| Index: src/codec/SkPngFilters.cpp
|
| diff --git a/src/codec/SkPngFilters.cpp b/src/codec/SkPngFilters.cpp
|
| index 472123fa15e6c6010eda52f1b37efd49ab06068b..2777939357556271feae34d129e4083f9c37ccd0 100644
|
| --- a/src/codec/SkPngFilters.cpp
|
| +++ b/src/codec/SkPngFilters.cpp
|
| @@ -16,25 +16,43 @@
|
|
|
| #if defined(__SSE2__)
|
|
|
| - template <int bpp>
|
| - static __m128i load(const void* p) {
|
| - static_assert(bpp <= 4, "");
|
| -
|
| + static __m128i load3(const void* p) {
|
| uint32_t packed;
|
| - memcpy(&packed, p, bpp);
|
| + memcpy(&packed, p, 3);
|
| return _mm_cvtsi32_si128(packed);
|
| }
|
|
|
| - template <int bpp>
|
| - static void store(void* p, __m128i v) {
|
| - static_assert(bpp <= 4, "");
|
| + static __m128i load4(const void* p) {
|
| + return _mm_cvtsi32_si128(*(const int*)p);
|
| + }
|
|
|
| + static void store3(void* p, __m128i v) {
|
| uint32_t packed = _mm_cvtsi128_si32(v);
|
| - memcpy(p, &packed, bpp);
|
| + memcpy(p, &packed, 3);
|
| + }
|
| +
|
| + static void store4(void* p, __m128i v) {
|
| + *(int*)p = _mm_cvtsi128_si32(v);
|
| + }
|
| +
|
| + void sk_sub3_sse2(png_row_infop row_info, uint8_t* row, const uint8_t* prev) {
|
| + // The Sub filter predicts each pixel as the previous pixel, a.
|
| + // There is no pixel to the left of the first pixel. It's encoded directly.
|
| + // That works with our main loop if we just say that left pixel was zero.
|
| + __m128i a, d = _mm_setzero_si128();
|
| +
|
| + int rb = row_info->rowbytes;
|
| + while (rb > 0) {
|
| + a = d; d = load3(row);
|
| + d = _mm_add_epi8(d, a);
|
| + store3(row, d);
|
| +
|
| + row += 3;
|
| + rb -= 3;
|
| + }
|
| }
|
|
|
| - template <int bpp>
|
| - static void sk_sub_sse2(png_row_infop row_info, uint8_t* row, const uint8_t*) {
|
| + void sk_sub4_sse2(png_row_infop row_info, uint8_t* row, const uint8_t* prev) {
|
| // The Sub filter predicts each pixel as the previous pixel, a.
|
| // There is no pixel to the left of the first pixel. It's encoded directly.
|
| // That works with our main loop if we just say that left pixel was zero.
|
| @@ -42,17 +60,44 @@
|
|
|
| int rb = row_info->rowbytes;
|
| while (rb > 0) {
|
| - a = d; d = load<bpp>(row);
|
| + a = d; d = load4(row);
|
| d = _mm_add_epi8(d, a);
|
| - store<bpp>(row, d);
|
| + store4(row, d);
|
| +
|
| + row += 4;
|
| + rb -= 4;
|
| + }
|
| + }
|
| +
|
| + void sk_avg3_sse2(png_row_infop row_info, uint8_t* row, const uint8_t* prev) {
|
| + // The Avg filter predicts each pixel as the (truncated) average of a and b.
|
| + // There's no pixel to the left of the first pixel. Luckily, it's
|
| + // predicted to be half of the pixel above it. So again, this works
|
| + // perfectly with our loop if we make sure a starts at zero.
|
| + const __m128i zero = _mm_setzero_si128();
|
| + __m128i b;
|
| + __m128i a, d = zero;
|
| +
|
| + int rb = row_info->rowbytes;
|
| + while (rb > 0) {
|
| + b = load3(prev);
|
| + a = d; d = load3(row );
|
|
|
| - row += bpp;
|
| - rb -= bpp;
|
| + // PNG requires a truncating average here, so sadly we can't just use _mm_avg_epu8...
|
| + __m128i avg = _mm_avg_epu8(a,b);
|
| + // ...but we can fix it up by subtracting off 1 if it rounded up.
|
| + avg = _mm_sub_epi8(avg, _mm_and_si128(_mm_xor_si128(a,b), _mm_set1_epi8(1)));
|
| +
|
| + d = _mm_add_epi8(d, avg);
|
| + store3(row, d);
|
| +
|
| + prev += 3;
|
| + row += 3;
|
| + rb -= 3;
|
| }
|
| }
|
|
|
| - template <int bpp>
|
| - void sk_avg_sse2(png_row_infop row_info, uint8_t* row, const uint8_t* prev) {
|
| + void sk_avg4_sse2(png_row_infop row_info, uint8_t* row, const uint8_t* prev) {
|
| // The Avg filter predicts each pixel as the (truncated) average of a and b.
|
| // There's no pixel to the left of the first pixel. Luckily, it's
|
| // predicted to be half of the pixel above it. So again, this works
|
| @@ -63,8 +108,8 @@
|
|
|
| int rb = row_info->rowbytes;
|
| while (rb > 0) {
|
| - b = load<bpp>(prev);
|
| - a = d; d = load<bpp>(row );
|
| + b = load4(prev);
|
| + a = d; d = load4(row );
|
|
|
| // PNG requires a truncating average here, so sadly we can't just use _mm_avg_epu8...
|
| __m128i avg = _mm_avg_epu8(a,b);
|
| @@ -72,11 +117,11 @@
|
| avg = _mm_sub_epi8(avg, _mm_and_si128(_mm_xor_si128(a,b), _mm_set1_epi8(1)));
|
|
|
| d = _mm_add_epi8(d, avg);
|
| - store<bpp>(row, d);
|
| + store4(row, d);
|
|
|
| - prev += bpp;
|
| - row += bpp;
|
| - rb -= bpp;
|
| + prev += 4;
|
| + row += 4;
|
| + rb -= 4;
|
| }
|
| }
|
|
|
| @@ -88,23 +133,22 @@
|
| // Read this all as, return x<0 ? -x : x.
|
| // To negate two's complement, you flip all the bits then add 1.
|
| __m128i is_negative = _mm_cmplt_epi16(x, _mm_setzero_si128());
|
| - x = _mm_xor_si128(x, is_negative); // Flip negative lanes.
|
| - x = _mm_add_epi16(x, _mm_srli_epi16(is_negative, 15)); // +1 to negative lanes, else +0.
|
| + x = _mm_xor_si128(x, is_negative); // Flip negative lanes.
|
| + x = _mm_add_epi16(x, _mm_srli_epi16(is_negative, 15)); // +1 to negative lanes, else +0.
|
| return x;
|
| #endif
|
| }
|
|
|
| // Bytewise c ? t : e.
|
| static __m128i if_then_else(__m128i c, __m128i t, __m128i e) {
|
| - #if 0 && defined(__SSE4_1__) // Make sure we have a bot testing this before enabling.
|
| + #if defined(__SSE4_1__)
|
| return _mm_blendv_epi8(e,t,c);
|
| #else
|
| return _mm_or_si128(_mm_and_si128(c, t), _mm_andnot_si128(c, e));
|
| #endif
|
| }
|
|
|
| - template <int bpp>
|
| - void sk_paeth_sse2(png_row_infop row_info, uint8_t* row, const uint8_t* prev) {
|
| + void sk_paeth3_sse2(png_row_infop row_info, uint8_t* row, const uint8_t* prev) {
|
| // Paeth tries to predict pixel d using the pixel to the left of it, a,
|
| // and two pixels from the previous row, b and c:
|
| // prev: c b
|
| @@ -121,9 +165,8 @@
|
| int rb = row_info->rowbytes;
|
| while (rb > 0) {
|
| // It's easiest to do this math (particularly, deal with pc) with 16-bit intermediates.
|
| - c = b; b = _mm_unpacklo_epi8(load<bpp>(prev), zero);
|
| - a = d; d = _mm_unpacklo_epi8(load<bpp>(row ), zero);
|
| -
|
| + c = b; b = _mm_unpacklo_epi8(load3(prev), zero);
|
| + a = d; d = _mm_unpacklo_epi8(load3(row ), zero);
|
| __m128i pa = _mm_sub_epi16(b,c), // (p-a) == (a+b-c - a) == (b-c)
|
| pb = _mm_sub_epi16(a,c), // (p-b) == (a+b-c - b) == (a-c)
|
| pc = _mm_add_epi16(pa,pb); // (p-c) == (a+b-c - c) == (a+b-c-c) == (b-c)+(a-c)
|
| @@ -140,33 +183,55 @@
|
| c));
|
|
|
| d = _mm_add_epi8(d, nearest); // Note `_epi8`: we need addition to wrap modulo 255.
|
| - store<bpp>(row, _mm_packus_epi16(d,d));
|
| + store3(row, _mm_packus_epi16(d,d));
|
|
|
| - prev += bpp;
|
| - row += bpp;
|
| - rb -= bpp;
|
| + prev += 3;
|
| + row += 3;
|
| + rb -= 3;
|
| }
|
| }
|
|
|
| - void sk_sub3_sse2(png_row_infop row_info, uint8_t* row, const uint8_t* prev) {
|
| - sk_sub_sse2<3>(row_info, row, prev);
|
| - }
|
| - void sk_sub4_sse2(png_row_infop row_info, uint8_t* row, const uint8_t* prev) {
|
| - sk_sub_sse2<4>(row_info, row, prev);
|
| - }
|
| + void sk_paeth4_sse2(png_row_infop row_info, uint8_t* row, const uint8_t* prev) {
|
| + // Paeth tries to predict pixel d using the pixel to the left of it, a,
|
| + // and two pixels from the previous row, b and c:
|
| + // prev: c b
|
| + // row: a d
|
| + // The Paeth function predicts d to be whichever of a, b, or c is nearest to p=a+b-c.
|
|
|
| - void sk_avg3_sse2(png_row_infop row_info, uint8_t* row, const uint8_t* prev) {
|
| - sk_avg_sse2<3>(row_info, row, prev);
|
| - }
|
| - void sk_avg4_sse2(png_row_infop row_info, uint8_t* row, const uint8_t* prev) {
|
| - sk_avg_sse2<4>(row_info, row, prev);
|
| - }
|
| + // The first pixel has no left context, and so uses an Up filter, p = b.
|
| + // This works naturally with our main loop's p = a+b-c if we force a and c to zero.
|
| + // Here we zero b and d, which become c and a respectively at the start of the loop.
|
| + const __m128i zero = _mm_setzero_si128();
|
| + __m128i c, b = zero,
|
| + a, d = zero;
|
|
|
| - void sk_paeth3_sse2(png_row_infop row_info, uint8_t* row, const uint8_t* prev) {
|
| - sk_paeth_sse2<3>(row_info, row, prev);
|
| - }
|
| - void sk_paeth4_sse2(png_row_infop row_info, uint8_t* row, const uint8_t* prev) {
|
| - sk_paeth_sse2<4>(row_info, row, prev);
|
| + int rb = row_info->rowbytes;
|
| + while (rb > 0) {
|
| + // It's easiest to do this math (particularly, deal with pc) with 16-bit intermediates.
|
| + c = b; b = _mm_unpacklo_epi8(load4(prev), zero);
|
| + a = d; d = _mm_unpacklo_epi8(load4(row ), zero);
|
| + __m128i pa = _mm_sub_epi16(b,c), // (p-a) == (a+b-c - a) == (b-c)
|
| + pb = _mm_sub_epi16(a,c), // (p-b) == (a+b-c - b) == (a-c)
|
| + pc = _mm_add_epi16(pa,pb); // (p-c) == (a+b-c - c) == (a+b-c-c) == (b-c)+(a-c)
|
| +
|
| + pa = abs_i16(pa); // |p-a|
|
| + pb = abs_i16(pb); // |p-b|
|
| + pc = abs_i16(pc); // |p-c|
|
| +
|
| + __m128i smallest = _mm_min_epi16(pc, _mm_min_epi16(pa, pb));
|
| +
|
| + // Paeth breaks ties favoring a over b over c.
|
| + __m128i nearest = if_then_else(_mm_cmpeq_epi16(smallest, pa), a,
|
| + if_then_else(_mm_cmpeq_epi16(smallest, pb), b,
|
| + c));
|
| +
|
| + d = _mm_add_epi8(d, nearest); // Note `_epi8`: we need addition to wrap modulo 255.
|
| + store4(row, _mm_packus_epi16(d,d));
|
| +
|
| + prev += 4;
|
| + row += 4;
|
| + rb -= 4;
|
| + }
|
| }
|
|
|
| #endif
|
|
|