Index: third_party/sqlite/src/src/recover.c |
diff --git a/third_party/sqlite/src/src/recover.c b/third_party/sqlite/src/src/recover.c |
deleted file mode 100644 |
index 5ff6f78c90065131eaa6135c15687d14877ea9d8..0000000000000000000000000000000000000000 |
--- a/third_party/sqlite/src/src/recover.c |
+++ /dev/null |
@@ -1,2281 +0,0 @@ |
-/* |
-** 2012 Jan 11 |
-** |
-** The author disclaims copyright to this source code. In place of |
-** a legal notice, here is a blessing: |
-** |
-** May you do good and not evil. |
-** May you find forgiveness for yourself and forgive others. |
-** May you share freely, never taking more than you give. |
-*/ |
-/* TODO(shess): THIS MODULE IS STILL EXPERIMENTAL. DO NOT USE IT. */ |
-/* Implements a virtual table "recover" which can be used to recover |
- * data from a corrupt table. The table is walked manually, with |
- * corrupt items skipped. Additionally, any errors while reading will |
- * be skipped. |
- * |
- * Given a table with this definition: |
- * |
- * CREATE TABLE Stuff ( |
- * name TEXT PRIMARY KEY, |
- * value TEXT NOT NULL |
- * ); |
- * |
- * to recover the data from teh table, you could do something like: |
- * |
- * -- Attach another database, the original is not trustworthy. |
- * ATTACH DATABASE '/tmp/db.db' AS rdb; |
- * -- Create a new version of the table. |
- * CREATE TABLE rdb.Stuff ( |
- * name TEXT PRIMARY KEY, |
- * value TEXT NOT NULL |
- * ); |
- * -- This will read the original table's data. |
- * CREATE VIRTUAL TABLE temp.recover_Stuff using recover( |
- * main.Stuff, |
- * name TEXT STRICT NOT NULL, -- only real TEXT data allowed |
- * value TEXT STRICT NOT NULL |
- * ); |
- * -- Corruption means the UNIQUE constraint may no longer hold for |
- * -- Stuff, so either OR REPLACE or OR IGNORE must be used. |
- * INSERT OR REPLACE INTO rdb.Stuff (rowid, name, value ) |
- * SELECT rowid, name, value FROM temp.recover_Stuff; |
- * DROP TABLE temp.recover_Stuff; |
- * DETACH DATABASE rdb; |
- * -- Move db.db to replace original db in filesystem. |
- * |
- * |
- * Usage |
- * |
- * Given the goal of dealing with corruption, it would not be safe to |
- * create a recovery table in the database being recovered. So |
- * recovery tables must be created in the temp database. They are not |
- * appropriate to persist, in any case. [As a bonus, sqlite_master |
- * tables can be recovered. Perhaps more cute than useful, though.] |
- * |
- * The parameters are a specifier for the table to read, and a column |
- * definition for each bit of data stored in that table. The named |
- * table must be convertable to a root page number by reading the |
- * sqlite_master table. Bare table names are assumed to be in |
- * database 0 ("main"), other databases can be specified in db.table |
- * fashion. |
- * |
- * Column definitions are similar to BUT NOT THE SAME AS those |
- * provided to CREATE statements: |
- * column-def: column-name [type-name [STRICT] [NOT NULL]] |
- * type-name: (ANY|ROWID|INTEGER|FLOAT|NUMERIC|TEXT|BLOB) |
- * |
- * Only those exact type names are accepted, there is no type |
- * intuition. The only constraints accepted are STRICT (see below) |
- * and NOT NULL. Anything unexpected will cause the create to fail. |
- * |
- * ANY is a convenience to indicate that manifest typing is desired. |
- * It is equivalent to not specifying a type at all. The results for |
- * such columns will have the type of the data's storage. The exposed |
- * schema will contain no type for that column. |
- * |
- * ROWID is used for columns representing aliases to the rowid |
- * (INTEGER PRIMARY KEY, with or without AUTOINCREMENT), to make the |
- * concept explicit. Such columns are actually stored as NULL, so |
- * they cannot be simply ignored. The exposed schema will be INTEGER |
- * for that column. |
- * |
- * NOT NULL causes rows with a NULL in that column to be skipped. It |
- * also adds NOT NULL to the column in the exposed schema. If the |
- * table has ever had columns added using ALTER TABLE, then those |
- * columns implicitly contain NULL for rows which have not been |
- * updated. [Workaround using COALESCE() in your SELECT statement.] |
- * |
- * The created table is read-only, with no indices. Any SELECT will |
- * be a full-table scan, returning each valid row read from the |
- * storage of the backing table. The rowid will be the rowid of the |
- * row from the backing table. "Valid" means: |
- * - The cell metadata for the row is well-formed. Mainly this means that |
- * the cell header info describes a payload of the size indicated by |
- * the cell's payload size. |
- * - The cell does not run off the page. |
- * - The cell does not overlap any other cell on the page. |
- * - The cell contains doesn't contain too many columns. |
- * - The types of the serialized data match the indicated types (see below). |
- * |
- * |
- * Type affinity versus type storage. |
- * |
- * http://www.sqlite.org/datatype3.html describes SQLite's type |
- * affinity system. The system provides for automated coercion of |
- * types in certain cases, transparently enough that many developers |
- * do not realize that it is happening. Importantly, it implies that |
- * the raw data stored in the database may not have the obvious type. |
- * |
- * Differences between the stored data types and the expected data |
- * types may be a signal of corruption. This module makes some |
- * allowances for automatic coercion. It is important to be concious |
- * of the difference between the schema exposed by the module, and the |
- * data types read from storage. The following table describes how |
- * the module interprets things: |
- * |
- * type schema data STRICT |
- * ---- ------ ---- ------ |
- * ANY <none> any any |
- * ROWID INTEGER n/a n/a |
- * INTEGER INTEGER integer integer |
- * FLOAT FLOAT integer or float float |
- * NUMERIC NUMERIC integer, float, or text integer or float |
- * TEXT TEXT text or blob text |
- * BLOB BLOB blob blob |
- * |
- * type is the type provided to the recover module, schema is the |
- * schema exposed by the module, data is the acceptable types of data |
- * decoded from storage, and STRICT is a modification of that. |
- * |
- * A very loose recovery system might use ANY for all columns, then |
- * use the appropriate sqlite3_column_*() calls to coerce to expected |
- * types. This doesn't provide much protection if a page from a |
- * different table with the same column count is linked into an |
- * inappropriate btree. |
- * |
- * A very tight recovery system might use STRICT to enforce typing on |
- * all columns, preferring to skip rows which are valid at the storage |
- * level but don't contain the right types. Note that FLOAT STRICT is |
- * almost certainly not appropriate, since integral values are |
- * transparently stored as integers, when that is more efficient. |
- * |
- * Another option is to use ANY for all columns and inspect each |
- * result manually (using sqlite3_column_*). This should only be |
- * necessary in cases where developers have used manifest typing (test |
- * to make sure before you decide that you aren't using manifest |
- * typing!). |
- * |
- * |
- * Caveats |
- * |
- * Leaf pages not referenced by interior nodes will not be found. |
- * |
- * Leaf pages referenced from interior nodes of other tables will not |
- * be resolved. |
- * |
- * Rows referencing invalid overflow pages will be skipped. |
- * |
- * SQlite rows have a header which describes how to interpret the rest |
- * of the payload. The header can be valid in cases where the rest of |
- * the record is actually corrupt (in the sense that the data is not |
- * the intended data). This can especially happen WRT overflow pages, |
- * as lack of atomic updates between pages is the primary form of |
- * corruption I have seen in the wild. |
- */ |
-/* The implementation is via a series of cursors. The cursor |
- * implementations follow the pattern: |
- * |
- * // Creates the cursor using various initialization info. |
- * int cursorCreate(...); |
- * |
- * // Returns 1 if there is no more data, 0 otherwise. |
- * int cursorEOF(Cursor *pCursor); |
- * |
- * // Various accessors can be used if not at EOF. |
- * |
- * // Move to the next item. |
- * int cursorNext(Cursor *pCursor); |
- * |
- * // Destroy the memory associated with the cursor. |
- * void cursorDestroy(Cursor *pCursor); |
- * |
- * References in the following are to sections at |
- * http://www.sqlite.org/fileformat2.html . |
- * |
- * RecoverLeafCursor iterates the records in a leaf table node |
- * described in section 1.5 "B-tree Pages". When the node is |
- * exhausted, an interior cursor is used to get the next leaf node, |
- * and iteration continues there. |
- * |
- * RecoverInteriorCursor iterates the child pages in an interior table |
- * node described in section 1.5 "B-tree Pages". When the node is |
- * exhausted, a parent interior cursor is used to get the next |
- * interior node at the same level, and iteration continues there. |
- * |
- * Together these record the path from the leaf level to the root of |
- * the tree. Iteration happens from the leaves rather than the root |
- * both for efficiency and putting the special case at the front of |
- * the list is easier to implement. |
- * |
- * RecoverCursor uses a RecoverLeafCursor to iterate the rows of a |
- * table, returning results via the SQLite virtual table interface. |
- */ |
-/* TODO(shess): It might be useful to allow DEFAULT in types to |
- * specify what to do for NULL when an ALTER TABLE case comes up. |
- * Unfortunately, simply adding it to the exposed schema and using |
- * sqlite3_result_null() does not cause the default to be generate. |
- * Handling it ourselves seems hard, unfortunately. |
- */ |
- |
-#include <assert.h> |
-#include <ctype.h> |
-#include <stdio.h> |
-#include <string.h> |
- |
-/* Internal SQLite things that are used: |
- * u32, u64, i64 types. |
- * Btree, Pager, and DbPage structs. |
- * DbPage.pData, .pPager, and .pgno |
- * sqlite3 struct. |
- * sqlite3BtreePager() and sqlite3BtreeGetPageSize() |
- * sqlite3BtreeGetOptimalReserve() |
- * sqlite3PagerGet() and sqlite3PagerUnref() |
- * getVarint(). |
- */ |
-#include "sqliteInt.h" |
- |
-/* For debugging. */ |
-#if 0 |
-#define FNENTRY() fprintf(stderr, "In %s\n", __FUNCTION__) |
-#else |
-#define FNENTRY() |
-#endif |
- |
-/* Generic constants and helper functions. */ |
- |
-static const unsigned char kTableLeafPage = 0x0D; |
-static const unsigned char kTableInteriorPage = 0x05; |
- |
-/* From section 1.2. */ |
-static const unsigned kiHeaderPageSizeOffset = 16; |
-static const unsigned kiHeaderReservedSizeOffset = 20; |
-static const unsigned kiHeaderEncodingOffset = 56; |
-/* TODO(shess) |static const unsigned| fails creating the header in GetPager() |
-** because |knHeaderSize| isn't |constexpr|. But this isn't C++, either. |
-*/ |
-enum { knHeaderSize = 100}; |
- |
-/* From section 1.5. */ |
-static const unsigned kiPageTypeOffset = 0; |
-static const unsigned kiPageFreeBlockOffset = 1; |
-static const unsigned kiPageCellCountOffset = 3; |
-static const unsigned kiPageCellContentOffset = 5; |
-static const unsigned kiPageFragmentedBytesOffset = 7; |
-static const unsigned knPageLeafHeaderBytes = 8; |
-/* Interior pages contain an additional field. */ |
-static const unsigned kiPageRightChildOffset = 8; |
-static const unsigned kiPageInteriorHeaderBytes = 12; |
- |
-/* Accepted types are specified by a mask. */ |
-#define MASK_ROWID (1<<0) |
-#define MASK_INTEGER (1<<1) |
-#define MASK_FLOAT (1<<2) |
-#define MASK_TEXT (1<<3) |
-#define MASK_BLOB (1<<4) |
-#define MASK_NULL (1<<5) |
- |
-/* Helpers to decode fixed-size fields. */ |
-static u32 decodeUnsigned16(const unsigned char *pData){ |
- return (pData[0]<<8) + pData[1]; |
-} |
-static u32 decodeUnsigned32(const unsigned char *pData){ |
- return (decodeUnsigned16(pData)<<16) + decodeUnsigned16(pData+2); |
-} |
-static i64 decodeSigned(const unsigned char *pData, unsigned nBytes){ |
- i64 r = (char)(*pData); |
- while( --nBytes ){ |
- r <<= 8; |
- r += *(++pData); |
- } |
- return r; |
-} |
-/* Derived from vdbeaux.c, sqlite3VdbeSerialGet(), case 7. */ |
-/* TODO(shess): Determine if swapMixedEndianFloat() applies. */ |
-static double decodeFloat64(const unsigned char *pData){ |
-#if !defined(NDEBUG) |
- static const u64 t1 = ((u64)0x3ff00000)<<32; |
- static const double r1 = 1.0; |
- u64 t2 = t1; |
- assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 ); |
-#endif |
- i64 x = decodeSigned(pData, 8); |
- double d; |
- memcpy(&d, &x, sizeof(x)); |
- return d; |
-} |
- |
-/* Return true if a varint can safely be read from pData/nData. */ |
-/* TODO(shess): DbPage points into the middle of a buffer which |
- * contains the page data before DbPage. So code should always be |
- * able to read a small number of varints safely. Consider whether to |
- * trust that or not. |
- */ |
-static int checkVarint(const unsigned char *pData, unsigned nData){ |
- unsigned i; |
- |
- /* In the worst case the decoder takes all 8 bits of the 9th byte. */ |
- if( nData>=9 ){ |
- return 1; |
- } |
- |
- /* Look for a high-bit-clear byte in what's left. */ |
- for( i=0; i<nData; ++i ){ |
- if( !(pData[i]&0x80) ){ |
- return 1; |
- } |
- } |
- |
- /* Cannot decode in the space given. */ |
- return 0; |
-} |
- |
-/* Return 1 if n varints can be read from pData/nData. */ |
-static int checkVarints(const unsigned char *pData, unsigned nData, |
- unsigned n){ |
- unsigned nCur = 0; /* Byte offset within current varint. */ |
- unsigned nFound = 0; /* Number of varints found. */ |
- unsigned i; |
- |
- /* In the worst case the decoder takes all 8 bits of the 9th byte. */ |
- if( nData>=9*n ){ |
- return 1; |
- } |
- |
- for( i=0; nFound<n && i<nData; ++i ){ |
- nCur++; |
- if( nCur==9 || !(pData[i]&0x80) ){ |
- nFound++; |
- nCur = 0; |
- } |
- } |
- |
- return nFound==n; |
-} |
- |
-/* ctype and str[n]casecmp() can be affected by locale (eg, tr_TR). |
- * These versions consider only the ASCII space. |
- */ |
-/* TODO(shess): It may be reasonable to just remove the need for these |
- * entirely. The module could require "TEXT STRICT NOT NULL", not |
- * "Text Strict Not Null" or whatever the developer felt like typing |
- * that day. Handling corrupt data is a PERFECT place to be pedantic. |
- */ |
-static int ascii_isspace(char c){ |
- /* From fts3_expr.c */ |
- return c==' ' || c=='\t' || c=='\n' || c=='\r' || c=='\v' || c=='\f'; |
-} |
-static int ascii_isalnum(int x){ |
- /* From fts3_tokenizer1.c */ |
- return (x>='0' && x<='9') || (x>='A' && x<='Z') || (x>='a' && x<='z'); |
-} |
-static int ascii_tolower(int x){ |
- /* From fts3_tokenizer1.c */ |
- return (x>='A' && x<='Z') ? x-'A'+'a' : x; |
-} |
-/* TODO(shess): Consider sqlite3_strnicmp() */ |
-static int ascii_strncasecmp(const char *s1, const char *s2, size_t n){ |
- const unsigned char *us1 = (const unsigned char *)s1; |
- const unsigned char *us2 = (const unsigned char *)s2; |
- while( *us1 && *us2 && n && ascii_tolower(*us1)==ascii_tolower(*us2) ){ |
- us1++, us2++, n--; |
- } |
- return n ? ascii_tolower(*us1)-ascii_tolower(*us2) : 0; |
-} |
-static int ascii_strcasecmp(const char *s1, const char *s2){ |
- /* If s2 is equal through strlen(s1), will exit while() due to s1's |
- * trailing NUL, and return NUL-s2[strlen(s1)]. |
- */ |
- return ascii_strncasecmp(s1, s2, strlen(s1)+1); |
-} |
- |
-/* Provide access to the pages of a SQLite database in a way similar to SQLite's |
-** Pager. |
-*/ |
-typedef struct RecoverPager RecoverPager; |
-struct RecoverPager { |
- sqlite3_file *pSqliteFile; /* Reference to database's file handle */ |
- u32 nPageSize; /* Size of pages in pSqliteFile */ |
-}; |
- |
-static void pagerDestroy(RecoverPager *pPager){ |
- pPager->pSqliteFile->pMethods->xUnlock(pPager->pSqliteFile, SQLITE_LOCK_NONE); |
- memset(pPager, 0xA5, sizeof(*pPager)); |
- sqlite3_free(pPager); |
-} |
- |
-/* pSqliteFile should already have a SHARED lock. */ |
-static int pagerCreate(sqlite3_file *pSqliteFile, u32 nPageSize, |
- RecoverPager **ppPager){ |
- RecoverPager *pPager = sqlite3_malloc(sizeof(RecoverPager)); |
- if( !pPager ){ |
- return SQLITE_NOMEM; |
- } |
- |
- memset(pPager, 0, sizeof(*pPager)); |
- pPager->pSqliteFile = pSqliteFile; |
- pPager->nPageSize = nPageSize; |
- *ppPager = pPager; |
- return SQLITE_OK; |
-} |
- |
-/* Matches DbPage (aka PgHdr) from SQLite internals. */ |
-/* TODO(shess): SQLite by default allocates page metadata in a single allocation |
-** such that the page's data and metadata are contiguous, see pcache1AllocPage |
-** in pcache1.c. I believe this was intended to reduce malloc churn. It means |
-** that Chromium's automated tooling would be unlikely to see page-buffer |
-** overruns. I believe that this code is safe, but for now replicate SQLite's |
-** approach with kExcessSpace. |
-*/ |
-const int kExcessSpace = 128; |
-typedef struct RecoverPage RecoverPage; |
-struct RecoverPage { |
- Pgno pgno; /* Page number for this page */ |
- void *pData; /* Page data for pgno */ |
- RecoverPager *pPager; /* The pager this page is part of */ |
-}; |
- |
-static void pageDestroy(RecoverPage *pPage){ |
- sqlite3_free(pPage->pData); |
- memset(pPage, 0xA5, sizeof(*pPage)); |
- sqlite3_free(pPage); |
-} |
- |
-static int pageCreate(RecoverPager *pPager, u32 pgno, RecoverPage **ppPage){ |
- RecoverPage *pPage = sqlite3_malloc(sizeof(RecoverPage)); |
- if( !pPage ){ |
- return SQLITE_NOMEM; |
- } |
- |
- memset(pPage, 0, sizeof(*pPage)); |
- pPage->pPager = pPager; |
- pPage->pgno = pgno; |
- pPage->pData = sqlite3_malloc(pPager->nPageSize + kExcessSpace); |
- if( pPage->pData==NULL ){ |
- pageDestroy(pPage); |
- return SQLITE_NOMEM; |
- } |
- memset((u8 *)pPage->pData + pPager->nPageSize, 0, kExcessSpace); |
- |
- *ppPage = pPage; |
- return SQLITE_OK; |
-} |
- |
-static int pagerGetPage(RecoverPager *pPager, u32 iPage, RecoverPage **ppPage) { |
- sqlite3_int64 iOfst; |
- sqlite3_file *pFile = pPager->pSqliteFile; |
- RecoverPage *pPage; |
- int rc = pageCreate(pPager, iPage, &pPage); |
- if( rc!=SQLITE_OK ){ |
- return rc; |
- } |
- |
- /* xRead() can return SQLITE_IOERR_SHORT_READ, which should be treated as |
- ** SQLITE_OK plus an EOF indicator. The excess space is zero-filled. |
- */ |
- iOfst = ((sqlite3_int64)iPage - 1) * pPager->nPageSize; |
- rc = pFile->pMethods->xRead(pFile, pPage->pData, pPager->nPageSize, iOfst); |
- if( rc!=SQLITE_OK && rc!=SQLITE_IOERR_SHORT_READ ){ |
- pageDestroy(pPage); |
- return rc; |
- } |
- |
- *ppPage = pPage; |
- return SQLITE_OK; |
-} |
- |
-/* For some reason I kept making mistakes with offset calculations. */ |
-static const unsigned char *PageData(RecoverPage *pPage, unsigned iOffset){ |
- assert( iOffset<=pPage->pPager->nPageSize ); |
- return (unsigned char *)pPage->pData + iOffset; |
-} |
- |
-/* The first page in the file contains a file header in the first 100 |
- * bytes. The page's header information comes after that. Note that |
- * the offsets in the page's header information are relative to the |
- * beginning of the page, NOT the end of the page header. |
- */ |
-static const unsigned char *PageHeader(RecoverPage *pPage){ |
- if( pPage->pgno==1 ){ |
- return PageData(pPage, knHeaderSize); |
- }else{ |
- return PageData(pPage, 0); |
- } |
-} |
- |
-/* Helper to fetch the pager and page size for the named database. */ |
-static int GetPager(sqlite3 *db, const char *zName, |
- RecoverPager **ppPager, unsigned *pnPageSize, |
- int *piEncoding){ |
- int rc, iEncoding; |
- unsigned nPageSize, nReservedSize; |
- unsigned char header[knHeaderSize]; |
- sqlite3_file *pFile = NULL; |
- RecoverPager *pPager; |
- |
- rc = sqlite3_file_control(db, zName, SQLITE_FCNTL_FILE_POINTER, &pFile); |
- if( rc!=SQLITE_OK ) { |
- return rc; |
- } else if( pFile==NULL ){ |
- /* The documentation for sqlite3PagerFile() indicates it can return NULL if |
- ** the file has not yet been opened. That should not be possible here... |
- */ |
- return SQLITE_MISUSE; |
- } |
- |
- /* Get a shared lock to make sure the on-disk version of the file is truth. */ |
- rc = pFile->pMethods->xLock(pFile, SQLITE_LOCK_SHARED); |
- if( rc != SQLITE_OK ){ |
- return rc; |
- } |
- |
- /* Read the Initial header information. In case of SQLITE_IOERR_SHORT_READ, |
- ** the header is incomplete, which means no data could be recovered anyhow. |
- */ |
- rc = pFile->pMethods->xRead(pFile, header, sizeof(header), 0); |
- if( rc != SQLITE_OK ){ |
- pFile->pMethods->xUnlock(pFile, SQLITE_LOCK_NONE); |
- if( rc==SQLITE_IOERR_SHORT_READ ){ |
- return SQLITE_CORRUPT; |
- } |
- return rc; |
- } |
- |
- /* Page size must be a power of two between 512 and 32768 inclusive. */ |
- nPageSize = decodeUnsigned16(header + kiHeaderPageSizeOffset); |
- if( (nPageSize&(nPageSize-1)) || nPageSize>32768 || nPageSize<512 ){ |
- pFile->pMethods->xUnlock(pFile, SQLITE_LOCK_NONE); |
- return rc; |
- } |
- |
- /* Space reserved a the end of the page for extensions. Usually 0. */ |
- nReservedSize = header[kiHeaderReservedSizeOffset]; |
- |
- /* 1 for UTF-8, 2 for UTF-16le, 3 for UTF-16be. */ |
- iEncoding = decodeUnsigned32(header + kiHeaderEncodingOffset); |
- if( iEncoding==3 ){ |
- *piEncoding = SQLITE_UTF16BE; |
- } else if( iEncoding==2 ){ |
- *piEncoding = SQLITE_UTF16LE; |
- } else if( iEncoding==1 ){ |
- *piEncoding = SQLITE_UTF8; |
- } else { |
- /* This case should not be possible. */ |
- *piEncoding = SQLITE_UTF8; |
- } |
- |
- rc = pagerCreate(pFile, nPageSize, &pPager); |
- if( rc!=SQLITE_OK ){ |
- pFile->pMethods->xUnlock(pFile, SQLITE_LOCK_NONE); |
- return rc; |
- } |
- |
- *ppPager = pPager; |
- *pnPageSize = nPageSize - nReservedSize; |
- *piEncoding = iEncoding; |
- return SQLITE_OK; |
-} |
- |
-/* iSerialType is a type read from a record header. See "2.1 Record Format". |
- */ |
- |
-/* Storage size of iSerialType in bytes. My interpretation of SQLite |
- * documentation is that text and blob fields can have 32-bit length. |
- * Values past 2^31-12 will need more than 32 bits to encode, which is |
- * why iSerialType is u64. |
- */ |
-static u32 SerialTypeLength(u64 iSerialType){ |
- switch( iSerialType ){ |
- case 0 : return 0; /* NULL */ |
- case 1 : return 1; /* Various integers. */ |
- case 2 : return 2; |
- case 3 : return 3; |
- case 4 : return 4; |
- case 5 : return 6; |
- case 6 : return 8; |
- case 7 : return 8; /* 64-bit float. */ |
- case 8 : return 0; /* Constant 0. */ |
- case 9 : return 0; /* Constant 1. */ |
- case 10 : case 11 : assert( "RESERVED TYPE"==NULL ); return 0; |
- } |
- return (u32)((iSerialType>>1) - 6); |
-} |
- |
-/* True if iSerialType refers to a blob. */ |
-static int SerialTypeIsBlob(u64 iSerialType){ |
- assert( iSerialType>=12 ); |
- return (iSerialType%2)==0; |
-} |
- |
-/* Returns true if the serialized type represented by iSerialType is |
- * compatible with the given type mask. |
- */ |
-static int SerialTypeIsCompatible(u64 iSerialType, unsigned char mask){ |
- switch( iSerialType ){ |
- case 0 : return (mask&MASK_NULL)!=0; |
- case 1 : return (mask&MASK_INTEGER)!=0; |
- case 2 : return (mask&MASK_INTEGER)!=0; |
- case 3 : return (mask&MASK_INTEGER)!=0; |
- case 4 : return (mask&MASK_INTEGER)!=0; |
- case 5 : return (mask&MASK_INTEGER)!=0; |
- case 6 : return (mask&MASK_INTEGER)!=0; |
- case 7 : return (mask&MASK_FLOAT)!=0; |
- case 8 : return (mask&MASK_INTEGER)!=0; |
- case 9 : return (mask&MASK_INTEGER)!=0; |
- case 10 : assert( "RESERVED TYPE"==NULL ); return 0; |
- case 11 : assert( "RESERVED TYPE"==NULL ); return 0; |
- } |
- return (mask&(SerialTypeIsBlob(iSerialType) ? MASK_BLOB : MASK_TEXT)); |
-} |
- |
-/* Versions of strdup() with return values appropriate for |
- * sqlite3_free(). malloc.c has sqlite3DbStrDup()/NDup(), but those |
- * need sqlite3DbFree(), which seems intrusive. |
- */ |
-static char *sqlite3_strndup(const char *z, unsigned n){ |
- char *zNew; |
- |
- if( z==NULL ){ |
- return NULL; |
- } |
- |
- zNew = sqlite3_malloc(n+1); |
- if( zNew!=NULL ){ |
- memcpy(zNew, z, n); |
- zNew[n] = '\0'; |
- } |
- return zNew; |
-} |
-static char *sqlite3_strdup(const char *z){ |
- if( z==NULL ){ |
- return NULL; |
- } |
- return sqlite3_strndup(z, strlen(z)); |
-} |
- |
-/* Fetch the page number of zTable in zDb from sqlite_master in zDb, |
- * and put it in *piRootPage. |
- */ |
-static int getRootPage(sqlite3 *db, const char *zDb, const char *zTable, |
- u32 *piRootPage){ |
- char *zSql; /* SQL selecting root page of named element. */ |
- sqlite3_stmt *pStmt; |
- int rc; |
- |
- if( strcmp(zTable, "sqlite_master")==0 ){ |
- *piRootPage = 1; |
- return SQLITE_OK; |
- } |
- |
- zSql = sqlite3_mprintf("SELECT rootpage FROM %s.sqlite_master " |
- "WHERE type = 'table' AND tbl_name = %Q", |
- zDb, zTable); |
- if( !zSql ){ |
- return SQLITE_NOMEM; |
- } |
- |
- rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0); |
- sqlite3_free(zSql); |
- if( rc!=SQLITE_OK ){ |
- return rc; |
- } |
- |
- /* Require a result. */ |
- rc = sqlite3_step(pStmt); |
- if( rc==SQLITE_DONE ){ |
- rc = SQLITE_CORRUPT; |
- }else if( rc==SQLITE_ROW ){ |
- *piRootPage = sqlite3_column_int(pStmt, 0); |
- |
- /* Require only one result. */ |
- rc = sqlite3_step(pStmt); |
- if( rc==SQLITE_DONE ){ |
- rc = SQLITE_OK; |
- }else if( rc==SQLITE_ROW ){ |
- rc = SQLITE_CORRUPT; |
- } |
- } |
- sqlite3_finalize(pStmt); |
- return rc; |
-} |
- |
-/* Cursor for iterating interior nodes. Interior page cells contain a |
- * child page number and a rowid. The child page contains items left |
- * of the rowid (less than). The rightmost page of the subtree is |
- * stored in the page header. |
- * |
- * interiorCursorDestroy - release all resources associated with the |
- * cursor and any parent cursors. |
- * interiorCursorCreate - create a cursor with the given parent and page. |
- * interiorCursorEOF - returns true if neither the cursor nor the |
- * parent cursors can return any more data. |
- * interiorCursorNextPage - fetch the next child page from the cursor. |
- * |
- * Logically, interiorCursorNextPage() returns the next child page |
- * number from the page the cursor is currently reading, calling the |
- * parent cursor as necessary to get new pages to read, until done. |
- * SQLITE_ROW if a page is returned, SQLITE_DONE if out of pages, |
- * error otherwise. Unfortunately, if the table is corrupted |
- * unexpected pages can be returned. If any unexpected page is found, |
- * leaf or otherwise, it is returned to the caller for processing, |
- * with the interior cursor left empty. The next call to |
- * interiorCursorNextPage() will recurse to the parent cursor until an |
- * interior page to iterate is returned. |
- * |
- * Note that while interiorCursorNextPage() will refuse to follow |
- * loops, it does not keep track of pages returned for purposes of |
- * preventing duplication. |
- * |
- * Note that interiorCursorEOF() could return false (not at EOF), and |
- * interiorCursorNextPage() could still return SQLITE_DONE. This |
- * could happen if there are more cells to iterate in an interior |
- * page, but those cells refer to invalid pages. |
- */ |
-typedef struct RecoverInteriorCursor RecoverInteriorCursor; |
-struct RecoverInteriorCursor { |
- RecoverInteriorCursor *pParent; /* Parent node to this node. */ |
- RecoverPage *pPage; /* Reference to leaf page. */ |
- unsigned nPageSize; /* Size of page. */ |
- unsigned nChildren; /* Number of children on the page. */ |
- unsigned iChild; /* Index of next child to return. */ |
-}; |
- |
-static void interiorCursorDestroy(RecoverInteriorCursor *pCursor){ |
- /* Destroy all the cursors to the root. */ |
- while( pCursor ){ |
- RecoverInteriorCursor *p = pCursor; |
- pCursor = pCursor->pParent; |
- |
- if( p->pPage ){ |
- pageDestroy(p->pPage); |
- p->pPage = NULL; |
- } |
- |
- memset(p, 0xA5, sizeof(*p)); |
- sqlite3_free(p); |
- } |
-} |
- |
-/* Internal helper. Reset storage in preparation for iterating pPage. */ |
-static void interiorCursorSetPage(RecoverInteriorCursor *pCursor, |
- RecoverPage *pPage){ |
- const unsigned knMinCellLength = 2 + 4 + 1; |
- unsigned nMaxChildren; |
- assert( PageHeader(pPage)[kiPageTypeOffset]==kTableInteriorPage ); |
- |
- if( pCursor->pPage ){ |
- pageDestroy(pCursor->pPage); |
- pCursor->pPage = NULL; |
- } |
- pCursor->pPage = pPage; |
- pCursor->iChild = 0; |
- |
- /* A child for each cell, plus one in the header. */ |
- pCursor->nChildren = decodeUnsigned16(PageHeader(pPage) + |
- kiPageCellCountOffset) + 1; |
- |
- /* Each child requires a 16-bit offset from an array after the header, |
- * and each child contains a 32-bit page number and at least a varint |
- * (min size of one byte). The final child page is in the header. So |
- * the maximum value for nChildren is: |
- * (nPageSize - kiPageInteriorHeaderBytes) / |
- * (sizeof(uint16) + sizeof(uint32) + 1) + 1 |
- */ |
- /* TODO(shess): This count is very unlikely to be corrupted in |
- * isolation, so seeing this could signal to skip the page. OTOH, I |
- * can't offhand think of how to get here unless this or the page-type |
- * byte is corrupted. Could be an overflow page, but it would require |
- * a very large database. |
- */ |
- nMaxChildren = |
- (pCursor->nPageSize - kiPageInteriorHeaderBytes) / knMinCellLength + 1; |
- if (pCursor->nChildren > nMaxChildren) { |
- pCursor->nChildren = nMaxChildren; |
- } |
-} |
- |
-static int interiorCursorCreate(RecoverInteriorCursor *pParent, |
- RecoverPage *pPage, int nPageSize, |
- RecoverInteriorCursor **ppCursor){ |
- RecoverInteriorCursor *pCursor = |
- sqlite3_malloc(sizeof(RecoverInteriorCursor)); |
- if( !pCursor ){ |
- return SQLITE_NOMEM; |
- } |
- |
- memset(pCursor, 0, sizeof(*pCursor)); |
- pCursor->pParent = pParent; |
- pCursor->nPageSize = nPageSize; |
- interiorCursorSetPage(pCursor, pPage); |
- *ppCursor = pCursor; |
- return SQLITE_OK; |
-} |
- |
-/* Internal helper. Return the child page number at iChild. */ |
-static unsigned interiorCursorChildPage(RecoverInteriorCursor *pCursor){ |
- const unsigned char *pPageHeader; /* Header of the current page. */ |
- const unsigned char *pCellOffsets; /* Offset to page's cell offsets. */ |
- unsigned iCellOffset; /* Offset of target cell. */ |
- |
- assert( pCursor->iChild<pCursor->nChildren ); |
- |
- /* Rightmost child is in the header. */ |
- pPageHeader = PageHeader(pCursor->pPage); |
- if( pCursor->iChild==pCursor->nChildren-1 ){ |
- return decodeUnsigned32(pPageHeader + kiPageRightChildOffset); |
- } |
- |
- /* Each cell is a 4-byte integer page number and a varint rowid |
- * which is greater than the rowid of items in that sub-tree (this |
- * module ignores ordering). The offset is from the beginning of the |
- * page, not from the page header. |
- */ |
- pCellOffsets = pPageHeader + kiPageInteriorHeaderBytes; |
- iCellOffset = decodeUnsigned16(pCellOffsets + pCursor->iChild*2); |
- if( iCellOffset<=pCursor->nPageSize-4 ){ |
- return decodeUnsigned32(PageData(pCursor->pPage, iCellOffset)); |
- } |
- |
- /* TODO(shess): Check for cell overlaps? Cells require 4 bytes plus |
- * a varint. Check could be identical to leaf check (or even a |
- * shared helper testing for "Cells starting in this range"?). |
- */ |
- |
- /* If the offset is broken, return an invalid page number. */ |
- return 0; |
-} |
- |
-static int interiorCursorEOF(RecoverInteriorCursor *pCursor){ |
- /* Find a parent with remaining children. EOF if none found. */ |
- while( pCursor && pCursor->iChild>=pCursor->nChildren ){ |
- pCursor = pCursor->pParent; |
- } |
- return pCursor==NULL; |
-} |
- |
-/* Internal helper. Used to detect if iPage would cause a loop. */ |
-static int interiorCursorPageInUse(RecoverInteriorCursor *pCursor, |
- unsigned iPage){ |
- /* Find any parent using the indicated page. */ |
- while( pCursor && pCursor->pPage->pgno!=iPage ){ |
- pCursor = pCursor->pParent; |
- } |
- return pCursor!=NULL; |
-} |
- |
-/* Get the next page from the interior cursor at *ppCursor. Returns |
- * SQLITE_ROW with the page in *ppPage, or SQLITE_DONE if out of |
- * pages, or the error SQLite returned. |
- * |
- * If the tree is uneven, then when the cursor attempts to get a new |
- * interior page from the parent cursor, it may get a non-interior |
- * page. In that case, the new page is returned, and *ppCursor is |
- * updated to point to the parent cursor (this cursor is freed). |
- */ |
-/* TODO(shess): I've tried to avoid recursion in most of this code, |
- * but this case is more challenging because the recursive call is in |
- * the middle of operation. One option for converting it without |
- * adding memory management would be to retain the head pointer and |
- * use a helper to "back up" as needed. Another option would be to |
- * reverse the list during traversal. |
- */ |
-static int interiorCursorNextPage(RecoverInteriorCursor **ppCursor, |
- RecoverPage **ppPage){ |
- RecoverInteriorCursor *pCursor = *ppCursor; |
- while( 1 ){ |
- int rc; |
- const unsigned char *pPageHeader; /* Header of found page. */ |
- |
- /* Find a valid child page which isn't on the stack. */ |
- while( pCursor->iChild<pCursor->nChildren ){ |
- const unsigned iPage = interiorCursorChildPage(pCursor); |
- pCursor->iChild++; |
- if( interiorCursorPageInUse(pCursor, iPage) ){ |
- fprintf(stderr, "Loop detected at %d\n", iPage); |
- }else{ |
- int rc = pagerGetPage(pCursor->pPage->pPager, iPage, ppPage); |
- if( rc==SQLITE_OK ){ |
- return SQLITE_ROW; |
- } |
- } |
- } |
- |
- /* This page has no more children. Get next page from parent. */ |
- if( !pCursor->pParent ){ |
- return SQLITE_DONE; |
- } |
- rc = interiorCursorNextPage(&pCursor->pParent, ppPage); |
- if( rc!=SQLITE_ROW ){ |
- return rc; |
- } |
- |
- /* If a non-interior page is received, that either means that the |
- * tree is uneven, or that a child was re-used (say as an overflow |
- * page). Remove this cursor and let the caller handle the page. |
- */ |
- pPageHeader = PageHeader(*ppPage); |
- if( pPageHeader[kiPageTypeOffset]!=kTableInteriorPage ){ |
- *ppCursor = pCursor->pParent; |
- pCursor->pParent = NULL; |
- interiorCursorDestroy(pCursor); |
- return SQLITE_ROW; |
- } |
- |
- /* Iterate the new page. */ |
- interiorCursorSetPage(pCursor, *ppPage); |
- *ppPage = NULL; |
- } |
- |
- assert(NULL); /* NOTREACHED() */ |
- return SQLITE_CORRUPT; |
-} |
- |
-/* Large rows are spilled to overflow pages. The row's main page |
- * stores the overflow page number after the local payload, with a |
- * linked list forward from there as necessary. overflowMaybeCreate() |
- * and overflowGetSegment() provide an abstraction for accessing such |
- * data while centralizing the code. |
- * |
- * overflowDestroy - releases all resources associated with the structure. |
- * overflowMaybeCreate - create the overflow structure if it is needed |
- * to represent the given record. See function comment. |
- * overflowGetSegment - fetch a segment from the record, accounting |
- * for overflow pages. Segments which are not |
- * entirely contained with a page are constructed |
- * into a buffer which is returned. See function comment. |
- */ |
-typedef struct RecoverOverflow RecoverOverflow; |
-struct RecoverOverflow { |
- RecoverOverflow *pNextOverflow; |
- RecoverPage *pPage; |
- unsigned nPageSize; |
-}; |
- |
-static void overflowDestroy(RecoverOverflow *pOverflow){ |
- while( pOverflow ){ |
- RecoverOverflow *p = pOverflow; |
- pOverflow = p->pNextOverflow; |
- |
- if( p->pPage ){ |
- pageDestroy(p->pPage); |
- p->pPage = NULL; |
- } |
- |
- memset(p, 0xA5, sizeof(*p)); |
- sqlite3_free(p); |
- } |
-} |
- |
-/* Internal helper. Used to detect if iPage would cause a loop. */ |
-static int overflowPageInUse(RecoverOverflow *pOverflow, unsigned iPage){ |
- while( pOverflow && pOverflow->pPage->pgno!=iPage ){ |
- pOverflow = pOverflow->pNextOverflow; |
- } |
- return pOverflow!=NULL; |
-} |
- |
-/* Setup to access an nRecordBytes record beginning at iRecordOffset |
- * in pPage. If nRecordBytes can be satisfied entirely from pPage, |
- * then no overflow pages are needed an *pnLocalRecordBytes is set to |
- * nRecordBytes. Otherwise, *ppOverflow is set to the head of a list |
- * of overflow pages, and *pnLocalRecordBytes is set to the number of |
- * bytes local to pPage. |
- * |
- * overflowGetSegment() will do the right thing regardless of whether |
- * those values are set to be in-page or not. |
- */ |
-static int overflowMaybeCreate(RecoverPage *pPage, unsigned nPageSize, |
- unsigned iRecordOffset, unsigned nRecordBytes, |
- unsigned *pnLocalRecordBytes, |
- RecoverOverflow **ppOverflow){ |
- unsigned nLocalRecordBytes; /* Record bytes in the leaf page. */ |
- unsigned iNextPage; /* Next page number for record data. */ |
- unsigned nBytes; /* Maximum record bytes as of current page. */ |
- int rc; |
- RecoverOverflow *pFirstOverflow; /* First in linked list of pages. */ |
- RecoverOverflow *pLastOverflow; /* End of linked list. */ |
- |
- /* Calculations from the "Table B-Tree Leaf Cell" part of section |
- * 1.5 of http://www.sqlite.org/fileformat2.html . maxLocal and |
- * minLocal to match naming in btree.c. |
- */ |
- const unsigned maxLocal = nPageSize - 35; |
- const unsigned minLocal = ((nPageSize-12)*32/255)-23; /* m */ |
- |
- /* Always fit anything smaller than maxLocal. */ |
- if( nRecordBytes<=maxLocal ){ |
- *pnLocalRecordBytes = nRecordBytes; |
- *ppOverflow = NULL; |
- return SQLITE_OK; |
- } |
- |
- /* Calculate the remainder after accounting for minLocal on the leaf |
- * page and what packs evenly into overflow pages. If the remainder |
- * does not fit into maxLocal, then a partially-full overflow page |
- * will be required in any case, so store as little as possible locally. |
- */ |
- nLocalRecordBytes = minLocal+((nRecordBytes-minLocal)%(nPageSize-4)); |
- if( maxLocal<nLocalRecordBytes ){ |
- nLocalRecordBytes = minLocal; |
- } |
- |
- /* Don't read off the end of the page. */ |
- if( iRecordOffset+nLocalRecordBytes+4>nPageSize ){ |
- return SQLITE_CORRUPT; |
- } |
- |
- /* First overflow page number is after the local bytes. */ |
- iNextPage = |
- decodeUnsigned32(PageData(pPage, iRecordOffset + nLocalRecordBytes)); |
- nBytes = nLocalRecordBytes; |
- |
- /* While there are more pages to read, and more bytes are needed, |
- * get another page. |
- */ |
- pFirstOverflow = pLastOverflow = NULL; |
- rc = SQLITE_OK; |
- while( iNextPage && nBytes<nRecordBytes ){ |
- RecoverOverflow *pOverflow; /* New overflow page for the list. */ |
- |
- rc = pagerGetPage(pPage->pPager, iNextPage, &pPage); |
- if( rc!=SQLITE_OK ){ |
- break; |
- } |
- |
- pOverflow = sqlite3_malloc(sizeof(RecoverOverflow)); |
- if( !pOverflow ){ |
- pageDestroy(pPage); |
- rc = SQLITE_NOMEM; |
- break; |
- } |
- memset(pOverflow, 0, sizeof(*pOverflow)); |
- pOverflow->pPage = pPage; |
- pOverflow->nPageSize = nPageSize; |
- |
- if( !pFirstOverflow ){ |
- pFirstOverflow = pOverflow; |
- }else{ |
- pLastOverflow->pNextOverflow = pOverflow; |
- } |
- pLastOverflow = pOverflow; |
- |
- iNextPage = decodeUnsigned32(pPage->pData); |
- nBytes += nPageSize-4; |
- |
- /* Avoid loops. */ |
- if( overflowPageInUse(pFirstOverflow, iNextPage) ){ |
- fprintf(stderr, "Overflow loop detected at %d\n", iNextPage); |
- rc = SQLITE_CORRUPT; |
- break; |
- } |
- } |
- |
- /* If there were not enough pages, or too many, things are corrupt. |
- * Not having enough pages is an obvious problem, all the data |
- * cannot be read. Too many pages means that the contents of the |
- * row between the main page and the overflow page(s) is |
- * inconsistent (most likely one or more of the overflow pages does |
- * not really belong to this row). |
- */ |
- if( rc==SQLITE_OK && (nBytes<nRecordBytes || iNextPage) ){ |
- rc = SQLITE_CORRUPT; |
- } |
- |
- if( rc==SQLITE_OK ){ |
- *ppOverflow = pFirstOverflow; |
- *pnLocalRecordBytes = nLocalRecordBytes; |
- }else if( pFirstOverflow ){ |
- overflowDestroy(pFirstOverflow); |
- } |
- return rc; |
-} |
- |
-/* Use in concert with overflowMaybeCreate() to efficiently read parts |
- * of a potentially-overflowing record. pPage and iRecordOffset are |
- * the values passed into overflowMaybeCreate(), nLocalRecordBytes and |
- * pOverflow are the values returned by that call. |
- * |
- * On SQLITE_OK, *ppBase points to nRequestBytes of data at |
- * iRequestOffset within the record. If the data exists contiguously |
- * in a page, a direct pointer is returned, otherwise a buffer from |
- * sqlite3_malloc() is returned with the data. *pbFree is set true if |
- * sqlite3_free() should be called on *ppBase. |
- */ |
-/* Operation of this function is subtle. At any time, pPage is the |
- * current page, with iRecordOffset and nLocalRecordBytes being record |
- * data within pPage, and pOverflow being the overflow page after |
- * pPage. This allows the code to handle both the initial leaf page |
- * and overflow pages consistently by adjusting the values |
- * appropriately. |
- */ |
-static int overflowGetSegment(RecoverPage *pPage, unsigned iRecordOffset, |
- unsigned nLocalRecordBytes, |
- RecoverOverflow *pOverflow, |
- unsigned iRequestOffset, unsigned nRequestBytes, |
- unsigned char **ppBase, int *pbFree){ |
- unsigned nBase; /* Amount of data currently collected. */ |
- unsigned char *pBase; /* Buffer to collect record data into. */ |
- |
- /* Skip to the page containing the start of the data. */ |
- while( iRequestOffset>=nLocalRecordBytes && pOverflow ){ |
- /* Factor out current page's contribution. */ |
- iRequestOffset -= nLocalRecordBytes; |
- |
- /* Move forward to the next page in the list. */ |
- pPage = pOverflow->pPage; |
- iRecordOffset = 4; |
- nLocalRecordBytes = pOverflow->nPageSize - iRecordOffset; |
- pOverflow = pOverflow->pNextOverflow; |
- } |
- |
- /* If the requested data is entirely within this page, return a |
- * pointer into the page. |
- */ |
- if( iRequestOffset+nRequestBytes<=nLocalRecordBytes ){ |
- /* TODO(shess): "assignment discards qualifiers from pointer target type" |
- * Having ppBase be const makes sense, but sqlite3_free() takes non-const. |
- */ |
- *ppBase = (unsigned char *)PageData(pPage, iRecordOffset + iRequestOffset); |
- *pbFree = 0; |
- return SQLITE_OK; |
- } |
- |
- /* The data range would require additional pages. */ |
- if( !pOverflow ){ |
- /* Should never happen, the range is outside the nRecordBytes |
- * passed to overflowMaybeCreate(). |
- */ |
- assert(NULL); /* NOTREACHED */ |
- return SQLITE_ERROR; |
- } |
- |
- /* Get a buffer to construct into. */ |
- nBase = 0; |
- pBase = sqlite3_malloc(nRequestBytes); |
- if( !pBase ){ |
- return SQLITE_NOMEM; |
- } |
- while( nBase<nRequestBytes ){ |
- /* Copy over data present on this page. */ |
- unsigned nCopyBytes = nRequestBytes - nBase; |
- if( nLocalRecordBytes-iRequestOffset<nCopyBytes ){ |
- nCopyBytes = nLocalRecordBytes - iRequestOffset; |
- } |
- memcpy(pBase + nBase, PageData(pPage, iRecordOffset + iRequestOffset), |
- nCopyBytes); |
- nBase += nCopyBytes; |
- |
- if( pOverflow ){ |
- /* Copy from start of record data in future pages. */ |
- iRequestOffset = 0; |
- |
- /* Move forward to the next page in the list. Should match |
- * first while() loop. |
- */ |
- pPage = pOverflow->pPage; |
- iRecordOffset = 4; |
- nLocalRecordBytes = pOverflow->nPageSize - iRecordOffset; |
- pOverflow = pOverflow->pNextOverflow; |
- }else if( nBase<nRequestBytes ){ |
- /* Ran out of overflow pages with data left to deliver. Not |
- * possible if the requested range fits within nRecordBytes |
- * passed to overflowMaybeCreate() when creating pOverflow. |
- */ |
- assert(NULL); /* NOTREACHED */ |
- sqlite3_free(pBase); |
- return SQLITE_ERROR; |
- } |
- } |
- assert( nBase==nRequestBytes ); |
- *ppBase = pBase; |
- *pbFree = 1; |
- return SQLITE_OK; |
-} |
- |
-/* Primary structure for iterating the contents of a table. |
- * |
- * leafCursorDestroy - release all resources associated with the cursor. |
- * leafCursorCreate - create a cursor to iterate items from tree at |
- * the provided root page. |
- * leafCursorNextValidCell - get the cursor ready to access data from |
- * the next valid cell in the table. |
- * leafCursorCellRowid - get the current cell's rowid. |
- * leafCursorCellColumns - get current cell's column count. |
- * leafCursorCellColInfo - get type and data for a column in current cell. |
- * |
- * leafCursorNextValidCell skips cells which fail simple integrity |
- * checks, such as overlapping other cells, or being located at |
- * impossible offsets, or where header data doesn't correctly describe |
- * payload data. Returns SQLITE_ROW if a valid cell is found, |
- * SQLITE_DONE if all pages in the tree were exhausted. |
- * |
- * leafCursorCellColInfo() accounts for overflow pages in the style of |
- * overflowGetSegment(). |
- */ |
-typedef struct RecoverLeafCursor RecoverLeafCursor; |
-struct RecoverLeafCursor { |
- RecoverInteriorCursor *pParent; /* Parent node to this node. */ |
- RecoverPager *pPager; /* Page provider. */ |
- RecoverPage *pPage; /* Current leaf page. */ |
- unsigned nPageSize; /* Size of pPage. */ |
- unsigned nCells; /* Number of cells in pPage. */ |
- unsigned iCell; /* Current cell. */ |
- |
- /* Info parsed from data in iCell. */ |
- i64 iRowid; /* rowid parsed. */ |
- unsigned nRecordCols; /* how many items in the record. */ |
- u64 iRecordOffset; /* offset to record data. */ |
- /* TODO(shess): nRecordBytes and nRecordHeaderBytes are used in |
- * leafCursorCellColInfo() to prevent buffer overruns. |
- * leafCursorCellDecode() already verified that the cell is valid, so |
- * those checks should be redundant. |
- */ |
- u64 nRecordBytes; /* Size of record data. */ |
- unsigned nLocalRecordBytes; /* Amount of record data in-page. */ |
- unsigned nRecordHeaderBytes; /* Size of record header data. */ |
- unsigned char *pRecordHeader; /* Pointer to record header data. */ |
- int bFreeRecordHeader; /* True if record header requires free. */ |
- RecoverOverflow *pOverflow; /* Cell overflow info, if needed. */ |
-}; |
- |
-/* Internal helper shared between next-page and create-cursor. If |
- * pPage is a leaf page, it will be stored in the cursor and state |
- * initialized for reading cells. |
- * |
- * If pPage is an interior page, a new parent cursor is created and |
- * injected on the stack. This is necessary to handle trees with |
- * uneven depth, but also is used during initial setup. |
- * |
- * If pPage is not a table page at all, it is discarded. |
- * |
- * If SQLITE_OK is returned, the caller no longer owns pPage, |
- * otherwise the caller is responsible for discarding it. |
- */ |
-static int leafCursorLoadPage(RecoverLeafCursor *pCursor, RecoverPage *pPage){ |
- const unsigned char *pPageHeader; /* Header of *pPage */ |
- unsigned nCells; /* Number of cells in the page */ |
- |
- /* Release the current page. */ |
- if( pCursor->pPage ){ |
- pageDestroy(pCursor->pPage); |
- pCursor->pPage = NULL; |
- pCursor->iCell = pCursor->nCells = 0; |
- } |
- |
- /* If the page is an unexpected interior node, inject a new stack |
- * layer and try again from there. |
- */ |
- pPageHeader = PageHeader(pPage); |
- if( pPageHeader[kiPageTypeOffset]==kTableInteriorPage ){ |
- RecoverInteriorCursor *pParent; |
- int rc = interiorCursorCreate(pCursor->pParent, pPage, pCursor->nPageSize, |
- &pParent); |
- if( rc!=SQLITE_OK ){ |
- return rc; |
- } |
- pCursor->pParent = pParent; |
- return SQLITE_OK; |
- } |
- |
- /* Not a leaf page, skip it. */ |
- if( pPageHeader[kiPageTypeOffset]!=kTableLeafPage ){ |
- pageDestroy(pPage); |
- return SQLITE_OK; |
- } |
- |
- /* Leaf contains no data, skip it. Empty tables, for instance. */ |
- nCells = decodeUnsigned16(pPageHeader + kiPageCellCountOffset);; |
- if( nCells<1 ){ |
- pageDestroy(pPage); |
- return SQLITE_OK; |
- } |
- |
- /* Take ownership of the page and start decoding. */ |
- pCursor->pPage = pPage; |
- pCursor->iCell = 0; |
- pCursor->nCells = nCells; |
- return SQLITE_OK; |
-} |
- |
-/* Get the next leaf-level page in the tree. Returns SQLITE_ROW when |
- * a leaf page is found, SQLITE_DONE when no more leaves exist, or any |
- * error which occurred. |
- */ |
-static int leafCursorNextPage(RecoverLeafCursor *pCursor){ |
- if( !pCursor->pParent ){ |
- return SQLITE_DONE; |
- } |
- |
- /* Repeatedly load the parent's next child page until a leaf is found. */ |
- do { |
- RecoverPage *pNextPage; |
- int rc = interiorCursorNextPage(&pCursor->pParent, &pNextPage); |
- if( rc!=SQLITE_ROW ){ |
- assert( rc==SQLITE_DONE ); |
- return rc; |
- } |
- |
- rc = leafCursorLoadPage(pCursor, pNextPage); |
- if( rc!=SQLITE_OK ){ |
- pageDestroy(pNextPage); |
- return rc; |
- } |
- } while( !pCursor->pPage ); |
- |
- return SQLITE_ROW; |
-} |
- |
-static void leafCursorDestroyCellData(RecoverLeafCursor *pCursor){ |
- if( pCursor->bFreeRecordHeader ){ |
- sqlite3_free(pCursor->pRecordHeader); |
- } |
- pCursor->bFreeRecordHeader = 0; |
- pCursor->pRecordHeader = NULL; |
- |
- if( pCursor->pOverflow ){ |
- overflowDestroy(pCursor->pOverflow); |
- pCursor->pOverflow = NULL; |
- } |
-} |
- |
-static void leafCursorDestroy(RecoverLeafCursor *pCursor){ |
- leafCursorDestroyCellData(pCursor); |
- |
- if( pCursor->pParent ){ |
- interiorCursorDestroy(pCursor->pParent); |
- pCursor->pParent = NULL; |
- } |
- |
- if( pCursor->pPage ){ |
- pageDestroy(pCursor->pPage); |
- pCursor->pPage = NULL; |
- } |
- |
- if( pCursor->pPager ){ |
- pagerDestroy(pCursor->pPager); |
- pCursor->pPager = NULL; |
- } |
- |
- memset(pCursor, 0xA5, sizeof(*pCursor)); |
- sqlite3_free(pCursor); |
-} |
- |
-/* Create a cursor to iterate the rows from the leaf pages of a table |
- * rooted at iRootPage. |
- */ |
-/* TODO(shess): recoverOpen() calls this to setup the cursor, and I |
- * think that recoverFilter() may make a hard assumption that the |
- * cursor returned will turn up at least one valid cell. |
- * |
- * The cases I can think of which break this assumption are: |
- * - pPage is a valid leaf page with no valid cells. |
- * - pPage is a valid interior page with no valid leaves. |
- * - pPage is a valid interior page who's leaves contain no valid cells. |
- * - pPage is not a valid leaf or interior page. |
- */ |
-static int leafCursorCreate(RecoverPager *pPager, unsigned nPageSize, |
- u32 iRootPage, RecoverLeafCursor **ppCursor){ |
- RecoverPage *pPage; /* Reference to page at iRootPage. */ |
- RecoverLeafCursor *pCursor; /* Leaf cursor being constructed. */ |
- int rc; |
- |
- /* Start out with the root page. */ |
- rc = pagerGetPage(pPager, iRootPage, &pPage); |
- if( rc!=SQLITE_OK ){ |
- return rc; |
- } |
- |
- pCursor = sqlite3_malloc(sizeof(RecoverLeafCursor)); |
- if( !pCursor ){ |
- pageDestroy(pPage); |
- return SQLITE_NOMEM; |
- } |
- memset(pCursor, 0, sizeof(*pCursor)); |
- |
- pCursor->nPageSize = nPageSize; |
- pCursor->pPager = pPager; |
- |
- rc = leafCursorLoadPage(pCursor, pPage); |
- if( rc!=SQLITE_OK ){ |
- pageDestroy(pPage); |
- leafCursorDestroy(pCursor); |
- return rc; |
- } |
- |
- /* pPage wasn't a leaf page, find the next leaf page. */ |
- if( !pCursor->pPage ){ |
- rc = leafCursorNextPage(pCursor); |
- if( rc!=SQLITE_DONE && rc!=SQLITE_ROW ){ |
- leafCursorDestroy(pCursor); |
- return rc; |
- } |
- } |
- |
- *ppCursor = pCursor; |
- return SQLITE_OK; |
-} |
- |
-/* Useful for setting breakpoints. */ |
-static int ValidateError(){ |
- return SQLITE_ERROR; |
-} |
- |
-/* Setup the cursor for reading the information from cell iCell. */ |
-static int leafCursorCellDecode(RecoverLeafCursor *pCursor){ |
- const unsigned char *pPageHeader; /* Header of current page. */ |
- const unsigned char *pPageEnd; /* Byte after end of current page. */ |
- const unsigned char *pCellOffsets; /* Pointer to page's cell offsets. */ |
- unsigned iCellOffset; /* Offset of current cell (iCell). */ |
- const unsigned char *pCell; /* Pointer to data at iCellOffset. */ |
- unsigned nCellMaxBytes; /* Maximum local size of iCell. */ |
- unsigned iEndOffset; /* End of iCell's in-page data. */ |
- u64 nRecordBytes; /* Expected size of cell, w/overflow. */ |
- u64 iRowid; /* iCell's rowid (in table). */ |
- unsigned nRead; /* Amount of cell read. */ |
- unsigned nRecordHeaderRead; /* Header data read. */ |
- u64 nRecordHeaderBytes; /* Header size expected. */ |
- unsigned nRecordCols; /* Columns read from header. */ |
- u64 nRecordColBytes; /* Bytes in payload for those columns. */ |
- unsigned i; |
- int rc; |
- |
- assert( pCursor->iCell<pCursor->nCells ); |
- |
- leafCursorDestroyCellData(pCursor); |
- |
- /* Find the offset to the row. */ |
- pPageHeader = PageHeader(pCursor->pPage); |
- pCellOffsets = pPageHeader + knPageLeafHeaderBytes; |
- pPageEnd = PageData(pCursor->pPage, pCursor->nPageSize); |
- if( pCellOffsets + pCursor->iCell*2 + 2 > pPageEnd ){ |
- return ValidateError(); |
- } |
- iCellOffset = decodeUnsigned16(pCellOffsets + pCursor->iCell*2); |
- if( iCellOffset>=pCursor->nPageSize ){ |
- return ValidateError(); |
- } |
- |
- pCell = PageData(pCursor->pPage, iCellOffset); |
- nCellMaxBytes = pCursor->nPageSize - iCellOffset; |
- |
- /* B-tree leaf cells lead with varint record size, varint rowid and |
- * varint header size. |
- */ |
- /* TODO(shess): The smallest page size is 512 bytes, which has an m |
- * of 39. Three varints need at most 27 bytes to encode. I think. |
- */ |
- if( !checkVarints(pCell, nCellMaxBytes, 3) ){ |
- return ValidateError(); |
- } |
- |
- nRead = getVarint(pCell, &nRecordBytes); |
- assert( iCellOffset+nRead<=pCursor->nPageSize ); |
- pCursor->nRecordBytes = nRecordBytes; |
- |
- nRead += getVarint(pCell + nRead, &iRowid); |
- assert( iCellOffset+nRead<=pCursor->nPageSize ); |
- pCursor->iRowid = (i64)iRowid; |
- |
- pCursor->iRecordOffset = iCellOffset + nRead; |
- |
- /* Start overflow setup here because nLocalRecordBytes is needed to |
- * check cell overlap. |
- */ |
- rc = overflowMaybeCreate(pCursor->pPage, pCursor->nPageSize, |
- pCursor->iRecordOffset, pCursor->nRecordBytes, |
- &pCursor->nLocalRecordBytes, |
- &pCursor->pOverflow); |
- if( rc!=SQLITE_OK ){ |
- return ValidateError(); |
- } |
- |
- /* Check that no other cell starts within this cell. */ |
- iEndOffset = pCursor->iRecordOffset + pCursor->nLocalRecordBytes; |
- for( i=0; i<pCursor->nCells && pCellOffsets + i*2 + 2 <= pPageEnd; ++i ){ |
- const unsigned iOtherOffset = decodeUnsigned16(pCellOffsets + i*2); |
- if( iOtherOffset>iCellOffset && iOtherOffset<iEndOffset ){ |
- return ValidateError(); |
- } |
- } |
- |
- nRecordHeaderRead = getVarint(pCell + nRead, &nRecordHeaderBytes); |
- assert( nRecordHeaderBytes<=nRecordBytes ); |
- pCursor->nRecordHeaderBytes = nRecordHeaderBytes; |
- |
- /* Large headers could overflow if pages are small. */ |
- rc = overflowGetSegment(pCursor->pPage, |
- pCursor->iRecordOffset, pCursor->nLocalRecordBytes, |
- pCursor->pOverflow, 0, nRecordHeaderBytes, |
- &pCursor->pRecordHeader, &pCursor->bFreeRecordHeader); |
- if( rc!=SQLITE_OK ){ |
- return ValidateError(); |
- } |
- |
- /* Tally up the column count and size of data. */ |
- nRecordCols = 0; |
- nRecordColBytes = 0; |
- while( nRecordHeaderRead<nRecordHeaderBytes ){ |
- u64 iSerialType; /* Type descriptor for current column. */ |
- if( !checkVarint(pCursor->pRecordHeader + nRecordHeaderRead, |
- nRecordHeaderBytes - nRecordHeaderRead) ){ |
- return ValidateError(); |
- } |
- nRecordHeaderRead += getVarint(pCursor->pRecordHeader + nRecordHeaderRead, |
- &iSerialType); |
- if( iSerialType==10 || iSerialType==11 ){ |
- return ValidateError(); |
- } |
- nRecordColBytes += SerialTypeLength(iSerialType); |
- nRecordCols++; |
- } |
- pCursor->nRecordCols = nRecordCols; |
- |
- /* Parsing the header used as many bytes as expected. */ |
- if( nRecordHeaderRead!=nRecordHeaderBytes ){ |
- return ValidateError(); |
- } |
- |
- /* Calculated record is size of expected record. */ |
- if( nRecordHeaderBytes+nRecordColBytes!=nRecordBytes ){ |
- return ValidateError(); |
- } |
- |
- return SQLITE_OK; |
-} |
- |
-static i64 leafCursorCellRowid(RecoverLeafCursor *pCursor){ |
- return pCursor->iRowid; |
-} |
- |
-static unsigned leafCursorCellColumns(RecoverLeafCursor *pCursor){ |
- return pCursor->nRecordCols; |
-} |
- |
-/* Get the column info for the cell. Pass NULL for ppBase to prevent |
- * retrieving the data segment. If *pbFree is true, *ppBase must be |
- * freed by the caller using sqlite3_free(). |
- */ |
-static int leafCursorCellColInfo(RecoverLeafCursor *pCursor, |
- unsigned iCol, u64 *piColType, |
- unsigned char **ppBase, int *pbFree){ |
- const unsigned char *pRecordHeader; /* Current cell's header. */ |
- u64 nRecordHeaderBytes; /* Bytes in pRecordHeader. */ |
- unsigned nRead; /* Bytes read from header. */ |
- u64 iColEndOffset; /* Offset to end of column in cell. */ |
- unsigned nColsSkipped; /* Count columns as procesed. */ |
- u64 iSerialType; /* Type descriptor for current column. */ |
- |
- /* Implicit NULL for columns past the end. This case happens when |
- * rows have not been updated since an ALTER TABLE added columns. |
- * It is more convenient to address here than in callers. |
- */ |
- if( iCol>=pCursor->nRecordCols ){ |
- *piColType = 0; |
- if( ppBase ){ |
- *ppBase = 0; |
- *pbFree = 0; |
- } |
- return SQLITE_OK; |
- } |
- |
- /* Must be able to decode header size. */ |
- pRecordHeader = pCursor->pRecordHeader; |
- if( !checkVarint(pRecordHeader, pCursor->nRecordHeaderBytes) ){ |
- return SQLITE_CORRUPT; |
- } |
- |
- /* Rather than caching the header size and how many bytes it took, |
- * decode it every time. |
- */ |
- nRead = getVarint(pRecordHeader, &nRecordHeaderBytes); |
- assert( nRecordHeaderBytes==pCursor->nRecordHeaderBytes ); |
- |
- /* Scan forward to the indicated column. Scans to _after_ column |
- * for later range checking. |
- */ |
- /* TODO(shess): This could get expensive for very wide tables. An |
- * array of iSerialType could be built in leafCursorCellDecode(), but |
- * the number of columns is dynamic per row, so it would add memory |
- * management complexity. Enough info to efficiently forward |
- * iterate could be kept, if all clients forward iterate |
- * (recoverColumn() may not). |
- */ |
- iColEndOffset = 0; |
- nColsSkipped = 0; |
- while( nColsSkipped<=iCol && nRead<nRecordHeaderBytes ){ |
- if( !checkVarint(pRecordHeader + nRead, nRecordHeaderBytes - nRead) ){ |
- return SQLITE_CORRUPT; |
- } |
- nRead += getVarint(pRecordHeader + nRead, &iSerialType); |
- iColEndOffset += SerialTypeLength(iSerialType); |
- nColsSkipped++; |
- } |
- |
- /* Column's data extends past record's end. */ |
- if( nRecordHeaderBytes+iColEndOffset>pCursor->nRecordBytes ){ |
- return SQLITE_CORRUPT; |
- } |
- |
- *piColType = iSerialType; |
- if( ppBase ){ |
- const u32 nColBytes = SerialTypeLength(iSerialType); |
- |
- /* Offset from start of record to beginning of column. */ |
- const unsigned iColOffset = nRecordHeaderBytes+iColEndOffset-nColBytes; |
- |
- return overflowGetSegment(pCursor->pPage, pCursor->iRecordOffset, |
- pCursor->nLocalRecordBytes, pCursor->pOverflow, |
- iColOffset, nColBytes, ppBase, pbFree); |
- } |
- return SQLITE_OK; |
-} |
- |
-static int leafCursorNextValidCell(RecoverLeafCursor *pCursor){ |
- while( 1 ){ |
- int rc; |
- |
- /* Move to the next cell. */ |
- pCursor->iCell++; |
- |
- /* No more cells, get the next leaf. */ |
- if( pCursor->iCell>=pCursor->nCells ){ |
- rc = leafCursorNextPage(pCursor); |
- if( rc!=SQLITE_ROW ){ |
- return rc; |
- } |
- assert( pCursor->iCell==0 ); |
- } |
- |
- /* If the cell is valid, indicate that a row is available. */ |
- rc = leafCursorCellDecode(pCursor); |
- if( rc==SQLITE_OK ){ |
- return SQLITE_ROW; |
- } |
- |
- /* Iterate until done or a valid row is found. */ |
- /* TODO(shess): Remove debugging output. */ |
- fprintf(stderr, "Skipping invalid cell\n"); |
- } |
- return SQLITE_ERROR; |
-} |
- |
-typedef struct Recover Recover; |
-struct Recover { |
- sqlite3_vtab base; |
- sqlite3 *db; /* Host database connection */ |
- char *zDb; /* Database containing target table */ |
- char *zTable; /* Target table */ |
- unsigned nCols; /* Number of columns in target table */ |
- unsigned char *pTypes; /* Types of columns in target table */ |
-}; |
- |
-/* Internal helper for deleting the module. */ |
-static void recoverRelease(Recover *pRecover){ |
- sqlite3_free(pRecover->zDb); |
- sqlite3_free(pRecover->zTable); |
- sqlite3_free(pRecover->pTypes); |
- memset(pRecover, 0xA5, sizeof(*pRecover)); |
- sqlite3_free(pRecover); |
-} |
- |
-/* Helper function for initializing the module. Forward-declared so |
- * recoverCreate() and recoverConnect() can see it. |
- */ |
-static int recoverInit( |
- sqlite3 *, void *, int, const char *const*, sqlite3_vtab **, char ** |
-); |
- |
-static int recoverCreate( |
- sqlite3 *db, |
- void *pAux, |
- int argc, const char *const*argv, |
- sqlite3_vtab **ppVtab, |
- char **pzErr |
-){ |
- FNENTRY(); |
- return recoverInit(db, pAux, argc, argv, ppVtab, pzErr); |
-} |
- |
-/* This should never be called. */ |
-static int recoverConnect( |
- sqlite3 *db, |
- void *pAux, |
- int argc, const char *const*argv, |
- sqlite3_vtab **ppVtab, |
- char **pzErr |
-){ |
- FNENTRY(); |
- return recoverInit(db, pAux, argc, argv, ppVtab, pzErr); |
-} |
- |
-/* No indices supported. */ |
-static int recoverBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){ |
- FNENTRY(); |
- return SQLITE_OK; |
-} |
- |
-/* Logically, this should never be called. */ |
-static int recoverDisconnect(sqlite3_vtab *pVtab){ |
- FNENTRY(); |
- recoverRelease((Recover*)pVtab); |
- return SQLITE_OK; |
-} |
- |
-static int recoverDestroy(sqlite3_vtab *pVtab){ |
- FNENTRY(); |
- recoverRelease((Recover*)pVtab); |
- return SQLITE_OK; |
-} |
- |
-typedef struct RecoverCursor RecoverCursor; |
-struct RecoverCursor { |
- sqlite3_vtab_cursor base; |
- RecoverLeafCursor *pLeafCursor; |
- int iEncoding; |
- int bEOF; |
-}; |
- |
-static int recoverOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){ |
- Recover *pRecover = (Recover*)pVTab; |
- u32 iRootPage; /* Root page of the backing table. */ |
- int iEncoding; /* UTF encoding for backing database. */ |
- unsigned nPageSize; /* Size of pages in backing database. */ |
- RecoverPager *pPager; /* Backing database pager. */ |
- RecoverLeafCursor *pLeafCursor; /* Cursor to read table's leaf pages. */ |
- RecoverCursor *pCursor; /* Cursor to read rows from leaves. */ |
- int rc; |
- |
- FNENTRY(); |
- |
- iRootPage = 0; |
- rc = getRootPage(pRecover->db, pRecover->zDb, pRecover->zTable, |
- &iRootPage); |
- if( rc!=SQLITE_OK ){ |
- return rc; |
- } |
- |
- rc = GetPager(pRecover->db, pRecover->zDb, &pPager, &nPageSize, &iEncoding); |
- if( rc!=SQLITE_OK ){ |
- return rc; |
- } |
- |
- rc = leafCursorCreate(pPager, nPageSize, iRootPage, &pLeafCursor); |
- if( rc!=SQLITE_OK ){ |
- pagerDestroy(pPager); |
- return rc; |
- } |
- |
- pCursor = sqlite3_malloc(sizeof(RecoverCursor)); |
- if( !pCursor ){ |
- leafCursorDestroy(pLeafCursor); |
- return SQLITE_NOMEM; |
- } |
- memset(pCursor, 0, sizeof(*pCursor)); |
- pCursor->base.pVtab = pVTab; |
- pCursor->pLeafCursor = pLeafCursor; |
- pCursor->iEncoding = iEncoding; |
- |
- /* If no leaf pages were found, empty result set. */ |
- /* TODO(shess): leafCursorNextValidCell() would return SQLITE_ROW or |
- * SQLITE_DONE to indicate whether there is further data to consider. |
- */ |
- pCursor->bEOF = (pLeafCursor->pPage==NULL); |
- |
- *ppCursor = (sqlite3_vtab_cursor*)pCursor; |
- return SQLITE_OK; |
-} |
- |
-static int recoverClose(sqlite3_vtab_cursor *cur){ |
- RecoverCursor *pCursor = (RecoverCursor*)cur; |
- FNENTRY(); |
- if( pCursor->pLeafCursor ){ |
- leafCursorDestroy(pCursor->pLeafCursor); |
- pCursor->pLeafCursor = NULL; |
- } |
- memset(pCursor, 0xA5, sizeof(*pCursor)); |
- sqlite3_free(cur); |
- return SQLITE_OK; |
-} |
- |
-/* Helpful place to set a breakpoint. */ |
-static int RecoverInvalidCell(){ |
- return SQLITE_ERROR; |
-} |
- |
-/* Returns SQLITE_OK if the cell has an appropriate number of columns |
- * with the appropriate types of data. |
- */ |
-static int recoverValidateLeafCell(Recover *pRecover, RecoverCursor *pCursor){ |
- unsigned i; |
- |
- /* If the row's storage has too many columns, skip it. */ |
- if( leafCursorCellColumns(pCursor->pLeafCursor)>pRecover->nCols ){ |
- return RecoverInvalidCell(); |
- } |
- |
- /* Skip rows with unexpected types. */ |
- for( i=0; i<pRecover->nCols; ++i ){ |
- u64 iType; /* Storage type of column i. */ |
- int rc; |
- |
- /* ROWID alias. */ |
- if( (pRecover->pTypes[i]&MASK_ROWID) ){ |
- continue; |
- } |
- |
- rc = leafCursorCellColInfo(pCursor->pLeafCursor, i, &iType, NULL, NULL); |
- assert( rc==SQLITE_OK ); |
- if( rc!=SQLITE_OK || !SerialTypeIsCompatible(iType, pRecover->pTypes[i]) ){ |
- return RecoverInvalidCell(); |
- } |
- } |
- |
- return SQLITE_OK; |
-} |
- |
-static int recoverNext(sqlite3_vtab_cursor *pVtabCursor){ |
- RecoverCursor *pCursor = (RecoverCursor*)pVtabCursor; |
- Recover *pRecover = (Recover*)pCursor->base.pVtab; |
- int rc; |
- |
- FNENTRY(); |
- |
- /* Scan forward to the next cell with valid storage, then check that |
- * the stored data matches the schema. |
- */ |
- while( (rc = leafCursorNextValidCell(pCursor->pLeafCursor))==SQLITE_ROW ){ |
- if( recoverValidateLeafCell(pRecover, pCursor)==SQLITE_OK ){ |
- return SQLITE_OK; |
- } |
- } |
- |
- if( rc==SQLITE_DONE ){ |
- pCursor->bEOF = 1; |
- return SQLITE_OK; |
- } |
- |
- assert( rc!=SQLITE_OK ); |
- return rc; |
-} |
- |
-static int recoverFilter( |
- sqlite3_vtab_cursor *pVtabCursor, |
- int idxNum, const char *idxStr, |
- int argc, sqlite3_value **argv |
-){ |
- RecoverCursor *pCursor = (RecoverCursor*)pVtabCursor; |
- Recover *pRecover = (Recover*)pCursor->base.pVtab; |
- int rc; |
- |
- FNENTRY(); |
- |
- /* There were no valid leaf pages in the table. */ |
- if( pCursor->bEOF ){ |
- return SQLITE_OK; |
- } |
- |
- /* Load the first cell, and iterate forward if it's not valid. If no cells at |
- * all are valid, recoverNext() sets bEOF and returns appropriately. |
- */ |
- rc = leafCursorCellDecode(pCursor->pLeafCursor); |
- if( rc!=SQLITE_OK || recoverValidateLeafCell(pRecover, pCursor)!=SQLITE_OK ){ |
- return recoverNext(pVtabCursor); |
- } |
- |
- return SQLITE_OK; |
-} |
- |
-static int recoverEof(sqlite3_vtab_cursor *pVtabCursor){ |
- RecoverCursor *pCursor = (RecoverCursor*)pVtabCursor; |
- FNENTRY(); |
- return pCursor->bEOF; |
-} |
- |
-static int recoverColumn(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){ |
- RecoverCursor *pCursor = (RecoverCursor*)cur; |
- Recover *pRecover = (Recover*)pCursor->base.pVtab; |
- u64 iColType; /* Storage type of column i. */ |
- unsigned char *pColData; /* Column i's data. */ |
- int shouldFree; /* Non-zero if pColData should be freed. */ |
- int rc; |
- |
- FNENTRY(); |
- |
- if( (unsigned)i>=pRecover->nCols ){ |
- return SQLITE_ERROR; |
- } |
- |
- /* ROWID alias. */ |
- if( (pRecover->pTypes[i]&MASK_ROWID) ){ |
- sqlite3_result_int64(ctx, leafCursorCellRowid(pCursor->pLeafCursor)); |
- return SQLITE_OK; |
- } |
- |
- pColData = NULL; |
- shouldFree = 0; |
- rc = leafCursorCellColInfo(pCursor->pLeafCursor, i, &iColType, |
- &pColData, &shouldFree); |
- if( rc!=SQLITE_OK ){ |
- return rc; |
- } |
- /* recoverValidateLeafCell() should guarantee that this will never |
- * occur. |
- */ |
- if( !SerialTypeIsCompatible(iColType, pRecover->pTypes[i]) ){ |
- if( shouldFree ){ |
- sqlite3_free(pColData); |
- } |
- return SQLITE_ERROR; |
- } |
- |
- switch( iColType ){ |
- case 0 : sqlite3_result_null(ctx); break; |
- case 1 : sqlite3_result_int64(ctx, decodeSigned(pColData, 1)); break; |
- case 2 : sqlite3_result_int64(ctx, decodeSigned(pColData, 2)); break; |
- case 3 : sqlite3_result_int64(ctx, decodeSigned(pColData, 3)); break; |
- case 4 : sqlite3_result_int64(ctx, decodeSigned(pColData, 4)); break; |
- case 5 : sqlite3_result_int64(ctx, decodeSigned(pColData, 6)); break; |
- case 6 : sqlite3_result_int64(ctx, decodeSigned(pColData, 8)); break; |
- case 7 : sqlite3_result_double(ctx, decodeFloat64(pColData)); break; |
- case 8 : sqlite3_result_int(ctx, 0); break; |
- case 9 : sqlite3_result_int(ctx, 1); break; |
- case 10 : assert( iColType!=10 ); break; |
- case 11 : assert( iColType!=11 ); break; |
- |
- default : { |
- u32 l = SerialTypeLength(iColType); |
- |
- /* If pColData was already allocated, arrange to pass ownership. */ |
- sqlite3_destructor_type pFn = SQLITE_TRANSIENT; |
- if( shouldFree ){ |
- pFn = sqlite3_free; |
- shouldFree = 0; |
- } |
- |
- if( SerialTypeIsBlob(iColType) ){ |
- sqlite3_result_blob(ctx, pColData, l, pFn); |
- }else{ |
- if( pCursor->iEncoding==SQLITE_UTF16LE ){ |
- sqlite3_result_text16le(ctx, (const void*)pColData, l, pFn); |
- }else if( pCursor->iEncoding==SQLITE_UTF16BE ){ |
- sqlite3_result_text16be(ctx, (const void*)pColData, l, pFn); |
- }else{ |
- sqlite3_result_text(ctx, (const char*)pColData, l, pFn); |
- } |
- } |
- } break; |
- } |
- if( shouldFree ){ |
- sqlite3_free(pColData); |
- } |
- return SQLITE_OK; |
-} |
- |
-static int recoverRowid(sqlite3_vtab_cursor *pVtabCursor, sqlite_int64 *pRowid){ |
- RecoverCursor *pCursor = (RecoverCursor*)pVtabCursor; |
- FNENTRY(); |
- *pRowid = leafCursorCellRowid(pCursor->pLeafCursor); |
- return SQLITE_OK; |
-} |
- |
-static sqlite3_module recoverModule = { |
- 0, /* iVersion */ |
- recoverCreate, /* xCreate - create a table */ |
- recoverConnect, /* xConnect - connect to an existing table */ |
- recoverBestIndex, /* xBestIndex - Determine search strategy */ |
- recoverDisconnect, /* xDisconnect - Disconnect from a table */ |
- recoverDestroy, /* xDestroy - Drop a table */ |
- recoverOpen, /* xOpen - open a cursor */ |
- recoverClose, /* xClose - close a cursor */ |
- recoverFilter, /* xFilter - configure scan constraints */ |
- recoverNext, /* xNext - advance a cursor */ |
- recoverEof, /* xEof */ |
- recoverColumn, /* xColumn - read data */ |
- recoverRowid, /* xRowid - read data */ |
- 0, /* xUpdate - write data */ |
- 0, /* xBegin - begin transaction */ |
- 0, /* xSync - sync transaction */ |
- 0, /* xCommit - commit transaction */ |
- 0, /* xRollback - rollback transaction */ |
- 0, /* xFindFunction - function overloading */ |
- 0, /* xRename - rename the table */ |
-}; |
- |
-CHROMIUM_SQLITE_API |
-int recoverVtableInit(sqlite3 *db){ |
- return sqlite3_create_module_v2(db, "recover", &recoverModule, NULL, 0); |
-} |
- |
-/* This section of code is for parsing the create input and |
- * initializing the module. |
- */ |
- |
-/* Find the next word in zText and place the endpoints in pzWord*. |
- * Returns true if the word is non-empty. "Word" is defined as |
- * ASCII alphanumeric plus '_' at this time. |
- */ |
-static int findWord(const char *zText, |
- const char **pzWordStart, const char **pzWordEnd){ |
- int r; |
- while( ascii_isspace(*zText) ){ |
- zText++; |
- } |
- *pzWordStart = zText; |
- while( ascii_isalnum(*zText) || *zText=='_' ){ |
- zText++; |
- } |
- r = zText>*pzWordStart; /* In case pzWordStart==pzWordEnd */ |
- *pzWordEnd = zText; |
- return r; |
-} |
- |
-/* Return true if the next word in zText is zWord, also setting |
- * *pzContinue to the character after the word. |
- */ |
-static int expectWord(const char *zText, const char *zWord, |
- const char **pzContinue){ |
- const char *zWordStart, *zWordEnd; |
- if( findWord(zText, &zWordStart, &zWordEnd) && |
- ascii_strncasecmp(zWord, zWordStart, zWordEnd - zWordStart)==0 ){ |
- *pzContinue = zWordEnd; |
- return 1; |
- } |
- return 0; |
-} |
- |
-/* Parse the name and type information out of parameter. In case of |
- * success, *pzNameStart/End contain the name of the column, |
- * *pzTypeStart/End contain the top-level type, and *pTypeMask has the |
- * type mask to use for the column. |
- */ |
-static int findNameAndType(const char *parameter, |
- const char **pzNameStart, const char **pzNameEnd, |
- const char **pzTypeStart, const char **pzTypeEnd, |
- unsigned char *pTypeMask){ |
- unsigned nNameLen; /* Length of found name. */ |
- const char *zEnd; /* Current end of parsed column information. */ |
- int bNotNull; /* Non-zero if NULL is not allowed for name. */ |
- int bStrict; /* Non-zero if column requires exact type match. */ |
- const char *zDummy; /* Dummy parameter, result unused. */ |
- unsigned i; |
- |
- /* strictMask is used for STRICT, strictMask|otherMask if STRICT is |
- * not supplied. zReplace provides an alternate type to expose to |
- * the caller. |
- */ |
- static struct { |
- const char *zName; |
- unsigned char strictMask; |
- unsigned char otherMask; |
- const char *zReplace; |
- } kTypeInfo[] = { |
- { "ANY", |
- MASK_INTEGER | MASK_FLOAT | MASK_BLOB | MASK_TEXT | MASK_NULL, |
- 0, "", |
- }, |
- { "ROWID", MASK_INTEGER | MASK_ROWID, 0, "INTEGER", }, |
- { "INTEGER", MASK_INTEGER | MASK_NULL, 0, NULL, }, |
- { "FLOAT", MASK_FLOAT | MASK_NULL, MASK_INTEGER, NULL, }, |
- { "NUMERIC", MASK_INTEGER | MASK_FLOAT | MASK_NULL, MASK_TEXT, NULL, }, |
- { "TEXT", MASK_TEXT | MASK_NULL, MASK_BLOB, NULL, }, |
- { "BLOB", MASK_BLOB | MASK_NULL, 0, NULL, }, |
- }; |
- |
- if( !findWord(parameter, pzNameStart, pzNameEnd) ){ |
- return SQLITE_MISUSE; |
- } |
- |
- /* Manifest typing, accept any storage type. */ |
- if( !findWord(*pzNameEnd, pzTypeStart, pzTypeEnd) ){ |
- *pzTypeEnd = *pzTypeStart = ""; |
- *pTypeMask = MASK_INTEGER | MASK_FLOAT | MASK_BLOB | MASK_TEXT | MASK_NULL; |
- return SQLITE_OK; |
- } |
- |
- nNameLen = *pzTypeEnd - *pzTypeStart; |
- for( i=0; i<ArraySize(kTypeInfo); ++i ){ |
- if( ascii_strncasecmp(kTypeInfo[i].zName, *pzTypeStart, nNameLen)==0 ){ |
- break; |
- } |
- } |
- if( i==ArraySize(kTypeInfo) ){ |
- return SQLITE_MISUSE; |
- } |
- |
- zEnd = *pzTypeEnd; |
- bStrict = 0; |
- if( expectWord(zEnd, "STRICT", &zEnd) ){ |
- /* TODO(shess): Ick. But I don't want another single-purpose |
- * flag, either. |
- */ |
- if( kTypeInfo[i].zReplace && !kTypeInfo[i].zReplace[0] ){ |
- return SQLITE_MISUSE; |
- } |
- bStrict = 1; |
- } |
- |
- bNotNull = 0; |
- if( expectWord(zEnd, "NOT", &zEnd) ){ |
- if( expectWord(zEnd, "NULL", &zEnd) ){ |
- bNotNull = 1; |
- }else{ |
- /* Anything other than NULL after NOT is an error. */ |
- return SQLITE_MISUSE; |
- } |
- } |
- |
- /* Anything else is an error. */ |
- if( findWord(zEnd, &zDummy, &zDummy) ){ |
- return SQLITE_MISUSE; |
- } |
- |
- *pTypeMask = kTypeInfo[i].strictMask; |
- if( !bStrict ){ |
- *pTypeMask |= kTypeInfo[i].otherMask; |
- } |
- if( bNotNull ){ |
- *pTypeMask &= ~MASK_NULL; |
- } |
- if( kTypeInfo[i].zReplace ){ |
- *pzTypeStart = kTypeInfo[i].zReplace; |
- *pzTypeEnd = *pzTypeStart + strlen(*pzTypeStart); |
- } |
- return SQLITE_OK; |
-} |
- |
-/* Parse the arguments, placing type masks in *pTypes and the exposed |
- * schema in *pzCreateSql (for sqlite3_declare_vtab). |
- */ |
-static int ParseColumnsAndGenerateCreate(unsigned nCols, |
- const char *const *pCols, |
- char **pzCreateSql, |
- unsigned char *pTypes, |
- char **pzErr){ |
- unsigned i; |
- char *zCreateSql = sqlite3_mprintf("CREATE TABLE x("); |
- if( !zCreateSql ){ |
- return SQLITE_NOMEM; |
- } |
- |
- for( i=0; i<nCols; i++ ){ |
- const char *zSep = (i < nCols - 1 ? ", " : ")"); |
- const char *zNotNull = ""; |
- const char *zNameStart, *zNameEnd; |
- const char *zTypeStart, *zTypeEnd; |
- int rc = findNameAndType(pCols[i], |
- &zNameStart, &zNameEnd, |
- &zTypeStart, &zTypeEnd, |
- &pTypes[i]); |
- if( rc!=SQLITE_OK ){ |
- *pzErr = sqlite3_mprintf("unable to parse column %d", i); |
- sqlite3_free(zCreateSql); |
- return rc; |
- } |
- |
- if( !(pTypes[i]&MASK_NULL) ){ |
- zNotNull = " NOT NULL"; |
- } |
- |
- /* Add name and type to the create statement. */ |
- zCreateSql = sqlite3_mprintf("%z%.*s %.*s%s%s", |
- zCreateSql, |
- zNameEnd - zNameStart, zNameStart, |
- zTypeEnd - zTypeStart, zTypeStart, |
- zNotNull, zSep); |
- if( !zCreateSql ){ |
- return SQLITE_NOMEM; |
- } |
- } |
- |
- *pzCreateSql = zCreateSql; |
- return SQLITE_OK; |
-} |
- |
-/* Helper function for initializing the module. */ |
-/* argv[0] module name |
- * argv[1] db name for virtual table |
- * argv[2] virtual table name |
- * argv[3] backing table name |
- * argv[4] columns |
- */ |
-/* TODO(shess): Since connect isn't supported, could inline into |
- * recoverCreate(). |
- */ |
-/* TODO(shess): Explore cases where it would make sense to set *pzErr. */ |
-static int recoverInit( |
- sqlite3 *db, /* Database connection */ |
- void *pAux, /* unused */ |
- int argc, const char *const*argv, /* Parameters to CREATE TABLE statement */ |
- sqlite3_vtab **ppVtab, /* OUT: New virtual table */ |
- char **pzErr /* OUT: Error message, if any */ |
-){ |
- const int kTypeCol = 4; /* First argument with column type info. */ |
- Recover *pRecover; /* Virtual table structure being created. */ |
- char *zDot; /* Any dot found in "db.table" backing. */ |
- u32 iRootPage; /* Root page of backing table. */ |
- char *zCreateSql; /* Schema of created virtual table. */ |
- int rc; |
- |
- /* Require to be in the temp database. */ |
- if( ascii_strcasecmp(argv[1], "temp")!=0 ){ |
- *pzErr = sqlite3_mprintf("recover table must be in temp database"); |
- return SQLITE_MISUSE; |
- } |
- |
- /* Need the backing table and at least one column. */ |
- if( argc<=kTypeCol ){ |
- *pzErr = sqlite3_mprintf("no columns specified"); |
- return SQLITE_MISUSE; |
- } |
- |
- pRecover = sqlite3_malloc(sizeof(Recover)); |
- if( !pRecover ){ |
- return SQLITE_NOMEM; |
- } |
- memset(pRecover, 0, sizeof(*pRecover)); |
- pRecover->base.pModule = &recoverModule; |
- pRecover->db = db; |
- |
- /* Parse out db.table, assuming main if no dot. */ |
- zDot = strchr(argv[3], '.'); |
- if( !zDot ){ |
- pRecover->zDb = sqlite3_strdup(db->aDb[0].zName); |
- pRecover->zTable = sqlite3_strdup(argv[3]); |
- }else if( zDot>argv[3] && zDot[1]!='\0' ){ |
- pRecover->zDb = sqlite3_strndup(argv[3], zDot - argv[3]); |
- pRecover->zTable = sqlite3_strdup(zDot + 1); |
- }else{ |
- /* ".table" or "db." not allowed. */ |
- *pzErr = sqlite3_mprintf("ill-formed table specifier"); |
- recoverRelease(pRecover); |
- return SQLITE_ERROR; |
- } |
- |
- pRecover->nCols = argc - kTypeCol; |
- pRecover->pTypes = sqlite3_malloc(pRecover->nCols); |
- if( !pRecover->zDb || !pRecover->zTable || !pRecover->pTypes ){ |
- recoverRelease(pRecover); |
- return SQLITE_NOMEM; |
- } |
- |
- /* Require the backing table to exist. */ |
- /* TODO(shess): Be more pedantic about the form of the descriptor |
- * string. This already fails for poorly-formed strings, simply |
- * because there won't be a root page, but it would make more sense |
- * to be explicit. |
- */ |
- rc = getRootPage(pRecover->db, pRecover->zDb, pRecover->zTable, &iRootPage); |
- if( rc!=SQLITE_OK ){ |
- *pzErr = sqlite3_mprintf("unable to find backing table"); |
- recoverRelease(pRecover); |
- return rc; |
- } |
- |
- /* Parse the column definitions. */ |
- rc = ParseColumnsAndGenerateCreate(pRecover->nCols, argv + kTypeCol, |
- &zCreateSql, pRecover->pTypes, pzErr); |
- if( rc!=SQLITE_OK ){ |
- recoverRelease(pRecover); |
- return rc; |
- } |
- |
- rc = sqlite3_declare_vtab(db, zCreateSql); |
- sqlite3_free(zCreateSql); |
- if( rc!=SQLITE_OK ){ |
- recoverRelease(pRecover); |
- return rc; |
- } |
- |
- *ppVtab = (sqlite3_vtab *)pRecover; |
- return SQLITE_OK; |
-} |