPPORTED | |
114 entropy->pub.encode_mcu = encode_mcu_gather; | |
115 entropy->pub.finish_pass = finish_pass_gather; | |
116 #else | |
117 ERREXIT(cinfo, JERR_NOT_COMPILED); | |
118 #endif | |
119 } else { | |
120 entropy->pub.encode_mcu = encode_mcu_huff; | |
121 entropy->pub.finish_pass = finish_pass_huff; | |
122 } | |
123 | |
124 for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | |
125 compptr = cinfo->cur_comp_info[ci]; | |
126 dctbl = compptr->dc_tbl_no; | |
127 actbl = compptr->ac_tbl_no; | |
128 if (gather_statistics) { | |
129 #ifdef ENTROPY_OPT_SUPPORTED | |
130 /* Check for invalid table indexes */ | |
131 /* (make_c_derived_tbl does this in the other path) */ | |
132 if (dctbl < 0 || dctbl >= NUM_HUFF_TBLS) | |
133 ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, dctbl); | |
134 if (actbl < 0 || actbl >= NUM_HUFF_TBLS) | |
135 ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, actbl); | |
136 /* Allocate and zero the statistics tables */ | |
137 /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */ | |
138 if (entropy->dc_count_ptrs[dctbl] == NULL) | |
139 entropy->dc_count_ptrs[dctbl] = (long *) | |
140 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |
141 257 * SIZEOF(long)); | |
142 MEMZERO(entropy->dc_count_ptrs[dctbl], 257 * SIZEOF(long)); | |
143 if (entropy->ac_count_ptrs[actbl] == NULL) | |
144 entropy->ac_count_ptrs[actbl] = (long *) | |
145 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |
146 257 * SIZEOF(long)); | |
147 MEMZERO(entropy->ac_count_ptrs[actbl], 257 * SIZEOF(long)); | |
148 #endif | |
149 } else { | |
150 /* Compute derived values for Huffman tables */ | |
151 /* We may do this more than once for a table, but it's not expensive */ | |
152 jpeg_make_c_derived_tbl(cinfo, TRUE, dctbl, | |
153 & entropy->dc_derived_tbls[dctbl]); | |
154 jpeg_make_c_derived_tbl(cinfo, FALSE, actbl, | |
155 & entropy->ac_derived_tbls[actbl]); | |
156 } | |
157 /* Initialize DC predictions to 0 */ | |
158 entropy->saved.last_dc_val[ci] = 0; | |
159 } | |
160 | |
161 /* Initialize bit buffer to empty */ | |
162 entropy->saved.put_buffer = 0; | |
163 entropy->saved.put_bits = 0; | |
164 | |
165 /* Initialize restart stuff */ | |
166 entropy->restarts_to_go = cinfo->restart_interval; | |
167 entropy->next_restart_num = 0; | |
168 } | |
169 | |
170 | |
171 /* | |
172 * Compute the derived values for a Huffman table. | |
173 * This routine also performs some validation checks on the table. | |
174 * | |
175 * Note this is also used by jcphuff.c. | |
176 */ | |
177 | |
178 GLOBAL(void) | |
179 jpeg_make_c_derived_tbl (j_compress_ptr cinfo, boolean isDC, int tblno, | |
180 c_derived_tbl ** pdtbl) | |
181 { | |
182 JHUFF_TBL *htbl; | |
183 c_derived_tbl *dtbl; | |
184 int p, i, l, lastp, si, maxsymbol; | |
185 char huffsize[257]; | |
186 unsigned int huffcode[257]; | |
187 unsigned int code; | |
188 | |
189 /* Note that huffsize[] and huffcode[] are filled in code-length order, | |
190 * paralleling the order of the symbols themselves in htbl->huffval[]. | |
191 */ | |
192 | |
193 /* Find the input Huffman table */ | |
194 if (tblno < 0 || tblno >= NUM_HUFF_TBLS) | |
195 ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); | |
196 htbl = | |
197 isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno]; | |
198 if (htbl == NULL) | |
199 ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); | |
200 | |
201 /* Allocate a workspace if we haven't already done so. */ | |
202 if (*pdtbl == NULL) | |
203 *pdtbl = (c_derived_tbl *) | |
204 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |
205 SIZEOF(c_derived_tbl)); | |
206 dtbl = *pdtbl; | |
207 | |
208 /* Figure C.1: make table of Huffman code length for each symbol */ | |
209 | |
210 p = 0; | |
211 for (l = 1; l <= 16; l++) { | |
212 i = (int) htbl->bits[l]; | |
213 if (i < 0 || p + i > 256) /* protect against table overrun */ | |
214 ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); | |
215 while (i--) | |
216 huffsize[p++] = (char) l; | |
217 } | |
218 huffsize[p] = 0; | |
219 lastp = p; | |
220 | |
221 /* Figure C.2: generate the codes themselves */ | |
222 /* We also validate that the counts represent a legal Huffman code tree. */ | |
223 | |
224 code = 0; | |
225 si = huffsize[0]; | |
226 p = 0; | |
227 while (huffsize[p]) { | |
228 while (((int) huffsize[p]) == si) { | |
229 huffcode[p++] = code; | |
230 code++; | |
231 } | |
232 /* code is now 1 more than the last code used for codelength si; but | |
233 * it must still fit in si bits, since no code is allowed to be all ones. | |
234 */ | |
235 if (((INT32) code) >= (((INT32) 1) << si)) | |
236 ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); | |
237 code <<= 1; | |
238 si++; | |
239 } | |
240 | |
241 /* Figure C.3: generate encoding tables */ | |
242 /* These are code and size indexed by symbol value */ | |
243 | |
244 /* Set all codeless symbols to have code length 0; | |
245 * this lets us detect duplicate VAL entries here, and later | |
246 * allows emit_bits to detect any attempt to emit such symbols. | |
247 */ | |
248 MEMZERO(dtbl->ehufsi, SIZEOF(dtbl->ehufsi)); | |
249 | |
250 /* This is also a convenient place to check for out-of-range | |
251 * and duplicated VAL entries. We allow 0..255 for AC symbols | |
252 * but only 0..15 for DC. (We could constrain them further | |
253 * based on data depth and mode, but this seems enough.) | |
254 */ | |
255 maxsymbol = isDC ? 15 : 255; | |
256 | |
257 for (p = 0; p < lastp; p++) { | |
258 i = htbl->huffval[p]; | |
259 if (i < 0 || i > maxsymbol || dtbl->ehufsi[i]) | |
260 ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); | |
261 dtbl->ehufco[i] = huffcode[p]; | |
262 dtbl->ehufsi[i] = huffsize[p]; | |
263 } | |
264 } | |
265 | |
266 | |
267 /* Outputting bytes to the file */ | |
268 | |
269 /* Emit a byte, taking 'action' if must suspend. */ | |
270 #define emit_byte(state,val,action) \ | |
271 { *(state)->next_output_byte++ = (JOCTET) (val); \ | |
272 if (--(state)->free_in_buffer == 0) \ | |
273 if (! dump_buffer(state)) \ | |
274 { action; } } | |
275 | |
276 | |
277 LOCAL(boolean) | |
278 dump_buffer (working_state * state) | |
279 /* Empty the output buffer; return TRUE if successful, FALSE if must suspend */ | |
280 { | |
281 struct jpeg_destination_mgr * dest = state->cinfo->dest; | |
282 | |
283 if (! (*dest->empty_output_buffer) (state->cinfo)) | |
284 return FALSE; | |
285 /* After a successful buffer dump, must reset buffer pointers */ | |
286 state->next_output_byte = dest->next_output_byte; | |
287 state->free_in_buffer = dest->free_in_buffer; | |
288 return TRUE; | |
289 } | |
290 | |
291 | |
292 /* Outputting bits to the file */ | |
293 | |
294 /* Only the right 24 bits of put_buffer are used; the valid bits are | |
295 * left-justified in this part. At most 16 bits can be passed to emit_bits | |
296 * in one call, and we never retain more than 7 bits in put_buffer | |
297 * between calls, so 24 bits are sufficient. | |
298 */ | |
299 | |
300 INLINE | |
301 LOCAL(boolean) | |
302 emit_bits (working_state * state, unsigned int code, int size) | |
303 /* Emit some bits; return TRUE if successful, FALSE if must suspend */ | |
304 { | |
305 /* This routine is heavily used, so it's worth coding tightly. */ | |
306 register INT32 put_buffer = (INT32) code; | |
307 register int put_bits = state->cur.put_bits; | |
308 | |
309 /* if size is 0, caller used an invalid Huffman table entry */ | |
310 if (size == 0) | |
311 ERREXIT(state->cinfo, JERR_HUFF_MISSING_CODE); | |
312 | |
313 put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */ | |
314 | |
315 put_bits += size; /* new number of bits in buffer */ | |
316 | |
317 put_buffer <<= 24 - put_bits; /* align incoming bits */ | |
318 | |
319 put_buffer |= state->cur.put_buffer; /* and merge with old buffer contents */ | |
320 | |
321 while (put_bits >= 8) { | |
322 int c = (int) ((put_buffer >> 16) & 0xFF); | |
323 | |
324 emit_byte(state, c, return FALSE); | |
325 if (c == 0xFF) { /* need to stuff a zero byte? */ | |
326 emit_byte(state, 0, return FALSE); | |
327 } | |
328 put_buffer <<= 8; | |
329 put_bits -= 8; | |
330 } | |
331 | |
332 state->cur.put_buffer = put_buffer; /* update state variables */ | |
333 state->cur.put_bits = put_bits; | |
334 | |
335 return TRUE; | |
336 } | |
337 | |
338 | |
339 LOCAL(boolean) | |
340 flush_bits (working_state * state) | |
341 { | |
342 if (! emit_bits(state, 0x7F, 7)) /* fill any partial byte with ones */ | |
343 return FALSE; | |
344 state->cur.put_buffer = 0; /* and reset bit-buffer to empty */ | |
345 state->cur.put_bits = 0; | |
346 return TRUE; | |
347 } | |
348 | |
349 | |
350 /* Encode a single block's worth of coefficients */ | |
351 | |
352 LOCAL(boolean) | |
353 encode_one_block (working_state * state, JCOEFPTR block, int last_dc_val, | |
354 c_derived_tbl *dctbl, c_derived_tbl *actbl) | |
355 { | |
356 register int temp, temp2; | |
357 register int nbits; | |
358 register int k, r, i; | |
359 | |
360 /* Encode the DC coefficient difference per section F.1.2.1 */ | |
361 | |
362 temp = temp2 = block[0] - last_dc_val; | |
363 | |
364 if (temp < 0) { | |
365 temp = -temp; /* temp is abs value of input */ | |
366 /* For a negative input, want temp2 = bitwise complement of abs(input) */ | |
367 /* This code assumes we are on a two's complement machine */ | |
368 temp2--; | |
369 } | |
370 | |
371 /* Find the number of bits needed for the magnitude of the coefficient */ | |
372 nbits = 0; | |
373 while (temp) { | |
374 nbits++; | |
375 temp >>= 1; | |
376 } | |
377 /* Check for out-of-range coefficient values. | |
378 * Since we're encoding a difference, the range limit is twice as much. | |
379 */ | |
380 if (nbits > MAX_COEF_BITS+1) | |
381 ERREXIT(state->cinfo, JERR_BAD_DCT_COEF); | |
382 | |
383 /* Emit the Huffman-coded symbol for the number of bits */ | |
384 if (! emit_bits(state, dctbl->ehufco[nbits], dctbl->ehufsi[nbits])) | |
385 return FALSE; | |
386 | |
387 /* Emit that number of bits of the value, if positive, */ | |
388 /* or the complement of its magnitude, if negative. */ | |
389 if (nbits) /* emit_bits rejects calls with size 0 */ | |
390 if (! emit_bits(state, (unsigned int) temp2, nbits)) | |
391 return FALSE; | |
392 | |
393 /* Encode the AC coefficients per section F.1.2.2 */ | |
394 | |
395 r = 0; /* r = run length of zeros */ | |
396 | |
397 for (k = 1; k < DCTSIZE2; k++) { | |
398 if ((temp = block[jpeg_natural_order[k]]) == 0) { | |
399 r++; | |
400 } else { | |
401 /* if run length > 15, must emit special run-length-16 codes (0xF0) */ | |
402 while (r > 15) { | |
403 if (! emit_bits(state, actbl->ehufco[0xF0], actbl->ehufsi[0xF0])) | |
404 return FALSE; | |
405 r -= 16; | |
406 } | |
407 | |
408 temp2 = temp; | |
409 if (temp < 0) { | |
410 temp = -temp; /* temp is abs value of input */ | |
411 /* This code assumes we are on a two's complement machine */ | |
412 temp2--; | |
413 } | |
414 | |
415 /* Find the number of bits needed for the magnitude of the coefficient */ | |
416 nbits = 1; /* there must be at least one 1 bit */ | |
417 while ((temp >>= 1)) | |
418 nbits++; | |
419 /* Check for out-of-range coefficient values */ | |
420 if (nbits > MAX_COEF_BITS) | |
421 ERREXIT(state->cinfo, JERR_BAD_DCT_COEF); | |
422 | |
423 /* Emit Huffman symbol for run length / number of bits */ | |
424 i = (r << 4) + nbits; | |
425 if (! emit_bits(state, actbl->ehufco[i], actbl->ehufsi[i])) | |
426 return FALSE; | |
427 | |
428 /* Emit that number of bits of the value, if positive, */ | |
429 /* or the complement of its magnitude, if negative. */ | |
430 if (! emit_bits(state, (unsigned int) temp2, nbits)) | |
431 return FALSE; | |
432 | |
433 r = 0; | |
434 } | |
435 } | |
436 | |
437 /* If the last coef(s) were zero, emit an end-of-block code */ | |
438 if (r > 0) | |
439 if (! emit_bits(state, actbl->ehufco[0], actbl->ehufsi[0])) | |
440 return FALSE; | |
441 | |
442 return TRUE; | |
443 } | |
444 | |
445 | |
446 /* | |
447 * Emit a restart marker & resynchronize predictions. | |
448 */ | |
449 | |
450 LOCAL(boolean) | |
451 emit_restart (working_state * state, int restart_num) | |
452 { | |
453 int ci; | |
454 | |
455 if (! flush_bits(state)) | |
456 return FALSE; | |
457 | |
458 emit_byte(state, 0xFF, return FALSE); | |
459 emit_byte(state, JPEG_RST0 + restart_num, return FALSE); | |
460 | |
461 /* Re-initialize DC predictions to 0 */ | |
462 for (ci = 0; ci < state->cinfo->comps_in_scan; ci++) | |
463 state->cur.last_dc_val[ci] = 0; | |
464 | |
465 /* The restart counter is not updated until we successfully write the MCU. */ | |
466 | |
467 return TRUE; | |
468 } | |
469 | |
470 | |
471 /* | |
472 * Encode and output one MCU's worth of Huffman-compressed coefficients. | |
473 */ | |
474 | |
475 METHODDEF(boolean) | |
476 encode_mcu_huff (j_compress_ptr cinfo, JBLOCKROW *MCU_data) | |
477 { | |
478 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; | |
479 working_state state; | |
480 int blkn, ci; | |
481 jpeg_component_info * compptr; | |
482 | |
483 /* Load up working state */ | |
484 state.next_output_byte = cinfo->dest->next_output_byte; | |
485 state.free_in_buffer = cinfo->dest->free_in_buffer; | |
486 ASSIGN_STATE(state.cur, entropy->saved); | |
487 state.cinfo = cinfo; | |
488 | |
489 /* Emit restart marker if needed */ | |
490 if (cinfo->restart_interval) { | |
491 if (entropy->restarts_to_go == 0) | |
492 if (! emit_restart(&state, entropy->next_restart_num)) | |
493 return FALSE; | |
494 } | |
495 | |
496 /* Encode the MCU data blocks */ | |
497 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { | |
498 ci = cinfo->MCU_membership[blkn]; | |
499 compptr = cinfo->cur_comp_info[ci]; | |
500 if (! encode_one_block(&state, | |
501 MCU_data[blkn][0], state.cur.last_dc_val[ci], | |
502 entropy->dc_derived_tbls[compptr->dc_tbl_no], | |
503 entropy->ac_derived_tbls[compptr->ac_tbl_no])) | |
504 return FALSE; | |
505 /* Update last_dc_val */ | |
506 state.cur.last_dc_val[ci] = MCU_data[blkn][0][0]; | |
507 } | |
508 | |
509 /* Completed MCU, so update state */ | |
510 cinfo->dest->next_output_byte = state.next_output_byte; | |
511 cinfo->dest->free_in_buffer = state.free_in_buffer; | |
512 ASSIGN_STATE(entropy->saved, state.cur); | |
513 | |
514 /* Update restart-interval state too */ | |
515 if (cinfo->restart_interval) { | |
516 if (entropy->restarts_to_go == 0) { | |
517 entropy->restarts_to_go = cinfo->restart_interval; | |
518 entropy->next_restart_num++; | |
519 entropy->next_restart_num &= 7; | |
520 } | |
521 entropy->restarts_to_go--; | |
522 } | |
523 | |
524 return TRUE; | |
525 } | |
526 | |
527 | |
528 /* | |
529 * Finish up at the end of a Huffman-compressed scan. | |
530 */ | |
531 | |
532 METHODDEF(void) | |
533 finish_pass_huff (j_compress_ptr cinfo) | |
534 { | |
535 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; | |
536 working_state state; | |
537 | |
538 /* Load up working state ... flush_bits needs it */ | |
539 state.next_output_byte = cinfo->dest->next_output_byte; | |
540 state.free_in_buffer = cinfo->dest->free_in_buffer; | |
541 ASSIGN_STATE(state.cur, entropy->saved); | |
542 state.cinfo = cinfo; | |
543 | |
544 /* Flush out the last data */ | |
545 if (! flush_bits(&state)) | |
546 ERREXIT(cinfo, JERR_CANT_SUSPEND); | |
547 | |
548 /* Update state */ | |
549 cinfo->dest->next_output_byte = state.next_output_byte; | |
550 cinfo->dest->free_in_buffer = state.free_in_buffer; | |
551 ASSIGN_STATE(entropy->saved, state.cur); | |
552 } | |
553 | |
554 | |
555 /* | |
556 * Huffman coding optimization. | |
557 * | |
558 * We first scan the supplied data and count the number of uses of each symbol | |
559 * that is to be Huffman-coded. (This process MUST agree with the code above.) | |
560 * Then we build a Huffman coding tree for the observed counts. | |
561 * Symbols which are not needed at all for the particular image are not | |
562 * assigned any code, which saves space in the DHT marker as well as in | |
563 * the compressed data. | |
564 */ | |
565 | |
566 #ifdef ENTROPY_OPT_SUPPORTED | |
567 | |
568 | |
569 /* Process a single block's worth of coefficients */ | |
570 | |
571 LOCAL(void) | |
572 htest_one_block (j_compress_ptr cinfo, JCOEFPTR block, int last_dc_val, | |
573 long dc_counts[], long ac_counts[]) | |
574 { | |
575 register int temp; | |
576 register int nbits; | |
577 register int k, r; | |
578 | |
579 /* Encode the DC coefficient difference per section F.1.2.1 */ | |
580 | |
581 temp = block[0] - last_dc_val; | |
582 if (temp < 0) | |
583 temp = -temp; | |
584 | |
585 /* Find the number of bits needed for the magnitude of the coefficient */ | |
586 nbits = 0; | |
587 while (temp) { | |
588 nbits++; | |
589 temp >>= 1; | |
590 } | |
591 /* Check for out-of-range coefficient values. | |
592 * Since we're encoding a difference, the range limit is twice as much. | |
593 */ | |
594 if (nbits > MAX_COEF_BITS+1) | |
595 ERREXIT(cinfo, JERR_BAD_DCT_COEF); | |
596 | |
597 /* Count the Huffman symbol for the number of bits */ | |
598 dc_counts[nbits]++; | |
599 | |
600 /* Encode the AC coefficients per section F.1.2.2 */ | |
601 | |
602 r = 0; /* r = run length of zeros */ | |
603 | |
604 for (k = 1; k < DCTSIZE2; k++) { | |
605 if ((temp = block[jpeg_natural_order[k]]) == 0) { | |
606 r++; | |
607 } else { | |
608 /* if run length > 15, must emit special run-length-16 codes (0xF0) */ | |
609 while (r > 15) { | |
610 ac_counts[0xF0]++; | |
611 r -= 16; | |
612 } | |
613 | |
614 /* Find the number of bits needed for the magnitude of the coefficient */ | |
615 if (temp < 0) | |
616 temp = -temp; | |
617 | |
618 /* Find the number of bits needed for the magnitude of the coefficient */ | |
619 nbits = 1; /* there must be at least one 1 bit */ | |
620 while ((temp >>= 1)) | |
621 nbits++; | |
622 /* Check for out-of-range coefficient values */ | |
623 if (nbits > MAX_COEF_BITS) | |
624 ERREXIT(cinfo, JERR_BAD_DCT_COEF); | |
625 | |
626 /* Count Huffman symbol for run length / number of bits */ | |
627 ac_counts[(r << 4) + nbits]++; | |
628 | |
629 r = 0; | |
630 } | |
631 } | |
632 | |
633 /* If the last coef(s) were zero, emit an end-of-block code */ | |
634 if (r > 0) | |
635 ac_counts[0]++; | |
636 } | |
637 | |
638 | |
639 /* | |
640 * Trial-encode one MCU's worth of Huffman-compressed coefficients. | |
641 * No data is actually output, so no suspension return is possible. | |
642 */ | |
643 | |
644 METHODDEF(boolean) | |
645 encode_mcu_gather (j_compress_ptr cinfo, JBLOCKROW *MCU_data) | |
646 { | |
647 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; | |
648 int blkn, ci; | |
649 jpeg_component_info * compptr; | |
650 | |
651 /* Take care of restart intervals if needed */ | |
652 if (cinfo->restart_interval) { | |
653 if (entropy->restarts_to_go == 0) { | |
654 /* Re-initialize DC predictions to 0 */ | |
655 for (ci = 0; ci < cinfo->comps_in_scan; ci++) | |
656 entropy->saved.last_dc_val[ci] = 0; | |
657 /* Update restart state */ | |
658 entropy->restarts_to_go = cinfo->restart_interval; | |
659 } | |
660 entropy->restarts_to_go--; | |
661 } | |
662 | |
663 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { | |
664 ci = cinfo->MCU_membership[blkn]; | |
665 compptr = cinfo->cur_comp_info[ci]; | |
666 htest_one_block(cinfo, MCU_data[blkn][0], entropy->saved.last_dc_val[ci], | |
667 entropy->dc_count_ptrs[compptr->dc_tbl_no], | |
668 entropy->ac_count_ptrs[compptr->ac_tbl_no]); | |
669 entropy->saved.last_dc_val[ci] = MCU_data[blkn][0][0]; | |
670 } | |
671 | |
672 return TRUE; | |
673 } | |
674 | |
675 | |
676 /* | |
677 * Generate the best Huffman code table for the given counts, fill htbl. | |
678 * Note this is also used by jcphuff.c. | |
679 * | |
680 * The JPEG standard requires that no symbol be assigned a codeword of all | |
681 * one bits (so that padding bits added at the end of a compressed segment | |
682 * can't look like a valid code). Because of the canonical ordering of | |
683 * codewords, this just means that there must be an unused slot in the | |
684 * longest codeword length category. Section K.2 of the JPEG spec suggests | |
685 * reserving such a slot by pretending that symbol 256 is a valid symbol | |
686 * with count 1. In theory that's not optimal; giving it count zero but | |
687 * including it in the symbol set anyway should give a better Huffman code. | |
688 * But the theoretically better code actually seems to come out worse in | |
689 * practice, because it produces more all-ones bytes (which incur stuffed | |
690 * zero bytes in the final file). In any case the difference is tiny. | |
691 * | |
692 * The JPEG standard requires Huffman codes to be no more than 16 bits long. | |
693 * If some symbols have a very small but nonzero probability, the Huffman tree | |
694 * must be adjusted to meet the code length restriction. We currently use | |
695 * the adjustment method suggested in JPEG section K.2. This method is *not* | |
696 * optimal; it may not choose the best possible limited-length code. But | |
697 * typically only very-low-frequency symbols will be given less-than-optimal | |
698 * lengths, so the code is almost optimal. Experimental comparisons against | |
699 * an optimal limited-length-code algorithm indicate that the difference is | |
700 * microscopic --- usually less than a hundredth of a percent of total size. | |
701 * So the extra complexity of an optimal algorithm doesn't seem worthwhile. | |
702 */ | |
703 | |
704 GLOBAL(void) | |
705 jpeg_gen_optimal_table (j_compress_ptr cinfo, JHUFF_TBL * htbl, long freq[]) | |
706 { | |
707 #define MAX_CLEN 32 /* assumed maximum initial code length */ | |
708 UINT8 bits[MAX_CLEN+1]; /* bits[k] = # of symbols with code length k */ | |
709 int codesize[257]; /* codesize[k] = code length of symbol k */ | |
710 int others[257]; /* next symbol in current branch of tree */ | |
711 int c1, c2; | |
712 int p, i, j; | |
713 long v; | |
714 | |
715 /* This algorithm is explained in section K.2 of the JPEG standard */ | |
716 | |
717 MEMZERO(bits, SIZEOF(bits)); | |
718 MEMZERO(codesize, SIZEOF(codesize)); | |
719 for (i = 0; i < 257; i++) | |
720 others[i] = -1; /* init links to empty */ | |
721 | |
722 freq[256] = 1; /* make sure 256 has a nonzero count */ | |
723 /* Including the pseudo-symbol 256 in the Huffman procedure guarantees | |
724 * that no real symbol is given code-value of all ones, because 256 | |
725 * will be placed last in the largest codeword category. | |
726 */ | |
727 | |
728 /* Huffman's basic algorithm to assign optimal code lengths to symbols */ | |
729 | |
730 for (;;) { | |
731 /* Find the smallest nonzero frequency, set c1 = its symbol */ | |
732 /* In case of ties, take the larger symbol number */ | |
733 c1 = -1; | |
734 v = 1000000000L; | |
735 for (i = 0; i <= 256; i++) { | |
736 if (freq[i] && freq[i] <= v) { | |
737 v = freq[i]; | |
738 c1 = i; | |
739 } | |
740 } | |
741 | |
742 /* Find the next smallest nonzero frequency, set c2 = its symbol */ | |
743 /* In case of ties, take the larger symbol number */ | |
744 c2 = -1; | |
745 v = 1000000000L; | |
746 for (i = 0; i <= 256; i++) { | |
747 if (freq[i] && freq[i] <= v && i != c1) { | |
748 v = freq[i]; | |
749 c2 = i; | |
750 } | |
751 } | |
752 | |
753 /* Done if we've merged everything into one frequency */ | |
754 if (c2 < 0) | |
755 break; | |
756 | |
757 /* Else merge the two counts/trees */ | |
758 freq[c1] += freq[c2]; | |
759 freq[c2] = 0; | |
760 | |
761 /* Increment the codesize of everything in c1's tree branch */ | |
762 codesize[c1]++; | |
763 while (others[c1] >= 0) { | |
764 c1 = others[c1]; | |
765 codesize[c1]++; | |
766 } | |
767 | |
768 others[c1] = c2; /* chain c2 onto c1's tree branch */ | |
769 | |
770 /* Increment the codesize of everything in c2's tree branch */ | |
771 codesize[c2]++; | |
772 while (others[c2] >= 0) { | |
773 c2 = others[c2]; | |
774 codesize[c2]++; | |
775 } | |
776 } | |
777 | |
778 /* Now count the number of symbols of each code length */ | |
779 for (i = 0; i <= 256; i++) { | |
780 if (codesize[i]) { | |
781 /* The JPEG standard seems to think that this can't happen, */ | |
782 /* but I'm paranoid... */ | |
783 if (codesize[i] > MAX_CLEN) | |
784 ERREXIT(cinfo, JERR_HUFF_CLEN_OVERFLOW); | |
785 | |
786 bits[codesize[i]]++; | |
787 } | |
788 } | |
789 | |
790 /* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure | |
791 * Huffman procedure assigned any such lengths, we must adjust the coding. | |
792 * Here is what the JPEG spec says about how this next bit works: | |
793 * Since symbols are paired for the longest Huffman code, the symbols are | |
794 * removed from this length category two at a time. The prefix for the pair | |
795 * (which is one bit shorter) is allocated to one of the pair; then, | |
796 * skipping the BITS entry for that prefix length, a code word from the next | |
797 * shortest nonzero BITS entry is converted into a prefix for two code words | |
798 * one bit longer. | |
799 */ | |
800 | |
801 for (i = MAX_CLEN; i > 16; i--) { | |
802 while (bits[i] > 0) { | |
803 j = i - 2; /* find length of new prefix to be used */ | |
804 while (bits[j] == 0) | |
805 j--; | |
806 | |
807 bits[i] -= 2; /* remove two symbols */ | |
808 bits[i-1]++; /* one goes in this length */ | |
809 bits[j+1] += 2; /* two new symbols in this length */ | |
810 bits[j]--; /* symbol of this length is now a prefix */ | |
811 } | |
812 } | |
813 | |
814 /* Remove the count for the pseudo-symbol 256 from the largest codelength */ | |
815 while (bits[i] == 0) /* find largest codelength still in use */ | |
816 i--; | |
817 bits[i]--; | |
818 | |
819 /* Return final symbol counts (only for lengths 0..16) */ | |
820 MEMCOPY(htbl->bits, bits, SIZEOF(htbl->bits)); | |
821 | |
822 /* Return a list of the symbols sorted by code length */ | |
823 /* It's not real clear to me why we don't need to consider the codelength | |
824 * changes made above, but the JPEG spec seems to think this works. | |
825 */ | |
826 p = 0; | |
827 for (i = 1; i <= MAX_CLEN; i++) { | |
828 for (j = 0; j <= 255; j++) { | |
829 if (codesize[j] == i) { | |
830 htbl->huffval[p] = (UINT8) j; | |
831 p++; | |
832 } | |
833 } | |
834 } | |
835 | |
836 /* Set sent_table FALSE so updated table will be written to JPEG file. */ | |
837 htbl->sent_table = FALSE; | |
838 } | |
839 | |
840 | |
841 /* | |
842 * Finish up a statistics-gathering pass and create the new Huffman tables. | |
843 */ | |
844 | |
845 METHODDEF(void) | |
846 finish_pass_gather (j_compress_ptr cinfo) | |
847 { | |
848 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; | |
849 int ci, dctbl, actbl; | |
850 jpeg_component_info * compptr; | |
851 JHUFF_TBL **htblptr; | |
852 boolean did_dc[NUM_HUFF_TBLS]; | |
853 boolean did_ac[NUM_HUFF_TBLS]; | |
854 | |
855 /* It's important not to apply jpeg_gen_optimal_table more than once | |
856 * per table, because it clobbers the input frequency counts! | |
857 */ | |
858 MEMZERO(did_dc, SIZEOF(did_dc)); | |
859 MEMZERO(did_ac, SIZEOF(did_ac)); | |
860 | |
861 for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | |
862 compptr = cinfo->cur_comp_info[ci]; | |
863 dctbl = compptr->dc_tbl_no; | |
864 actbl = compptr->ac_tbl_no; | |
865 if (! did_dc[dctbl]) { | |
866 htblptr = & cinfo->dc_huff_tbl_ptrs[dctbl]; | |
867 if (*htblptr == NULL) | |
868 *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo); | |
869 jpeg_gen_optimal_table(cinfo, *htblptr, entropy->dc_count_ptrs[dctbl]); | |
870 did_dc[dctbl] = TRUE; | |
871 } | |
872 if (! did_ac[actbl]) { | |
873 htblptr = & cinfo->ac_huff_tbl_ptrs[actbl]; | |
874 if (*htblptr == NULL) | |
875 *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo); | |
876 jpeg_gen_optimal_table(cinfo, *htblptr, entropy->ac_count_ptrs[actbl]); | |
877 did_ac[actbl] = TRUE; | |
878 } | |
879 } | |
880 } | |
881 | |
882 | |
883 #endif /* ENTROPY_OPT_SUPPORTED */ | |
884 | |
885 | |
886 /* | |
887 * Module initialization routine for Huffman entropy encoding. | |
888 */ | |
889 | |
890 GLOBAL(void) | |
891 jinit_huff_encoder (j_compress_ptr cinfo) | |
892 { | |
893 huff_entropy_ptr entropy; | |
894 int i; | |
895 | |
896 entropy = (huff_entropy_ptr) | |
897 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |
898 SIZEOF(huff_entropy_encoder)); | |
899 cinfo->entropy = (struct jpeg_entropy_encoder *) entropy; | |
900 entropy->pub.start_pass = start_pass_huff; | |
901 | |
902 /* Mark tables unallocated */ | |
903 for (i = 0; i < NUM_HUFF_TBLS; i++) { | |
904 entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL; | |
905 #ifdef ENTROPY_OPT_SUPPORTED | |
906 entropy->dc_count_ptrs[i] = entropy->ac_count_ptrs[i] = NULL; | |
907 #endif | |
908 } | |
909 } | |
OLD | NEW |