OLD | NEW |
| (Empty) |
1 /* | |
2 * jccoefct.c | |
3 * | |
4 * Copyright (C) 1994-1997, Thomas G. Lane. | |
5 * This file is part of the Independent JPEG Group's software. | |
6 * For conditions of distribution and use, see the accompanying README file. | |
7 * | |
8 * This file contains the coefficient buffer controller for compression. | |
9 * This controller is the top level of the JPEG compressor proper. | |
10 * The coefficient buffer lies between forward-DCT and entropy encoding steps. | |
11 */ | |
12 | |
13 #define JPEG_INTERNALS | |
14 #include "jinclude.h" | |
15 #include "jpeglib.h" | |
16 | |
17 | |
18 /* We use a full-image coefficient buffer when doing Huffman optimization, | |
19 * and also for writing multiple-scan JPEG files. In all cases, the DCT | |
20 * step is run during the first pass, and subsequent passes need only read | |
21 * the buffered coefficients. | |
22 */ | |
23 #ifdef ENTROPY_OPT_SUPPORTED | |
24 #define FULL_COEF_BUFFER_SUPPORTED | |
25 #else | |
26 #ifdef C_MULTISCAN_FILES_SUPPORTED | |
27 #define FULL_COEF_BUFFER_SUPPORTED | |
28 #endif | |
29 #endif | |
30 | |
31 | |
32 /* Private buffer controller object */ | |
33 | |
34 typedef struct { | |
35 struct jpeg_c_coef_controller pub; /* public fields */ | |
36 | |
37 JDIMENSION iMCU_row_num; /* iMCU row # within image */ | |
38 JDIMENSION mcu_ctr; /* counts MCUs processed in current row */ | |
39 int MCU_vert_offset; /* counts MCU rows within iMCU row */ | |
40 int MCU_rows_per_iMCU_row; /* number of such rows needed */ | |
41 | |
42 /* For single-pass compression, it's sufficient to buffer just one MCU | |
43 * (although this may prove a bit slow in practice). We allocate a | |
44 * workspace of C_MAX_BLOCKS_IN_MCU coefficient blocks, and reuse it for each | |
45 * MCU constructed and sent. (On 80x86, the workspace is FAR even though | |
46 * it's not really very big; this is to keep the module interfaces unchanged | |
47 * when a large coefficient buffer is necessary.) | |
48 * In multi-pass modes, this array points to the current MCU's blocks | |
49 * within the virtual arrays. | |
50 */ | |
51 JBLOCKROW MCU_buffer[C_MAX_BLOCKS_IN_MCU]; | |
52 | |
53 /* In multi-pass modes, we need a virtual block array for each component. */ | |
54 jvirt_barray_ptr whole_image[MAX_COMPONENTS]; | |
55 } my_coef_controller; | |
56 | |
57 typedef my_coef_controller * my_coef_ptr; | |
58 | |
59 | |
60 /* Forward declarations */ | |
61 METHODDEF(boolean) compress_data | |
62 JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf)); | |
63 #ifdef FULL_COEF_BUFFER_SUPPORTED | |
64 METHODDEF(boolean) compress_first_pass | |
65 JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf)); | |
66 METHODDEF(boolean) compress_output | |
67 JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf)); | |
68 #endif | |
69 | |
70 | |
71 LOCAL(void) | |
72 start_iMCU_row (j_compress_ptr cinfo) | |
73 /* Reset within-iMCU-row counters for a new row */ | |
74 { | |
75 my_coef_ptr coef = (my_coef_ptr) cinfo->coef; | |
76 | |
77 /* In an interleaved scan, an MCU row is the same as an iMCU row. | |
78 * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows. | |
79 * But at the bottom of the image, process only what's left. | |
80 */ | |
81 if (cinfo->comps_in_scan > 1) { | |
82 coef->MCU_rows_per_iMCU_row = 1; | |
83 } else { | |
84 if (coef->iMCU_row_num < (cinfo->total_iMCU_rows-1)) | |
85 coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor; | |
86 else | |
87 coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height; | |
88 } | |
89 | |
90 coef->mcu_ctr = 0; | |
91 coef->MCU_vert_offset = 0; | |
92 } | |
93 | |
94 | |
95 /* | |
96 * Initialize for a processing pass. | |
97 */ | |
98 | |
99 METHODDEF(void) | |
100 start_pass_coef (j_compress_ptr cinfo, J_BUF_MODE pass_mode) | |
101 { | |
102 my_coef_ptr coef = (my_coef_ptr) cinfo->coef; | |
103 | |
104 coef->iMCU_row_num = 0; | |
105 start_iMCU_row(cinfo); | |
106 | |
107 switch (pass_mode) { | |
108 case JBUF_PASS_THRU: | |
109 if (coef->whole_image[0] != NULL) | |
110 ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); | |
111 coef->pub.compress_data = compress_data; | |
112 break; | |
113 #ifdef FULL_COEF_BUFFER_SUPPORTED | |
114 case JBUF_SAVE_AND_PASS: | |
115 if (coef->whole_image[0] == NULL) | |
116 ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); | |
117 coef->pub.compress_data = compress_first_pass; | |
118 break; | |
119 case JBUF_CRANK_DEST: | |
120 if (coef->whole_image[0] == NULL) | |
121 ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); | |
122 coef->pub.compress_data = compress_output; | |
123 break; | |
124 #endif | |
125 default: | |
126 ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); | |
127 break; | |
128 } | |
129 } | |
130 | |
131 | |
132 /* | |
133 * Process some data in the single-pass case. | |
134 * We process the equivalent of one fully interleaved MCU row ("iMCU" row) | |
135 * per call, ie, v_samp_factor block rows for each component in the image. | |
136 * Returns TRUE if the iMCU row is completed, FALSE if suspended. | |
137 * | |
138 * NB: input_buf contains a plane for each component in image, | |
139 * which we index according to the component's SOF position. | |
140 */ | |
141 | |
142 METHODDEF(boolean) | |
143 compress_data (j_compress_ptr cinfo, JSAMPIMAGE input_buf) | |
144 { | |
145 my_coef_ptr coef = (my_coef_ptr) cinfo->coef; | |
146 JDIMENSION MCU_col_num; /* index of current MCU within row */ | |
147 JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1; | |
148 JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; | |
149 int blkn, bi, ci, yindex, yoffset, blockcnt; | |
150 JDIMENSION ypos, xpos; | |
151 jpeg_component_info *compptr; | |
152 | |
153 /* Loop to write as much as one whole iMCU row */ | |
154 for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; | |
155 yoffset++) { | |
156 for (MCU_col_num = coef->mcu_ctr; MCU_col_num <= last_MCU_col; | |
157 MCU_col_num++) { | |
158 /* Determine where data comes from in input_buf and do the DCT thing. | |
159 * Each call on forward_DCT processes a horizontal row of DCT blocks | |
160 * as wide as an MCU; we rely on having allocated the MCU_buffer[] blocks | |
161 * sequentially. Dummy blocks at the right or bottom edge are filled in | |
162 * specially. The data in them does not matter for image reconstruction, | |
163 * so we fill them with values that will encode to the smallest amount of | |
164 * data, viz: all zeroes in the AC entries, DC entries equal to previous | |
165 * block's DC value. (Thanks to Thomas Kinsman for this idea.) | |
166 */ | |
167 blkn = 0; | |
168 for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | |
169 compptr = cinfo->cur_comp_info[ci]; | |
170 blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width | |
171 : compptr->last_col_width; | |
172 xpos = MCU_col_num * compptr->MCU_sample_width; | |
173 ypos = yoffset * DCTSIZE; /* ypos == (yoffset+yindex) * DCTSIZE */ | |
174 for (yindex = 0; yindex < compptr->MCU_height; yindex++) { | |
175 if (coef->iMCU_row_num < last_iMCU_row || | |
176 yoffset+yindex < compptr->last_row_height) { | |
177 (*cinfo->fdct->forward_DCT) (cinfo, compptr, | |
178 input_buf[compptr->component_index], | |
179 coef->MCU_buffer[blkn], | |
180 ypos, xpos, (JDIMENSION) blockcnt); | |
181 if (blockcnt < compptr->MCU_width) { | |
182 /* Create some dummy blocks at the right edge of the image. */ | |
183 jzero_far((void FAR *) coef->MCU_buffer[blkn + blockcnt], | |
184 (compptr->MCU_width - blockcnt) * SIZEOF(JBLOCK)); | |
185 for (bi = blockcnt; bi < compptr->MCU_width; bi++) { | |
186 coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn+bi-1][0]
[0]; | |
187 } | |
188 } | |
189 } else { | |
190 /* Create a row of dummy blocks at the bottom of the image. */ | |
191 jzero_far((void FAR *) coef->MCU_buffer[blkn], | |
192 compptr->MCU_width * SIZEOF(JBLOCK)); | |
193 for (bi = 0; bi < compptr->MCU_width; bi++) { | |
194 coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn-1][0][0]; | |
195 } | |
196 } | |
197 blkn += compptr->MCU_width; | |
198 ypos += DCTSIZE; | |
199 } | |
200 } | |
201 /* Try to write the MCU. In event of a suspension failure, we will | |
202 * re-DCT the MCU on restart (a bit inefficient, could be fixed...) | |
203 */ | |
204 if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) { | |
205 /* Suspension forced; update state counters and exit */ | |
206 coef->MCU_vert_offset = yoffset; | |
207 coef->mcu_ctr = MCU_col_num; | |
208 return FALSE; | |
209 } | |
210 } | |
211 /* Completed an MCU row, but perhaps not an iMCU row */ | |
212 coef->mcu_ctr = 0; | |
213 } | |
214 /* Completed the iMCU row, advance counters for next one */ | |
215 coef->iMCU_row_num++; | |
216 start_iMCU_row(cinfo); | |
217 return TRUE; | |
218 } | |
219 | |
220 | |
221 #ifdef FULL_COEF_BUFFER_SUPPORTED | |
222 | |
223 /* | |
224 * Process some data in the first pass of a multi-pass case. | |
225 * We process the equivalent of one fully interleaved MCU row ("iMCU" row) | |
226 * per call, ie, v_samp_factor block rows for each component in the image. | |
227 * This amount of data is read from the source buffer, DCT'd and quantized, | |
228 * and saved into the virtual arrays. We also generate suitable dummy blocks | |
229 * as needed at the right and lower edges. (The dummy blocks are constructed | |
230 * in the virtual arrays, which have been padded appropriately.) This makes | |
231 * it possible for subsequent passes not to worry about real vs. dummy blocks. | |
232 * | |
233 * We must also emit the data to the entropy encoder. This is conveniently | |
234 * done by calling compress_output() after we've loaded the current strip | |
235 * of the virtual arrays. | |
236 * | |
237 * NB: input_buf contains a plane for each component in image. All | |
238 * components are DCT'd and loaded into the virtual arrays in this pass. | |
239 * However, it may be that only a subset of the components are emitted to | |
240 * the entropy encoder during this first pass; be careful about looking | |
241 * at the scan-dependent variables (MCU dimensions, etc). | |
242 */ | |
243 | |
244 METHODDEF(boolean) | |
245 compress_first_pass (j_compress_ptr cinfo, JSAMPIMAGE input_buf) | |
246 { | |
247 my_coef_ptr coef = (my_coef_ptr) cinfo->coef; | |
248 JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; | |
249 JDIMENSION blocks_across, MCUs_across, MCUindex; | |
250 int bi, ci, h_samp_factor, block_row, block_rows, ndummy; | |
251 JCOEF lastDC; | |
252 jpeg_component_info *compptr; | |
253 JBLOCKARRAY buffer; | |
254 JBLOCKROW thisblockrow, lastblockrow; | |
255 | |
256 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | |
257 ci++, compptr++) { | |
258 /* Align the virtual buffer for this component. */ | |
259 buffer = (*cinfo->mem->access_virt_barray) | |
260 ((j_common_ptr) cinfo, coef->whole_image[ci], | |
261 coef->iMCU_row_num * compptr->v_samp_factor, | |
262 (JDIMENSION) compptr->v_samp_factor, TRUE); | |
263 /* Count non-dummy DCT block rows in this iMCU row. */ | |
264 if (coef->iMCU_row_num < last_iMCU_row) | |
265 block_rows = compptr->v_samp_factor; | |
266 else { | |
267 /* NB: can't use last_row_height here, since may not be set! */ | |
268 block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor); | |
269 if (block_rows == 0) block_rows = compptr->v_samp_factor; | |
270 } | |
271 blocks_across = compptr->width_in_blocks; | |
272 h_samp_factor = compptr->h_samp_factor; | |
273 /* Count number of dummy blocks to be added at the right margin. */ | |
274 ndummy = (int) (blocks_across % h_samp_factor); | |
275 if (ndummy > 0) | |
276 ndummy = h_samp_factor - ndummy; | |
277 /* Perform DCT for all non-dummy blocks in this iMCU row. Each call | |
278 * on forward_DCT processes a complete horizontal row of DCT blocks. | |
279 */ | |
280 for (block_row = 0; block_row < block_rows; block_row++) { | |
281 thisblockrow = buffer[block_row]; | |
282 (*cinfo->fdct->forward_DCT) (cinfo, compptr, | |
283 input_buf[ci], thisblockrow, | |
284 (JDIMENSION) (block_row * DCTSIZE), | |
285 (JDIMENSION) 0, blocks_across); | |
286 if (ndummy > 0) { | |
287 /* Create dummy blocks at the right edge of the image. */ | |
288 thisblockrow += blocks_across; /* => first dummy block */ | |
289 jzero_far((void FAR *) thisblockrow, ndummy * SIZEOF(JBLOCK)); | |
290 lastDC = thisblockrow[-1][0]; | |
291 for (bi = 0; bi < ndummy; bi++) { | |
292 thisblockrow[bi][0] = lastDC; | |
293 } | |
294 } | |
295 } | |
296 /* If at end of image, create dummy block rows as needed. | |
297 * The tricky part here is that within each MCU, we want the DC values | |
298 * of the dummy blocks to match the last real block's DC value. | |
299 * This squeezes a few more bytes out of the resulting file... | |
300 */ | |
301 if (coef->iMCU_row_num == last_iMCU_row) { | |
302 blocks_across += ndummy; /* include lower right corner */ | |
303 MCUs_across = blocks_across / h_samp_factor; | |
304 for (block_row = block_rows; block_row < compptr->v_samp_factor; | |
305 block_row++) { | |
306 thisblockrow = buffer[block_row]; | |
307 lastblockrow = buffer[block_row-1]; | |
308 jzero_far((void FAR *) thisblockrow, | |
309 (size_t) (blocks_across * SIZEOF(JBLOCK))); | |
310 for (MCUindex = 0; MCUindex < MCUs_across; MCUindex++) { | |
311 lastDC = lastblockrow[h_samp_factor-1][0]; | |
312 for (bi = 0; bi < h_samp_factor; bi++) { | |
313 thisblockrow[bi][0] = lastDC; | |
314 } | |
315 thisblockrow += h_samp_factor; /* advance to next MCU in row */ | |
316 lastblockrow += h_samp_factor; | |
317 } | |
318 } | |
319 } | |
320 } | |
321 /* NB: compress_output will increment iMCU_row_num if successful. | |
322 * A suspension return will result in redoing all the work above next time. | |
323 */ | |
324 | |
325 /* Emit data to the entropy encoder, sharing code with subsequent passes */ | |
326 return compress_output(cinfo, input_buf); | |
327 } | |
328 | |
329 | |
330 /* | |
331 * Process some data in subsequent passes of a multi-pass case. | |
332 * We process the equivalent of one fully interleaved MCU row ("iMCU" row) | |
333 * per call, ie, v_samp_factor block rows for each component in the scan. | |
334 * The data is obtained from the virtual arrays and fed to the entropy coder. | |
335 * Returns TRUE if the iMCU row is completed, FALSE if suspended. | |
336 * | |
337 * NB: input_buf is ignored; it is likely to be a NULL pointer. | |
338 */ | |
339 | |
340 METHODDEF(boolean) | |
341 compress_output (j_compress_ptr cinfo, JSAMPIMAGE input_buf) | |
342 { | |
343 my_coef_ptr coef = (my_coef_ptr) cinfo->coef; | |
344 JDIMENSION MCU_col_num; /* index of current MCU within row */ | |
345 int blkn, ci, xindex, yindex, yoffset; | |
346 JDIMENSION start_col; | |
347 JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN]; | |
348 JBLOCKROW buffer_ptr; | |
349 jpeg_component_info *compptr; | |
350 | |
351 /* Align the virtual buffers for the components used in this scan. | |
352 * NB: during first pass, this is safe only because the buffers will | |
353 * already be aligned properly, so jmemmgr.c won't need to do any I/O. | |
354 */ | |
355 for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | |
356 compptr = cinfo->cur_comp_info[ci]; | |
357 buffer[ci] = (*cinfo->mem->access_virt_barray) | |
358 ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index], | |
359 coef->iMCU_row_num * compptr->v_samp_factor, | |
360 (JDIMENSION) compptr->v_samp_factor, FALSE); | |
361 } | |
362 | |
363 /* Loop to process one whole iMCU row */ | |
364 for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; | |
365 yoffset++) { | |
366 for (MCU_col_num = coef->mcu_ctr; MCU_col_num < cinfo->MCUs_per_row; | |
367 MCU_col_num++) { | |
368 /* Construct list of pointers to DCT blocks belonging to this MCU */ | |
369 blkn = 0; /* index of current DCT block within MCU */ | |
370 for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | |
371 compptr = cinfo->cur_comp_info[ci]; | |
372 start_col = MCU_col_num * compptr->MCU_width; | |
373 for (yindex = 0; yindex < compptr->MCU_height; yindex++) { | |
374 buffer_ptr = buffer[ci][yindex+yoffset] + start_col; | |
375 for (xindex = 0; xindex < compptr->MCU_width; xindex++) { | |
376 coef->MCU_buffer[blkn++] = buffer_ptr++; | |
377 } | |
378 } | |
379 } | |
380 /* Try to write the MCU. */ | |
381 if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) { | |
382 /* Suspension forced; update state counters and exit */ | |
383 coef->MCU_vert_offset = yoffset; | |
384 coef->mcu_ctr = MCU_col_num; | |
385 return FALSE; | |
386 } | |
387 } | |
388 /* Completed an MCU row, but perhaps not an iMCU row */ | |
389 coef->mcu_ctr = 0; | |
390 } | |
391 /* Completed the iMCU row, advance counters for next one */ | |
392 coef->iMCU_row_num++; | |
393 start_iMCU_row(cinfo); | |
394 return TRUE; | |
395 } | |
396 | |
397 #endif /* FULL_COEF_BUFFER_SUPPORTED */ | |
398 | |
399 | |
400 /* | |
401 * Initialize coefficient buffer controller. | |
402 */ | |
403 | |
404 GLOBAL(void) | |
405 jinit_c_coef_controller (j_compress_ptr cinfo, boolean need_full_buffer) | |
406 { | |
407 my_coef_ptr coef; | |
408 | |
409 coef = (my_coef_ptr) | |
410 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |
411 SIZEOF(my_coef_controller)); | |
412 cinfo->coef = (struct jpeg_c_coef_controller *) coef; | |
413 coef->pub.start_pass = start_pass_coef; | |
414 | |
415 /* Create the coefficient buffer. */ | |
416 if (need_full_buffer) { | |
417 #ifdef FULL_COEF_BUFFER_SUPPORTED | |
418 /* Allocate a full-image virtual array for each component, */ | |
419 /* padded to a multiple of samp_factor DCT blocks in each direction. */ | |
420 int ci; | |
421 jpeg_component_info *compptr; | |
422 | |
423 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | |
424 ci++, compptr++) { | |
425 coef->whole_image[ci] = (*cinfo->mem->request_virt_barray) | |
426 ((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE, | |
427 (JDIMENSION) jround_up((long) compptr->width_in_blocks, | |
428 (long) compptr->h_samp_factor), | |
429 (JDIMENSION) jround_up((long) compptr->height_in_blocks, | |
430 (long) compptr->v_samp_factor), | |
431 (JDIMENSION) compptr->v_samp_factor); | |
432 } | |
433 #else | |
434 ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); | |
435 #endif | |
436 } else { | |
437 /* We only need a single-MCU buffer. */ | |
438 JBLOCKROW buffer; | |
439 int i; | |
440 | |
441 buffer = (JBLOCKROW) | |
442 (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |
443 C_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK)); | |
444 for (i = 0; i < C_MAX_BLOCKS_IN_MCU; i++) { | |
445 coef->MCU_buffer[i] = buffer + i; | |
446 } | |
447 coef->whole_image[0] = NULL; /* flag for no virtual arrays */ | |
448 } | |
449 } | |
OLD | NEW |