| Index: src/arm64/code-stubs-arm64.cc
|
| diff --git a/src/arm64/code-stubs-arm64.cc b/src/arm64/code-stubs-arm64.cc
|
| index 124bc536a2583239aa209bb12122a89fd1901b87..b9eaa286010238016df1356c881b98a40570f690 100644
|
| --- a/src/arm64/code-stubs-arm64.cc
|
| +++ b/src/arm64/code-stubs-arm64.cc
|
| @@ -1626,749 +1626,448 @@ void InstanceOfStub::Generate(MacroAssembler* masm) {
|
| }
|
|
|
|
|
| -void ArgumentsAccessStub::GenerateNewSloppySlow(MacroAssembler* masm) {
|
| - // x1 : function
|
| - // x2 : number of parameters (tagged)
|
| - // x3 : parameters pointer
|
| +void LoadIndexedInterceptorStub::Generate(MacroAssembler* masm) {
|
| + // Return address is in lr.
|
| + Label slow;
|
|
|
| - DCHECK(x1.is(ArgumentsAccessNewDescriptor::function()));
|
| - DCHECK(x2.is(ArgumentsAccessNewDescriptor::parameter_count()));
|
| - DCHECK(x3.is(ArgumentsAccessNewDescriptor::parameter_pointer()));
|
| + Register receiver = LoadDescriptor::ReceiverRegister();
|
| + Register key = LoadDescriptor::NameRegister();
|
|
|
| - // Check if the calling frame is an arguments adaptor frame.
|
| - Label runtime;
|
| - Register caller_fp = x10;
|
| - __ Ldr(caller_fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
|
| - // Load and untag the context.
|
| - __ Ldr(w11, UntagSmiMemOperand(caller_fp,
|
| - StandardFrameConstants::kContextOffset));
|
| - __ Cmp(w11, StackFrame::ARGUMENTS_ADAPTOR);
|
| - __ B(ne, &runtime);
|
| + // Check that the key is an array index, that is Uint32.
|
| + __ TestAndBranchIfAnySet(key, kSmiTagMask | kSmiSignMask, &slow);
|
|
|
| - // Patch the arguments.length and parameters pointer in the current frame.
|
| - __ Ldr(x2,
|
| - MemOperand(caller_fp, ArgumentsAdaptorFrameConstants::kLengthOffset));
|
| - __ Add(x3, caller_fp, Operand::UntagSmiAndScale(x2, kPointerSizeLog2));
|
| - __ Add(x3, x3, StandardFrameConstants::kCallerSPOffset);
|
| + // Everything is fine, call runtime.
|
| + __ Push(receiver, key);
|
| + __ TailCallRuntime(Runtime::kLoadElementWithInterceptor);
|
|
|
| - __ Bind(&runtime);
|
| - __ Push(x1, x3, x2);
|
| - __ TailCallRuntime(Runtime::kNewSloppyArguments);
|
| + __ Bind(&slow);
|
| + PropertyAccessCompiler::TailCallBuiltin(
|
| + masm, PropertyAccessCompiler::MissBuiltin(Code::KEYED_LOAD_IC));
|
| }
|
|
|
|
|
| -void ArgumentsAccessStub::GenerateNewSloppyFast(MacroAssembler* masm) {
|
| - // x1 : function
|
| - // x2 : number of parameters (tagged)
|
| - // x3 : parameters pointer
|
| - //
|
| - // Returns pointer to result object in x0.
|
| -
|
| - DCHECK(x1.is(ArgumentsAccessNewDescriptor::function()));
|
| - DCHECK(x2.is(ArgumentsAccessNewDescriptor::parameter_count()));
|
| - DCHECK(x3.is(ArgumentsAccessNewDescriptor::parameter_pointer()));
|
| -
|
| - // Make an untagged copy of the parameter count.
|
| - // Note: arg_count_smi is an alias of param_count_smi.
|
| - Register function = x1;
|
| - Register arg_count_smi = x2;
|
| - Register param_count_smi = x2;
|
| - Register recv_arg = x3;
|
| - Register param_count = x7;
|
| - __ SmiUntag(param_count, param_count_smi);
|
| +void RegExpExecStub::Generate(MacroAssembler* masm) {
|
| +#ifdef V8_INTERPRETED_REGEXP
|
| + __ TailCallRuntime(Runtime::kRegExpExec);
|
| +#else // V8_INTERPRETED_REGEXP
|
|
|
| - // Check if the calling frame is an arguments adaptor frame.
|
| - Register caller_fp = x11;
|
| - Register caller_ctx = x12;
|
| + // Stack frame on entry.
|
| + // jssp[0]: last_match_info (expected JSArray)
|
| + // jssp[8]: previous index
|
| + // jssp[16]: subject string
|
| + // jssp[24]: JSRegExp object
|
| Label runtime;
|
| - Label adaptor_frame, try_allocate;
|
| - __ Ldr(caller_fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
|
| - __ Ldr(caller_ctx, MemOperand(caller_fp,
|
| - StandardFrameConstants::kContextOffset));
|
| - __ Cmp(caller_ctx, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
|
| - __ B(eq, &adaptor_frame);
|
| -
|
| - // No adaptor, parameter count = argument count.
|
| -
|
| - // x1 function function pointer
|
| - // x2 arg_count_smi number of function arguments (smi)
|
| - // x3 recv_arg pointer to receiver arguments
|
| - // x4 mapped_params number of mapped params, min(params, args) (uninit)
|
| - // x7 param_count number of function parameters
|
| - // x11 caller_fp caller's frame pointer
|
| - // x14 arg_count number of function arguments (uninit)
|
|
|
| - Register arg_count = x14;
|
| - Register mapped_params = x4;
|
| - __ Mov(arg_count, param_count);
|
| - __ Mov(mapped_params, param_count);
|
| - __ B(&try_allocate);
|
| + // Use of registers for this function.
|
|
|
| - // We have an adaptor frame. Patch the parameters pointer.
|
| - __ Bind(&adaptor_frame);
|
| - __ Ldr(arg_count_smi,
|
| - MemOperand(caller_fp,
|
| - ArgumentsAdaptorFrameConstants::kLengthOffset));
|
| - __ SmiUntag(arg_count, arg_count_smi);
|
| - __ Add(x10, caller_fp, Operand(arg_count, LSL, kPointerSizeLog2));
|
| - __ Add(recv_arg, x10, StandardFrameConstants::kCallerSPOffset);
|
| + // Variable registers:
|
| + // x10-x13 used as scratch registers
|
| + // w0 string_type type of subject string
|
| + // x2 jsstring_length subject string length
|
| + // x3 jsregexp_object JSRegExp object
|
| + // w4 string_encoding Latin1 or UC16
|
| + // w5 sliced_string_offset if the string is a SlicedString
|
| + // offset to the underlying string
|
| + // w6 string_representation groups attributes of the string:
|
| + // - is a string
|
| + // - type of the string
|
| + // - is a short external string
|
| + Register string_type = w0;
|
| + Register jsstring_length = x2;
|
| + Register jsregexp_object = x3;
|
| + Register string_encoding = w4;
|
| + Register sliced_string_offset = w5;
|
| + Register string_representation = w6;
|
|
|
| - // Compute the mapped parameter count = min(param_count, arg_count)
|
| - __ Cmp(param_count, arg_count);
|
| - __ Csel(mapped_params, param_count, arg_count, lt);
|
| + // These are in callee save registers and will be preserved by the call
|
| + // to the native RegExp code, as this code is called using the normal
|
| + // C calling convention. When calling directly from generated code the
|
| + // native RegExp code will not do a GC and therefore the content of
|
| + // these registers are safe to use after the call.
|
|
|
| - __ Bind(&try_allocate);
|
| + // x19 subject subject string
|
| + // x20 regexp_data RegExp data (FixedArray)
|
| + // x21 last_match_info_elements info relative to the last match
|
| + // (FixedArray)
|
| + // x22 code_object generated regexp code
|
| + Register subject = x19;
|
| + Register regexp_data = x20;
|
| + Register last_match_info_elements = x21;
|
| + Register code_object = x22;
|
|
|
| - // x0 alloc_obj pointer to allocated objects: param map, backing
|
| - // store, arguments (uninit)
|
| - // x1 function function pointer
|
| - // x2 arg_count_smi number of function arguments (smi)
|
| - // x3 recv_arg pointer to receiver arguments
|
| - // x4 mapped_params number of mapped parameters, min(params, args)
|
| - // x7 param_count number of function parameters
|
| - // x10 size size of objects to allocate (uninit)
|
| - // x14 arg_count number of function arguments
|
| + // Stack frame.
|
| + // jssp[00]: last_match_info (JSArray)
|
| + // jssp[08]: previous index
|
| + // jssp[16]: subject string
|
| + // jssp[24]: JSRegExp object
|
|
|
| - // Compute the size of backing store, parameter map, and arguments object.
|
| - // 1. Parameter map, has two extra words containing context and backing
|
| - // store.
|
| - const int kParameterMapHeaderSize =
|
| - FixedArray::kHeaderSize + 2 * kPointerSize;
|
| + const int kLastMatchInfoOffset = 0 * kPointerSize;
|
| + const int kPreviousIndexOffset = 1 * kPointerSize;
|
| + const int kSubjectOffset = 2 * kPointerSize;
|
| + const int kJSRegExpOffset = 3 * kPointerSize;
|
|
|
| - // Calculate the parameter map size, assuming it exists.
|
| - Register size = x10;
|
| - __ Mov(size, Operand(mapped_params, LSL, kPointerSizeLog2));
|
| - __ Add(size, size, kParameterMapHeaderSize);
|
| + // Ensure that a RegExp stack is allocated.
|
| + ExternalReference address_of_regexp_stack_memory_address =
|
| + ExternalReference::address_of_regexp_stack_memory_address(isolate());
|
| + ExternalReference address_of_regexp_stack_memory_size =
|
| + ExternalReference::address_of_regexp_stack_memory_size(isolate());
|
| + __ Mov(x10, address_of_regexp_stack_memory_size);
|
| + __ Ldr(x10, MemOperand(x10));
|
| + __ Cbz(x10, &runtime);
|
|
|
| - // If there are no mapped parameters, set the running size total to zero.
|
| - // Otherwise, use the parameter map size calculated earlier.
|
| - __ Cmp(mapped_params, 0);
|
| - __ CzeroX(size, eq);
|
| + // Check that the first argument is a JSRegExp object.
|
| + DCHECK(jssp.Is(__ StackPointer()));
|
| + __ Peek(jsregexp_object, kJSRegExpOffset);
|
| + __ JumpIfSmi(jsregexp_object, &runtime);
|
| + __ JumpIfNotObjectType(jsregexp_object, x10, x10, JS_REGEXP_TYPE, &runtime);
|
|
|
| - // 2. Add the size of the backing store and arguments object.
|
| - __ Add(size, size, Operand(arg_count, LSL, kPointerSizeLog2));
|
| - __ Add(size, size, FixedArray::kHeaderSize + JSSloppyArgumentsObject::kSize);
|
| + // Check that the RegExp has been compiled (data contains a fixed array).
|
| + __ Ldr(regexp_data, FieldMemOperand(jsregexp_object, JSRegExp::kDataOffset));
|
| + if (FLAG_debug_code) {
|
| + STATIC_ASSERT(kSmiTag == 0);
|
| + __ Tst(regexp_data, kSmiTagMask);
|
| + __ Check(ne, kUnexpectedTypeForRegExpDataFixedArrayExpected);
|
| + __ CompareObjectType(regexp_data, x10, x10, FIXED_ARRAY_TYPE);
|
| + __ Check(eq, kUnexpectedTypeForRegExpDataFixedArrayExpected);
|
| + }
|
|
|
| - // Do the allocation of all three objects in one go. Assign this to x0, as it
|
| - // will be returned to the caller.
|
| - Register alloc_obj = x0;
|
| - __ Allocate(size, alloc_obj, x11, x12, &runtime, TAG_OBJECT);
|
| + // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
|
| + __ Ldr(x10, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset));
|
| + __ Cmp(x10, Smi::FromInt(JSRegExp::IRREGEXP));
|
| + __ B(ne, &runtime);
|
|
|
| - // Get the arguments boilerplate from the current (global) context.
|
| + // Check that the number of captures fit in the static offsets vector buffer.
|
| + // We have always at least one capture for the whole match, plus additional
|
| + // ones due to capturing parentheses. A capture takes 2 registers.
|
| + // The number of capture registers then is (number_of_captures + 1) * 2.
|
| + __ Ldrsw(x10,
|
| + UntagSmiFieldMemOperand(regexp_data,
|
| + JSRegExp::kIrregexpCaptureCountOffset));
|
| + // Check (number_of_captures + 1) * 2 <= offsets vector size
|
| + // number_of_captures * 2 <= offsets vector size - 2
|
| + STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2);
|
| + __ Add(x10, x10, x10);
|
| + __ Cmp(x10, Isolate::kJSRegexpStaticOffsetsVectorSize - 2);
|
| + __ B(hi, &runtime);
|
|
|
| - // x0 alloc_obj pointer to allocated objects (param map, backing
|
| - // store, arguments)
|
| - // x1 function function pointer
|
| - // x2 arg_count_smi number of function arguments (smi)
|
| - // x3 recv_arg pointer to receiver arguments
|
| - // x4 mapped_params number of mapped parameters, min(params, args)
|
| - // x7 param_count number of function parameters
|
| - // x11 sloppy_args_map offset to args (or aliased args) map (uninit)
|
| - // x14 arg_count number of function arguments
|
| + // Initialize offset for possibly sliced string.
|
| + __ Mov(sliced_string_offset, 0);
|
|
|
| - Register global_ctx = x10;
|
| - Register sloppy_args_map = x11;
|
| - Register aliased_args_map = x10;
|
| - __ Ldr(global_ctx, NativeContextMemOperand());
|
| + DCHECK(jssp.Is(__ StackPointer()));
|
| + __ Peek(subject, kSubjectOffset);
|
| + __ JumpIfSmi(subject, &runtime);
|
|
|
| - __ Ldr(sloppy_args_map,
|
| - ContextMemOperand(global_ctx, Context::SLOPPY_ARGUMENTS_MAP_INDEX));
|
| - __ Ldr(
|
| - aliased_args_map,
|
| - ContextMemOperand(global_ctx, Context::FAST_ALIASED_ARGUMENTS_MAP_INDEX));
|
| - __ Cmp(mapped_params, 0);
|
| - __ CmovX(sloppy_args_map, aliased_args_map, ne);
|
| + __ Ldr(x10, FieldMemOperand(subject, HeapObject::kMapOffset));
|
| + __ Ldrb(string_type, FieldMemOperand(x10, Map::kInstanceTypeOffset));
|
|
|
| - // Copy the JS object part.
|
| - __ Str(sloppy_args_map, FieldMemOperand(alloc_obj, JSObject::kMapOffset));
|
| - __ LoadRoot(x10, Heap::kEmptyFixedArrayRootIndex);
|
| - __ Str(x10, FieldMemOperand(alloc_obj, JSObject::kPropertiesOffset));
|
| - __ Str(x10, FieldMemOperand(alloc_obj, JSObject::kElementsOffset));
|
| + __ Ldr(jsstring_length, FieldMemOperand(subject, String::kLengthOffset));
|
|
|
| - // Set up the callee in-object property.
|
| - __ AssertNotSmi(function);
|
| - __ Str(function,
|
| - FieldMemOperand(alloc_obj, JSSloppyArgumentsObject::kCalleeOffset));
|
| + // Handle subject string according to its encoding and representation:
|
| + // (1) Sequential string? If yes, go to (5).
|
| + // (2) Anything but sequential or cons? If yes, go to (6).
|
| + // (3) Cons string. If the string is flat, replace subject with first string.
|
| + // Otherwise bailout.
|
| + // (4) Is subject external? If yes, go to (7).
|
| + // (5) Sequential string. Load regexp code according to encoding.
|
| + // (E) Carry on.
|
| + /// [...]
|
|
|
| - // Use the length and set that as an in-object property.
|
| - __ Str(arg_count_smi,
|
| - FieldMemOperand(alloc_obj, JSSloppyArgumentsObject::kLengthOffset));
|
| + // Deferred code at the end of the stub:
|
| + // (6) Not a long external string? If yes, go to (8).
|
| + // (7) External string. Make it, offset-wise, look like a sequential string.
|
| + // Go to (5).
|
| + // (8) Short external string or not a string? If yes, bail out to runtime.
|
| + // (9) Sliced string. Replace subject with parent. Go to (4).
|
|
|
| - // Set up the elements pointer in the allocated arguments object.
|
| - // If we allocated a parameter map, "elements" will point there, otherwise
|
| - // it will point to the backing store.
|
| + Label check_underlying; // (4)
|
| + Label seq_string; // (5)
|
| + Label not_seq_nor_cons; // (6)
|
| + Label external_string; // (7)
|
| + Label not_long_external; // (8)
|
|
|
| - // x0 alloc_obj pointer to allocated objects (param map, backing
|
| - // store, arguments)
|
| - // x1 function function pointer
|
| - // x2 arg_count_smi number of function arguments (smi)
|
| - // x3 recv_arg pointer to receiver arguments
|
| - // x4 mapped_params number of mapped parameters, min(params, args)
|
| - // x5 elements pointer to parameter map or backing store (uninit)
|
| - // x6 backing_store pointer to backing store (uninit)
|
| - // x7 param_count number of function parameters
|
| - // x14 arg_count number of function arguments
|
| -
|
| - Register elements = x5;
|
| - __ Add(elements, alloc_obj, JSSloppyArgumentsObject::kSize);
|
| - __ Str(elements, FieldMemOperand(alloc_obj, JSObject::kElementsOffset));
|
| + // (1) Sequential string? If yes, go to (5).
|
| + __ And(string_representation,
|
| + string_type,
|
| + kIsNotStringMask |
|
| + kStringRepresentationMask |
|
| + kShortExternalStringMask);
|
| + // We depend on the fact that Strings of type
|
| + // SeqString and not ShortExternalString are defined
|
| + // by the following pattern:
|
| + // string_type: 0XX0 XX00
|
| + // ^ ^ ^^
|
| + // | | ||
|
| + // | | is a SeqString
|
| + // | is not a short external String
|
| + // is a String
|
| + STATIC_ASSERT((kStringTag | kSeqStringTag) == 0);
|
| + STATIC_ASSERT(kShortExternalStringTag != 0);
|
| + __ Cbz(string_representation, &seq_string); // Go to (5).
|
|
|
| - // Initialize parameter map. If there are no mapped arguments, we're done.
|
| - Label skip_parameter_map;
|
| - __ Cmp(mapped_params, 0);
|
| - // Set up backing store address, because it is needed later for filling in
|
| - // the unmapped arguments.
|
| - Register backing_store = x6;
|
| - __ CmovX(backing_store, elements, eq);
|
| - __ B(eq, &skip_parameter_map);
|
| + // (2) Anything but sequential or cons? If yes, go to (6).
|
| + STATIC_ASSERT(kConsStringTag < kExternalStringTag);
|
| + STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
|
| + STATIC_ASSERT(kIsNotStringMask > kExternalStringTag);
|
| + STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag);
|
| + __ Cmp(string_representation, kExternalStringTag);
|
| + __ B(ge, ¬_seq_nor_cons); // Go to (6).
|
|
|
| - __ LoadRoot(x10, Heap::kSloppyArgumentsElementsMapRootIndex);
|
| - __ Str(x10, FieldMemOperand(elements, FixedArray::kMapOffset));
|
| - __ Add(x10, mapped_params, 2);
|
| - __ SmiTag(x10);
|
| - __ Str(x10, FieldMemOperand(elements, FixedArray::kLengthOffset));
|
| - __ Str(cp, FieldMemOperand(elements,
|
| - FixedArray::kHeaderSize + 0 * kPointerSize));
|
| - __ Add(x10, elements, Operand(mapped_params, LSL, kPointerSizeLog2));
|
| - __ Add(x10, x10, kParameterMapHeaderSize);
|
| - __ Str(x10, FieldMemOperand(elements,
|
| - FixedArray::kHeaderSize + 1 * kPointerSize));
|
| + // (3) Cons string. Check that it's flat.
|
| + __ Ldr(x10, FieldMemOperand(subject, ConsString::kSecondOffset));
|
| + __ JumpIfNotRoot(x10, Heap::kempty_stringRootIndex, &runtime);
|
| + // Replace subject with first string.
|
| + __ Ldr(subject, FieldMemOperand(subject, ConsString::kFirstOffset));
|
|
|
| - // Copy the parameter slots and the holes in the arguments.
|
| - // We need to fill in mapped_parameter_count slots. Then index the context,
|
| - // where parameters are stored in reverse order, at:
|
| - //
|
| - // MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS + parameter_count - 1
|
| - //
|
| - // The mapped parameter thus needs to get indices:
|
| - //
|
| - // MIN_CONTEXT_SLOTS + parameter_count - 1 ..
|
| - // MIN_CONTEXT_SLOTS + parameter_count - mapped_parameter_count
|
| - //
|
| - // We loop from right to left.
|
| + // (4) Is subject external? If yes, go to (7).
|
| + __ Bind(&check_underlying);
|
| + // Reload the string type.
|
| + __ Ldr(x10, FieldMemOperand(subject, HeapObject::kMapOffset));
|
| + __ Ldrb(string_type, FieldMemOperand(x10, Map::kInstanceTypeOffset));
|
| + STATIC_ASSERT(kSeqStringTag == 0);
|
| + // The underlying external string is never a short external string.
|
| + STATIC_ASSERT(ExternalString::kMaxShortLength < ConsString::kMinLength);
|
| + STATIC_ASSERT(ExternalString::kMaxShortLength < SlicedString::kMinLength);
|
| + __ TestAndBranchIfAnySet(string_type.X(),
|
| + kStringRepresentationMask,
|
| + &external_string); // Go to (7).
|
|
|
| - // x0 alloc_obj pointer to allocated objects (param map, backing
|
| - // store, arguments)
|
| - // x1 function function pointer
|
| - // x2 arg_count_smi number of function arguments (smi)
|
| - // x3 recv_arg pointer to receiver arguments
|
| - // x4 mapped_params number of mapped parameters, min(params, args)
|
| - // x5 elements pointer to parameter map or backing store (uninit)
|
| - // x6 backing_store pointer to backing store (uninit)
|
| - // x7 param_count number of function parameters
|
| - // x11 loop_count parameter loop counter (uninit)
|
| - // x12 index parameter index (smi, uninit)
|
| - // x13 the_hole hole value (uninit)
|
| - // x14 arg_count number of function arguments
|
| + // (5) Sequential string. Load regexp code according to encoding.
|
| + __ Bind(&seq_string);
|
|
|
| - Register loop_count = x11;
|
| - Register index = x12;
|
| - Register the_hole = x13;
|
| - Label parameters_loop, parameters_test;
|
| - __ Mov(loop_count, mapped_params);
|
| - __ Add(index, param_count, static_cast<int>(Context::MIN_CONTEXT_SLOTS));
|
| - __ Sub(index, index, mapped_params);
|
| - __ SmiTag(index);
|
| - __ LoadRoot(the_hole, Heap::kTheHoleValueRootIndex);
|
| - __ Add(backing_store, elements, Operand(loop_count, LSL, kPointerSizeLog2));
|
| - __ Add(backing_store, backing_store, kParameterMapHeaderSize);
|
| + // Check that the third argument is a positive smi less than the subject
|
| + // string length. A negative value will be greater (unsigned comparison).
|
| + DCHECK(jssp.Is(__ StackPointer()));
|
| + __ Peek(x10, kPreviousIndexOffset);
|
| + __ JumpIfNotSmi(x10, &runtime);
|
| + __ Cmp(jsstring_length, x10);
|
| + __ B(ls, &runtime);
|
|
|
| - __ B(¶meters_test);
|
| + // Argument 2 (x1): We need to load argument 2 (the previous index) into x1
|
| + // before entering the exit frame.
|
| + __ SmiUntag(x1, x10);
|
|
|
| - __ Bind(¶meters_loop);
|
| - __ Sub(loop_count, loop_count, 1);
|
| - __ Mov(x10, Operand(loop_count, LSL, kPointerSizeLog2));
|
| - __ Add(x10, x10, kParameterMapHeaderSize - kHeapObjectTag);
|
| - __ Str(index, MemOperand(elements, x10));
|
| - __ Sub(x10, x10, kParameterMapHeaderSize - FixedArray::kHeaderSize);
|
| - __ Str(the_hole, MemOperand(backing_store, x10));
|
| - __ Add(index, index, Smi::FromInt(1));
|
| - __ Bind(¶meters_test);
|
| - __ Cbnz(loop_count, ¶meters_loop);
|
| + // The third bit determines the string encoding in string_type.
|
| + STATIC_ASSERT(kOneByteStringTag == 0x04);
|
| + STATIC_ASSERT(kTwoByteStringTag == 0x00);
|
| + STATIC_ASSERT(kStringEncodingMask == 0x04);
|
|
|
| - __ Bind(&skip_parameter_map);
|
| - // Copy arguments header and remaining slots (if there are any.)
|
| - __ LoadRoot(x10, Heap::kFixedArrayMapRootIndex);
|
| - __ Str(x10, FieldMemOperand(backing_store, FixedArray::kMapOffset));
|
| - __ Str(arg_count_smi, FieldMemOperand(backing_store,
|
| - FixedArray::kLengthOffset));
|
| + // Find the code object based on the assumptions above.
|
| + // kDataOneByteCodeOffset and kDataUC16CodeOffset are adjacent, adds an offset
|
| + // of kPointerSize to reach the latter.
|
| + STATIC_ASSERT(JSRegExp::kDataOneByteCodeOffset + kPointerSize ==
|
| + JSRegExp::kDataUC16CodeOffset);
|
| + __ Mov(x10, kPointerSize);
|
| + // We will need the encoding later: Latin1 = 0x04
|
| + // UC16 = 0x00
|
| + __ Ands(string_encoding, string_type, kStringEncodingMask);
|
| + __ CzeroX(x10, ne);
|
| + __ Add(x10, regexp_data, x10);
|
| + __ Ldr(code_object, FieldMemOperand(x10, JSRegExp::kDataOneByteCodeOffset));
|
|
|
| - // x0 alloc_obj pointer to allocated objects (param map, backing
|
| - // store, arguments)
|
| - // x1 function function pointer
|
| - // x2 arg_count_smi number of function arguments (smi)
|
| - // x3 recv_arg pointer to receiver arguments
|
| - // x4 mapped_params number of mapped parameters, min(params, args)
|
| - // x6 backing_store pointer to backing store (uninit)
|
| - // x14 arg_count number of function arguments
|
| + // (E) Carry on. String handling is done.
|
|
|
| - Label arguments_loop, arguments_test;
|
| - __ Mov(x10, mapped_params);
|
| - __ Sub(recv_arg, recv_arg, Operand(x10, LSL, kPointerSizeLog2));
|
| - __ B(&arguments_test);
|
| + // Check that the irregexp code has been generated for the actual string
|
| + // encoding. If it has, the field contains a code object otherwise it contains
|
| + // a smi (code flushing support).
|
| + __ JumpIfSmi(code_object, &runtime);
|
|
|
| - __ Bind(&arguments_loop);
|
| - __ Sub(recv_arg, recv_arg, kPointerSize);
|
| - __ Ldr(x11, MemOperand(recv_arg));
|
| - __ Add(x12, backing_store, Operand(x10, LSL, kPointerSizeLog2));
|
| - __ Str(x11, FieldMemOperand(x12, FixedArray::kHeaderSize));
|
| - __ Add(x10, x10, 1);
|
| + // All checks done. Now push arguments for native regexp code.
|
| + __ IncrementCounter(isolate()->counters()->regexp_entry_native(), 1,
|
| + x10,
|
| + x11);
|
|
|
| - __ Bind(&arguments_test);
|
| - __ Cmp(x10, arg_count);
|
| - __ B(lt, &arguments_loop);
|
| + // Isolates: note we add an additional parameter here (isolate pointer).
|
| + __ EnterExitFrame(false, x10, 1);
|
| + DCHECK(csp.Is(__ StackPointer()));
|
|
|
| - __ Ret();
|
| + // We have 9 arguments to pass to the regexp code, therefore we have to pass
|
| + // one on the stack and the rest as registers.
|
|
|
| - // Do the runtime call to allocate the arguments object.
|
| - __ Bind(&runtime);
|
| - __ Push(function, recv_arg, arg_count_smi);
|
| - __ TailCallRuntime(Runtime::kNewSloppyArguments);
|
| -}
|
| + // Note that the placement of the argument on the stack isn't standard
|
| + // AAPCS64:
|
| + // csp[0]: Space for the return address placed by DirectCEntryStub.
|
| + // csp[8]: Argument 9, the current isolate address.
|
|
|
| + __ Mov(x10, ExternalReference::isolate_address(isolate()));
|
| + __ Poke(x10, kPointerSize);
|
|
|
| -void LoadIndexedInterceptorStub::Generate(MacroAssembler* masm) {
|
| - // Return address is in lr.
|
| - Label slow;
|
| + Register length = w11;
|
| + Register previous_index_in_bytes = w12;
|
| + Register start = x13;
|
|
|
| - Register receiver = LoadDescriptor::ReceiverRegister();
|
| - Register key = LoadDescriptor::NameRegister();
|
| + // Load start of the subject string.
|
| + __ Add(start, subject, SeqString::kHeaderSize - kHeapObjectTag);
|
| + // Load the length from the original subject string from the previous stack
|
| + // frame. Therefore we have to use fp, which points exactly to two pointer
|
| + // sizes below the previous sp. (Because creating a new stack frame pushes
|
| + // the previous fp onto the stack and decrements sp by 2 * kPointerSize.)
|
| + __ Ldr(subject, MemOperand(fp, kSubjectOffset + 2 * kPointerSize));
|
| + __ Ldr(length, UntagSmiFieldMemOperand(subject, String::kLengthOffset));
|
|
|
| - // Check that the key is an array index, that is Uint32.
|
| - __ TestAndBranchIfAnySet(key, kSmiTagMask | kSmiSignMask, &slow);
|
| + // Handle UC16 encoding, two bytes make one character.
|
| + // string_encoding: if Latin1: 0x04
|
| + // if UC16: 0x00
|
| + STATIC_ASSERT(kStringEncodingMask == 0x04);
|
| + __ Ubfx(string_encoding, string_encoding, 2, 1);
|
| + __ Eor(string_encoding, string_encoding, 1);
|
| + // string_encoding: if Latin1: 0
|
| + // if UC16: 1
|
|
|
| - // Everything is fine, call runtime.
|
| - __ Push(receiver, key);
|
| - __ TailCallRuntime(Runtime::kLoadElementWithInterceptor);
|
| + // Convert string positions from characters to bytes.
|
| + // Previous index is in x1.
|
| + __ Lsl(previous_index_in_bytes, w1, string_encoding);
|
| + __ Lsl(length, length, string_encoding);
|
| + __ Lsl(sliced_string_offset, sliced_string_offset, string_encoding);
|
|
|
| - __ Bind(&slow);
|
| - PropertyAccessCompiler::TailCallBuiltin(
|
| - masm, PropertyAccessCompiler::MissBuiltin(Code::KEYED_LOAD_IC));
|
| -}
|
| + // Argument 1 (x0): Subject string.
|
| + __ Mov(x0, subject);
|
|
|
| + // Argument 2 (x1): Previous index, already there.
|
|
|
| -void RegExpExecStub::Generate(MacroAssembler* masm) {
|
| -#ifdef V8_INTERPRETED_REGEXP
|
| - __ TailCallRuntime(Runtime::kRegExpExec);
|
| -#else // V8_INTERPRETED_REGEXP
|
| + // Argument 3 (x2): Get the start of input.
|
| + // Start of input = start of string + previous index + substring offset
|
| + // (0 if the string
|
| + // is not sliced).
|
| + __ Add(w10, previous_index_in_bytes, sliced_string_offset);
|
| + __ Add(x2, start, Operand(w10, UXTW));
|
|
|
| - // Stack frame on entry.
|
| - // jssp[0]: last_match_info (expected JSArray)
|
| - // jssp[8]: previous index
|
| - // jssp[16]: subject string
|
| - // jssp[24]: JSRegExp object
|
| - Label runtime;
|
| -
|
| - // Use of registers for this function.
|
| -
|
| - // Variable registers:
|
| - // x10-x13 used as scratch registers
|
| - // w0 string_type type of subject string
|
| - // x2 jsstring_length subject string length
|
| - // x3 jsregexp_object JSRegExp object
|
| - // w4 string_encoding Latin1 or UC16
|
| - // w5 sliced_string_offset if the string is a SlicedString
|
| - // offset to the underlying string
|
| - // w6 string_representation groups attributes of the string:
|
| - // - is a string
|
| - // - type of the string
|
| - // - is a short external string
|
| - Register string_type = w0;
|
| - Register jsstring_length = x2;
|
| - Register jsregexp_object = x3;
|
| - Register string_encoding = w4;
|
| - Register sliced_string_offset = w5;
|
| - Register string_representation = w6;
|
| + // Argument 4 (x3):
|
| + // End of input = start of input + (length of input - previous index)
|
| + __ Sub(w10, length, previous_index_in_bytes);
|
| + __ Add(x3, x2, Operand(w10, UXTW));
|
|
|
| - // These are in callee save registers and will be preserved by the call
|
| - // to the native RegExp code, as this code is called using the normal
|
| - // C calling convention. When calling directly from generated code the
|
| - // native RegExp code will not do a GC and therefore the content of
|
| - // these registers are safe to use after the call.
|
| + // Argument 5 (x4): static offsets vector buffer.
|
| + __ Mov(x4, ExternalReference::address_of_static_offsets_vector(isolate()));
|
|
|
| - // x19 subject subject string
|
| - // x20 regexp_data RegExp data (FixedArray)
|
| - // x21 last_match_info_elements info relative to the last match
|
| - // (FixedArray)
|
| - // x22 code_object generated regexp code
|
| - Register subject = x19;
|
| - Register regexp_data = x20;
|
| - Register last_match_info_elements = x21;
|
| - Register code_object = x22;
|
| + // Argument 6 (x5): Set the number of capture registers to zero to force
|
| + // global regexps to behave as non-global. This stub is not used for global
|
| + // regexps.
|
| + __ Mov(x5, 0);
|
|
|
| - // Stack frame.
|
| - // jssp[00]: last_match_info (JSArray)
|
| - // jssp[08]: previous index
|
| - // jssp[16]: subject string
|
| - // jssp[24]: JSRegExp object
|
| + // Argument 7 (x6): Start (high end) of backtracking stack memory area.
|
| + __ Mov(x10, address_of_regexp_stack_memory_address);
|
| + __ Ldr(x10, MemOperand(x10));
|
| + __ Mov(x11, address_of_regexp_stack_memory_size);
|
| + __ Ldr(x11, MemOperand(x11));
|
| + __ Add(x6, x10, x11);
|
|
|
| - const int kLastMatchInfoOffset = 0 * kPointerSize;
|
| - const int kPreviousIndexOffset = 1 * kPointerSize;
|
| - const int kSubjectOffset = 2 * kPointerSize;
|
| - const int kJSRegExpOffset = 3 * kPointerSize;
|
| + // Argument 8 (x7): Indicate that this is a direct call from JavaScript.
|
| + __ Mov(x7, 1);
|
|
|
| - // Ensure that a RegExp stack is allocated.
|
| - ExternalReference address_of_regexp_stack_memory_address =
|
| - ExternalReference::address_of_regexp_stack_memory_address(isolate());
|
| - ExternalReference address_of_regexp_stack_memory_size =
|
| - ExternalReference::address_of_regexp_stack_memory_size(isolate());
|
| - __ Mov(x10, address_of_regexp_stack_memory_size);
|
| - __ Ldr(x10, MemOperand(x10));
|
| - __ Cbz(x10, &runtime);
|
| + // Locate the code entry and call it.
|
| + __ Add(code_object, code_object, Code::kHeaderSize - kHeapObjectTag);
|
| + DirectCEntryStub stub(isolate());
|
| + stub.GenerateCall(masm, code_object);
|
|
|
| - // Check that the first argument is a JSRegExp object.
|
| - DCHECK(jssp.Is(__ StackPointer()));
|
| - __ Peek(jsregexp_object, kJSRegExpOffset);
|
| - __ JumpIfSmi(jsregexp_object, &runtime);
|
| - __ JumpIfNotObjectType(jsregexp_object, x10, x10, JS_REGEXP_TYPE, &runtime);
|
| + __ LeaveExitFrame(false, x10, true);
|
|
|
| - // Check that the RegExp has been compiled (data contains a fixed array).
|
| - __ Ldr(regexp_data, FieldMemOperand(jsregexp_object, JSRegExp::kDataOffset));
|
| - if (FLAG_debug_code) {
|
| - STATIC_ASSERT(kSmiTag == 0);
|
| - __ Tst(regexp_data, kSmiTagMask);
|
| - __ Check(ne, kUnexpectedTypeForRegExpDataFixedArrayExpected);
|
| - __ CompareObjectType(regexp_data, x10, x10, FIXED_ARRAY_TYPE);
|
| - __ Check(eq, kUnexpectedTypeForRegExpDataFixedArrayExpected);
|
| - }
|
| + // The generated regexp code returns an int32 in w0.
|
| + Label failure, exception;
|
| + __ CompareAndBranch(w0, NativeRegExpMacroAssembler::FAILURE, eq, &failure);
|
| + __ CompareAndBranch(w0,
|
| + NativeRegExpMacroAssembler::EXCEPTION,
|
| + eq,
|
| + &exception);
|
| + __ CompareAndBranch(w0, NativeRegExpMacroAssembler::RETRY, eq, &runtime);
|
|
|
| - // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
|
| - __ Ldr(x10, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset));
|
| - __ Cmp(x10, Smi::FromInt(JSRegExp::IRREGEXP));
|
| - __ B(ne, &runtime);
|
| + // Success: process the result from the native regexp code.
|
| + Register number_of_capture_registers = x12;
|
|
|
| - // Check that the number of captures fit in the static offsets vector buffer.
|
| - // We have always at least one capture for the whole match, plus additional
|
| - // ones due to capturing parentheses. A capture takes 2 registers.
|
| - // The number of capture registers then is (number_of_captures + 1) * 2.
|
| + // Calculate number of capture registers (number_of_captures + 1) * 2
|
| + // and store it in the last match info.
|
| __ Ldrsw(x10,
|
| UntagSmiFieldMemOperand(regexp_data,
|
| JSRegExp::kIrregexpCaptureCountOffset));
|
| - // Check (number_of_captures + 1) * 2 <= offsets vector size
|
| - // number_of_captures * 2 <= offsets vector size - 2
|
| - STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2);
|
| __ Add(x10, x10, x10);
|
| - __ Cmp(x10, Isolate::kJSRegexpStaticOffsetsVectorSize - 2);
|
| - __ B(hi, &runtime);
|
| -
|
| - // Initialize offset for possibly sliced string.
|
| - __ Mov(sliced_string_offset, 0);
|
| + __ Add(number_of_capture_registers, x10, 2);
|
|
|
| + // Check that the fourth object is a JSArray object.
|
| DCHECK(jssp.Is(__ StackPointer()));
|
| - __ Peek(subject, kSubjectOffset);
|
| - __ JumpIfSmi(subject, &runtime);
|
| -
|
| - __ Ldr(x10, FieldMemOperand(subject, HeapObject::kMapOffset));
|
| - __ Ldrb(string_type, FieldMemOperand(x10, Map::kInstanceTypeOffset));
|
| + __ Peek(x10, kLastMatchInfoOffset);
|
| + __ JumpIfSmi(x10, &runtime);
|
| + __ JumpIfNotObjectType(x10, x11, x11, JS_ARRAY_TYPE, &runtime);
|
|
|
| - __ Ldr(jsstring_length, FieldMemOperand(subject, String::kLengthOffset));
|
| + // Check that the JSArray is the fast case.
|
| + __ Ldr(last_match_info_elements,
|
| + FieldMemOperand(x10, JSArray::kElementsOffset));
|
| + __ Ldr(x10,
|
| + FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset));
|
| + __ JumpIfNotRoot(x10, Heap::kFixedArrayMapRootIndex, &runtime);
|
|
|
| - // Handle subject string according to its encoding and representation:
|
| - // (1) Sequential string? If yes, go to (5).
|
| - // (2) Anything but sequential or cons? If yes, go to (6).
|
| - // (3) Cons string. If the string is flat, replace subject with first string.
|
| - // Otherwise bailout.
|
| - // (4) Is subject external? If yes, go to (7).
|
| - // (5) Sequential string. Load regexp code according to encoding.
|
| - // (E) Carry on.
|
| - /// [...]
|
| + // Check that the last match info has space for the capture registers and the
|
| + // additional information (overhead).
|
| + // (number_of_captures + 1) * 2 + overhead <= last match info size
|
| + // (number_of_captures * 2) + 2 + overhead <= last match info size
|
| + // number_of_capture_registers + overhead <= last match info size
|
| + __ Ldrsw(x10,
|
| + UntagSmiFieldMemOperand(last_match_info_elements,
|
| + FixedArray::kLengthOffset));
|
| + __ Add(x11, number_of_capture_registers, RegExpImpl::kLastMatchOverhead);
|
| + __ Cmp(x11, x10);
|
| + __ B(gt, &runtime);
|
|
|
| - // Deferred code at the end of the stub:
|
| - // (6) Not a long external string? If yes, go to (8).
|
| - // (7) External string. Make it, offset-wise, look like a sequential string.
|
| - // Go to (5).
|
| - // (8) Short external string or not a string? If yes, bail out to runtime.
|
| - // (9) Sliced string. Replace subject with parent. Go to (4).
|
| + // Store the capture count.
|
| + __ SmiTag(x10, number_of_capture_registers);
|
| + __ Str(x10,
|
| + FieldMemOperand(last_match_info_elements,
|
| + RegExpImpl::kLastCaptureCountOffset));
|
| + // Store last subject and last input.
|
| + __ Str(subject,
|
| + FieldMemOperand(last_match_info_elements,
|
| + RegExpImpl::kLastSubjectOffset));
|
| + // Use x10 as the subject string in order to only need
|
| + // one RecordWriteStub.
|
| + __ Mov(x10, subject);
|
| + __ RecordWriteField(last_match_info_elements,
|
| + RegExpImpl::kLastSubjectOffset,
|
| + x10,
|
| + x11,
|
| + kLRHasNotBeenSaved,
|
| + kDontSaveFPRegs);
|
| + __ Str(subject,
|
| + FieldMemOperand(last_match_info_elements,
|
| + RegExpImpl::kLastInputOffset));
|
| + __ Mov(x10, subject);
|
| + __ RecordWriteField(last_match_info_elements,
|
| + RegExpImpl::kLastInputOffset,
|
| + x10,
|
| + x11,
|
| + kLRHasNotBeenSaved,
|
| + kDontSaveFPRegs);
|
|
|
| - Label check_underlying; // (4)
|
| - Label seq_string; // (5)
|
| - Label not_seq_nor_cons; // (6)
|
| - Label external_string; // (7)
|
| - Label not_long_external; // (8)
|
| + Register last_match_offsets = x13;
|
| + Register offsets_vector_index = x14;
|
| + Register current_offset = x15;
|
|
|
| - // (1) Sequential string? If yes, go to (5).
|
| - __ And(string_representation,
|
| - string_type,
|
| - kIsNotStringMask |
|
| - kStringRepresentationMask |
|
| - kShortExternalStringMask);
|
| - // We depend on the fact that Strings of type
|
| - // SeqString and not ShortExternalString are defined
|
| - // by the following pattern:
|
| - // string_type: 0XX0 XX00
|
| - // ^ ^ ^^
|
| - // | | ||
|
| - // | | is a SeqString
|
| - // | is not a short external String
|
| - // is a String
|
| - STATIC_ASSERT((kStringTag | kSeqStringTag) == 0);
|
| - STATIC_ASSERT(kShortExternalStringTag != 0);
|
| - __ Cbz(string_representation, &seq_string); // Go to (5).
|
| + // Get the static offsets vector filled by the native regexp code
|
| + // and fill the last match info.
|
| + ExternalReference address_of_static_offsets_vector =
|
| + ExternalReference::address_of_static_offsets_vector(isolate());
|
| + __ Mov(offsets_vector_index, address_of_static_offsets_vector);
|
|
|
| - // (2) Anything but sequential or cons? If yes, go to (6).
|
| - STATIC_ASSERT(kConsStringTag < kExternalStringTag);
|
| - STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
|
| - STATIC_ASSERT(kIsNotStringMask > kExternalStringTag);
|
| - STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag);
|
| - __ Cmp(string_representation, kExternalStringTag);
|
| - __ B(ge, ¬_seq_nor_cons); // Go to (6).
|
| -
|
| - // (3) Cons string. Check that it's flat.
|
| - __ Ldr(x10, FieldMemOperand(subject, ConsString::kSecondOffset));
|
| - __ JumpIfNotRoot(x10, Heap::kempty_stringRootIndex, &runtime);
|
| - // Replace subject with first string.
|
| - __ Ldr(subject, FieldMemOperand(subject, ConsString::kFirstOffset));
|
| -
|
| - // (4) Is subject external? If yes, go to (7).
|
| - __ Bind(&check_underlying);
|
| - // Reload the string type.
|
| - __ Ldr(x10, FieldMemOperand(subject, HeapObject::kMapOffset));
|
| - __ Ldrb(string_type, FieldMemOperand(x10, Map::kInstanceTypeOffset));
|
| - STATIC_ASSERT(kSeqStringTag == 0);
|
| - // The underlying external string is never a short external string.
|
| - STATIC_ASSERT(ExternalString::kMaxShortLength < ConsString::kMinLength);
|
| - STATIC_ASSERT(ExternalString::kMaxShortLength < SlicedString::kMinLength);
|
| - __ TestAndBranchIfAnySet(string_type.X(),
|
| - kStringRepresentationMask,
|
| - &external_string); // Go to (7).
|
| -
|
| - // (5) Sequential string. Load regexp code according to encoding.
|
| - __ Bind(&seq_string);
|
| -
|
| - // Check that the third argument is a positive smi less than the subject
|
| - // string length. A negative value will be greater (unsigned comparison).
|
| - DCHECK(jssp.Is(__ StackPointer()));
|
| - __ Peek(x10, kPreviousIndexOffset);
|
| - __ JumpIfNotSmi(x10, &runtime);
|
| - __ Cmp(jsstring_length, x10);
|
| - __ B(ls, &runtime);
|
| -
|
| - // Argument 2 (x1): We need to load argument 2 (the previous index) into x1
|
| - // before entering the exit frame.
|
| - __ SmiUntag(x1, x10);
|
| -
|
| - // The third bit determines the string encoding in string_type.
|
| - STATIC_ASSERT(kOneByteStringTag == 0x04);
|
| - STATIC_ASSERT(kTwoByteStringTag == 0x00);
|
| - STATIC_ASSERT(kStringEncodingMask == 0x04);
|
| -
|
| - // Find the code object based on the assumptions above.
|
| - // kDataOneByteCodeOffset and kDataUC16CodeOffset are adjacent, adds an offset
|
| - // of kPointerSize to reach the latter.
|
| - STATIC_ASSERT(JSRegExp::kDataOneByteCodeOffset + kPointerSize ==
|
| - JSRegExp::kDataUC16CodeOffset);
|
| - __ Mov(x10, kPointerSize);
|
| - // We will need the encoding later: Latin1 = 0x04
|
| - // UC16 = 0x00
|
| - __ Ands(string_encoding, string_type, kStringEncodingMask);
|
| - __ CzeroX(x10, ne);
|
| - __ Add(x10, regexp_data, x10);
|
| - __ Ldr(code_object, FieldMemOperand(x10, JSRegExp::kDataOneByteCodeOffset));
|
| -
|
| - // (E) Carry on. String handling is done.
|
| -
|
| - // Check that the irregexp code has been generated for the actual string
|
| - // encoding. If it has, the field contains a code object otherwise it contains
|
| - // a smi (code flushing support).
|
| - __ JumpIfSmi(code_object, &runtime);
|
| -
|
| - // All checks done. Now push arguments for native regexp code.
|
| - __ IncrementCounter(isolate()->counters()->regexp_entry_native(), 1,
|
| - x10,
|
| - x11);
|
| -
|
| - // Isolates: note we add an additional parameter here (isolate pointer).
|
| - __ EnterExitFrame(false, x10, 1);
|
| - DCHECK(csp.Is(__ StackPointer()));
|
| -
|
| - // We have 9 arguments to pass to the regexp code, therefore we have to pass
|
| - // one on the stack and the rest as registers.
|
| -
|
| - // Note that the placement of the argument on the stack isn't standard
|
| - // AAPCS64:
|
| - // csp[0]: Space for the return address placed by DirectCEntryStub.
|
| - // csp[8]: Argument 9, the current isolate address.
|
| -
|
| - __ Mov(x10, ExternalReference::isolate_address(isolate()));
|
| - __ Poke(x10, kPointerSize);
|
| -
|
| - Register length = w11;
|
| - Register previous_index_in_bytes = w12;
|
| - Register start = x13;
|
| -
|
| - // Load start of the subject string.
|
| - __ Add(start, subject, SeqString::kHeaderSize - kHeapObjectTag);
|
| - // Load the length from the original subject string from the previous stack
|
| - // frame. Therefore we have to use fp, which points exactly to two pointer
|
| - // sizes below the previous sp. (Because creating a new stack frame pushes
|
| - // the previous fp onto the stack and decrements sp by 2 * kPointerSize.)
|
| - __ Ldr(subject, MemOperand(fp, kSubjectOffset + 2 * kPointerSize));
|
| - __ Ldr(length, UntagSmiFieldMemOperand(subject, String::kLengthOffset));
|
| -
|
| - // Handle UC16 encoding, two bytes make one character.
|
| - // string_encoding: if Latin1: 0x04
|
| - // if UC16: 0x00
|
| - STATIC_ASSERT(kStringEncodingMask == 0x04);
|
| - __ Ubfx(string_encoding, string_encoding, 2, 1);
|
| - __ Eor(string_encoding, string_encoding, 1);
|
| - // string_encoding: if Latin1: 0
|
| - // if UC16: 1
|
| -
|
| - // Convert string positions from characters to bytes.
|
| - // Previous index is in x1.
|
| - __ Lsl(previous_index_in_bytes, w1, string_encoding);
|
| - __ Lsl(length, length, string_encoding);
|
| - __ Lsl(sliced_string_offset, sliced_string_offset, string_encoding);
|
| -
|
| - // Argument 1 (x0): Subject string.
|
| - __ Mov(x0, subject);
|
| -
|
| - // Argument 2 (x1): Previous index, already there.
|
| -
|
| - // Argument 3 (x2): Get the start of input.
|
| - // Start of input = start of string + previous index + substring offset
|
| - // (0 if the string
|
| - // is not sliced).
|
| - __ Add(w10, previous_index_in_bytes, sliced_string_offset);
|
| - __ Add(x2, start, Operand(w10, UXTW));
|
| -
|
| - // Argument 4 (x3):
|
| - // End of input = start of input + (length of input - previous index)
|
| - __ Sub(w10, length, previous_index_in_bytes);
|
| - __ Add(x3, x2, Operand(w10, UXTW));
|
| -
|
| - // Argument 5 (x4): static offsets vector buffer.
|
| - __ Mov(x4, ExternalReference::address_of_static_offsets_vector(isolate()));
|
| -
|
| - // Argument 6 (x5): Set the number of capture registers to zero to force
|
| - // global regexps to behave as non-global. This stub is not used for global
|
| - // regexps.
|
| - __ Mov(x5, 0);
|
| -
|
| - // Argument 7 (x6): Start (high end) of backtracking stack memory area.
|
| - __ Mov(x10, address_of_regexp_stack_memory_address);
|
| - __ Ldr(x10, MemOperand(x10));
|
| - __ Mov(x11, address_of_regexp_stack_memory_size);
|
| - __ Ldr(x11, MemOperand(x11));
|
| - __ Add(x6, x10, x11);
|
| -
|
| - // Argument 8 (x7): Indicate that this is a direct call from JavaScript.
|
| - __ Mov(x7, 1);
|
| -
|
| - // Locate the code entry and call it.
|
| - __ Add(code_object, code_object, Code::kHeaderSize - kHeapObjectTag);
|
| - DirectCEntryStub stub(isolate());
|
| - stub.GenerateCall(masm, code_object);
|
| -
|
| - __ LeaveExitFrame(false, x10, true);
|
| -
|
| - // The generated regexp code returns an int32 in w0.
|
| - Label failure, exception;
|
| - __ CompareAndBranch(w0, NativeRegExpMacroAssembler::FAILURE, eq, &failure);
|
| - __ CompareAndBranch(w0,
|
| - NativeRegExpMacroAssembler::EXCEPTION,
|
| - eq,
|
| - &exception);
|
| - __ CompareAndBranch(w0, NativeRegExpMacroAssembler::RETRY, eq, &runtime);
|
| -
|
| - // Success: process the result from the native regexp code.
|
| - Register number_of_capture_registers = x12;
|
| -
|
| - // Calculate number of capture registers (number_of_captures + 1) * 2
|
| - // and store it in the last match info.
|
| - __ Ldrsw(x10,
|
| - UntagSmiFieldMemOperand(regexp_data,
|
| - JSRegExp::kIrregexpCaptureCountOffset));
|
| - __ Add(x10, x10, x10);
|
| - __ Add(number_of_capture_registers, x10, 2);
|
| -
|
| - // Check that the fourth object is a JSArray object.
|
| - DCHECK(jssp.Is(__ StackPointer()));
|
| - __ Peek(x10, kLastMatchInfoOffset);
|
| - __ JumpIfSmi(x10, &runtime);
|
| - __ JumpIfNotObjectType(x10, x11, x11, JS_ARRAY_TYPE, &runtime);
|
| -
|
| - // Check that the JSArray is the fast case.
|
| - __ Ldr(last_match_info_elements,
|
| - FieldMemOperand(x10, JSArray::kElementsOffset));
|
| - __ Ldr(x10,
|
| - FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset));
|
| - __ JumpIfNotRoot(x10, Heap::kFixedArrayMapRootIndex, &runtime);
|
| -
|
| - // Check that the last match info has space for the capture registers and the
|
| - // additional information (overhead).
|
| - // (number_of_captures + 1) * 2 + overhead <= last match info size
|
| - // (number_of_captures * 2) + 2 + overhead <= last match info size
|
| - // number_of_capture_registers + overhead <= last match info size
|
| - __ Ldrsw(x10,
|
| - UntagSmiFieldMemOperand(last_match_info_elements,
|
| - FixedArray::kLengthOffset));
|
| - __ Add(x11, number_of_capture_registers, RegExpImpl::kLastMatchOverhead);
|
| - __ Cmp(x11, x10);
|
| - __ B(gt, &runtime);
|
| -
|
| - // Store the capture count.
|
| - __ SmiTag(x10, number_of_capture_registers);
|
| - __ Str(x10,
|
| - FieldMemOperand(last_match_info_elements,
|
| - RegExpImpl::kLastCaptureCountOffset));
|
| - // Store last subject and last input.
|
| - __ Str(subject,
|
| - FieldMemOperand(last_match_info_elements,
|
| - RegExpImpl::kLastSubjectOffset));
|
| - // Use x10 as the subject string in order to only need
|
| - // one RecordWriteStub.
|
| - __ Mov(x10, subject);
|
| - __ RecordWriteField(last_match_info_elements,
|
| - RegExpImpl::kLastSubjectOffset,
|
| - x10,
|
| - x11,
|
| - kLRHasNotBeenSaved,
|
| - kDontSaveFPRegs);
|
| - __ Str(subject,
|
| - FieldMemOperand(last_match_info_elements,
|
| - RegExpImpl::kLastInputOffset));
|
| - __ Mov(x10, subject);
|
| - __ RecordWriteField(last_match_info_elements,
|
| - RegExpImpl::kLastInputOffset,
|
| - x10,
|
| - x11,
|
| - kLRHasNotBeenSaved,
|
| - kDontSaveFPRegs);
|
| -
|
| - Register last_match_offsets = x13;
|
| - Register offsets_vector_index = x14;
|
| - Register current_offset = x15;
|
| -
|
| - // Get the static offsets vector filled by the native regexp code
|
| - // and fill the last match info.
|
| - ExternalReference address_of_static_offsets_vector =
|
| - ExternalReference::address_of_static_offsets_vector(isolate());
|
| - __ Mov(offsets_vector_index, address_of_static_offsets_vector);
|
| -
|
| - Label next_capture, done;
|
| - // Capture register counter starts from number of capture registers and
|
| - // iterates down to zero (inclusive).
|
| - __ Add(last_match_offsets,
|
| - last_match_info_elements,
|
| - RegExpImpl::kFirstCaptureOffset - kHeapObjectTag);
|
| - __ Bind(&next_capture);
|
| - __ Subs(number_of_capture_registers, number_of_capture_registers, 2);
|
| - __ B(mi, &done);
|
| - // Read two 32 bit values from the static offsets vector buffer into
|
| - // an X register
|
| - __ Ldr(current_offset,
|
| - MemOperand(offsets_vector_index, kWRegSize * 2, PostIndex));
|
| - // Store the smi values in the last match info.
|
| - __ SmiTag(x10, current_offset);
|
| - // Clearing the 32 bottom bits gives us a Smi.
|
| - STATIC_ASSERT(kSmiTag == 0);
|
| - __ Bic(x11, current_offset, kSmiShiftMask);
|
| - __ Stp(x10,
|
| - x11,
|
| - MemOperand(last_match_offsets, kXRegSize * 2, PostIndex));
|
| - __ B(&next_capture);
|
| - __ Bind(&done);
|
| + Label next_capture, done;
|
| + // Capture register counter starts from number of capture registers and
|
| + // iterates down to zero (inclusive).
|
| + __ Add(last_match_offsets,
|
| + last_match_info_elements,
|
| + RegExpImpl::kFirstCaptureOffset - kHeapObjectTag);
|
| + __ Bind(&next_capture);
|
| + __ Subs(number_of_capture_registers, number_of_capture_registers, 2);
|
| + __ B(mi, &done);
|
| + // Read two 32 bit values from the static offsets vector buffer into
|
| + // an X register
|
| + __ Ldr(current_offset,
|
| + MemOperand(offsets_vector_index, kWRegSize * 2, PostIndex));
|
| + // Store the smi values in the last match info.
|
| + __ SmiTag(x10, current_offset);
|
| + // Clearing the 32 bottom bits gives us a Smi.
|
| + STATIC_ASSERT(kSmiTag == 0);
|
| + __ Bic(x11, current_offset, kSmiShiftMask);
|
| + __ Stp(x10,
|
| + x11,
|
| + MemOperand(last_match_offsets, kXRegSize * 2, PostIndex));
|
| + __ B(&next_capture);
|
| + __ Bind(&done);
|
|
|
| // Return last match info.
|
| __ Peek(x0, kLastMatchInfoOffset);
|
| @@ -5301,6 +5000,288 @@ void FastNewRestParameterStub::Generate(MacroAssembler* masm) {
|
| }
|
|
|
|
|
| +void FastNewSloppyArgumentsStub::Generate(MacroAssembler* masm) {
|
| + // ----------- S t a t e -------------
|
| + // -- x1 : function
|
| + // -- cp : context
|
| + // -- fp : frame pointer
|
| + // -- lr : return address
|
| + // -----------------------------------
|
| + __ AssertFunction(x1);
|
| +
|
| + // TODO(bmeurer): Cleanup to match the FastNewStrictArgumentsStub.
|
| + __ Ldr(x2, FieldMemOperand(x1, JSFunction::kSharedFunctionInfoOffset));
|
| + __ Ldrsw(
|
| + x2, FieldMemOperand(x2, SharedFunctionInfo::kFormalParameterCountOffset));
|
| + __ Add(x3, fp, Operand(x2, LSL, kPointerSizeLog2));
|
| + __ Add(x3, x3, Operand(StandardFrameConstants::kCallerSPOffset));
|
| + __ SmiTag(x2);
|
| +
|
| + // x1 : function
|
| + // x2 : number of parameters (tagged)
|
| + // x3 : parameters pointer
|
| + //
|
| + // Returns pointer to result object in x0.
|
| +
|
| + // Make an untagged copy of the parameter count.
|
| + // Note: arg_count_smi is an alias of param_count_smi.
|
| + Register function = x1;
|
| + Register arg_count_smi = x2;
|
| + Register param_count_smi = x2;
|
| + Register recv_arg = x3;
|
| + Register param_count = x7;
|
| + __ SmiUntag(param_count, param_count_smi);
|
| +
|
| + // Check if the calling frame is an arguments adaptor frame.
|
| + Register caller_fp = x11;
|
| + Register caller_ctx = x12;
|
| + Label runtime;
|
| + Label adaptor_frame, try_allocate;
|
| + __ Ldr(caller_fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
|
| + __ Ldr(caller_ctx, MemOperand(caller_fp,
|
| + StandardFrameConstants::kContextOffset));
|
| + __ Cmp(caller_ctx, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
|
| + __ B(eq, &adaptor_frame);
|
| +
|
| + // No adaptor, parameter count = argument count.
|
| +
|
| + // x1 function function pointer
|
| + // x2 arg_count_smi number of function arguments (smi)
|
| + // x3 recv_arg pointer to receiver arguments
|
| + // x4 mapped_params number of mapped params, min(params, args) (uninit)
|
| + // x7 param_count number of function parameters
|
| + // x11 caller_fp caller's frame pointer
|
| + // x14 arg_count number of function arguments (uninit)
|
| +
|
| + Register arg_count = x14;
|
| + Register mapped_params = x4;
|
| + __ Mov(arg_count, param_count);
|
| + __ Mov(mapped_params, param_count);
|
| + __ B(&try_allocate);
|
| +
|
| + // We have an adaptor frame. Patch the parameters pointer.
|
| + __ Bind(&adaptor_frame);
|
| + __ Ldr(arg_count_smi,
|
| + MemOperand(caller_fp,
|
| + ArgumentsAdaptorFrameConstants::kLengthOffset));
|
| + __ SmiUntag(arg_count, arg_count_smi);
|
| + __ Add(x10, caller_fp, Operand(arg_count, LSL, kPointerSizeLog2));
|
| + __ Add(recv_arg, x10, StandardFrameConstants::kCallerSPOffset);
|
| +
|
| + // Compute the mapped parameter count = min(param_count, arg_count)
|
| + __ Cmp(param_count, arg_count);
|
| + __ Csel(mapped_params, param_count, arg_count, lt);
|
| +
|
| + __ Bind(&try_allocate);
|
| +
|
| + // x0 alloc_obj pointer to allocated objects: param map, backing
|
| + // store, arguments (uninit)
|
| + // x1 function function pointer
|
| + // x2 arg_count_smi number of function arguments (smi)
|
| + // x3 recv_arg pointer to receiver arguments
|
| + // x4 mapped_params number of mapped parameters, min(params, args)
|
| + // x7 param_count number of function parameters
|
| + // x10 size size of objects to allocate (uninit)
|
| + // x14 arg_count number of function arguments
|
| +
|
| + // Compute the size of backing store, parameter map, and arguments object.
|
| + // 1. Parameter map, has two extra words containing context and backing
|
| + // store.
|
| + const int kParameterMapHeaderSize =
|
| + FixedArray::kHeaderSize + 2 * kPointerSize;
|
| +
|
| + // Calculate the parameter map size, assuming it exists.
|
| + Register size = x10;
|
| + __ Mov(size, Operand(mapped_params, LSL, kPointerSizeLog2));
|
| + __ Add(size, size, kParameterMapHeaderSize);
|
| +
|
| + // If there are no mapped parameters, set the running size total to zero.
|
| + // Otherwise, use the parameter map size calculated earlier.
|
| + __ Cmp(mapped_params, 0);
|
| + __ CzeroX(size, eq);
|
| +
|
| + // 2. Add the size of the backing store and arguments object.
|
| + __ Add(size, size, Operand(arg_count, LSL, kPointerSizeLog2));
|
| + __ Add(size, size, FixedArray::kHeaderSize + JSSloppyArgumentsObject::kSize);
|
| +
|
| + // Do the allocation of all three objects in one go. Assign this to x0, as it
|
| + // will be returned to the caller.
|
| + Register alloc_obj = x0;
|
| + __ Allocate(size, alloc_obj, x11, x12, &runtime, TAG_OBJECT);
|
| +
|
| + // Get the arguments boilerplate from the current (global) context.
|
| +
|
| + // x0 alloc_obj pointer to allocated objects (param map, backing
|
| + // store, arguments)
|
| + // x1 function function pointer
|
| + // x2 arg_count_smi number of function arguments (smi)
|
| + // x3 recv_arg pointer to receiver arguments
|
| + // x4 mapped_params number of mapped parameters, min(params, args)
|
| + // x7 param_count number of function parameters
|
| + // x11 sloppy_args_map offset to args (or aliased args) map (uninit)
|
| + // x14 arg_count number of function arguments
|
| +
|
| + Register global_ctx = x10;
|
| + Register sloppy_args_map = x11;
|
| + Register aliased_args_map = x10;
|
| + __ Ldr(global_ctx, NativeContextMemOperand());
|
| +
|
| + __ Ldr(sloppy_args_map,
|
| + ContextMemOperand(global_ctx, Context::SLOPPY_ARGUMENTS_MAP_INDEX));
|
| + __ Ldr(
|
| + aliased_args_map,
|
| + ContextMemOperand(global_ctx, Context::FAST_ALIASED_ARGUMENTS_MAP_INDEX));
|
| + __ Cmp(mapped_params, 0);
|
| + __ CmovX(sloppy_args_map, aliased_args_map, ne);
|
| +
|
| + // Copy the JS object part.
|
| + __ Str(sloppy_args_map, FieldMemOperand(alloc_obj, JSObject::kMapOffset));
|
| + __ LoadRoot(x10, Heap::kEmptyFixedArrayRootIndex);
|
| + __ Str(x10, FieldMemOperand(alloc_obj, JSObject::kPropertiesOffset));
|
| + __ Str(x10, FieldMemOperand(alloc_obj, JSObject::kElementsOffset));
|
| +
|
| + // Set up the callee in-object property.
|
| + __ AssertNotSmi(function);
|
| + __ Str(function,
|
| + FieldMemOperand(alloc_obj, JSSloppyArgumentsObject::kCalleeOffset));
|
| +
|
| + // Use the length and set that as an in-object property.
|
| + __ Str(arg_count_smi,
|
| + FieldMemOperand(alloc_obj, JSSloppyArgumentsObject::kLengthOffset));
|
| +
|
| + // Set up the elements pointer in the allocated arguments object.
|
| + // If we allocated a parameter map, "elements" will point there, otherwise
|
| + // it will point to the backing store.
|
| +
|
| + // x0 alloc_obj pointer to allocated objects (param map, backing
|
| + // store, arguments)
|
| + // x1 function function pointer
|
| + // x2 arg_count_smi number of function arguments (smi)
|
| + // x3 recv_arg pointer to receiver arguments
|
| + // x4 mapped_params number of mapped parameters, min(params, args)
|
| + // x5 elements pointer to parameter map or backing store (uninit)
|
| + // x6 backing_store pointer to backing store (uninit)
|
| + // x7 param_count number of function parameters
|
| + // x14 arg_count number of function arguments
|
| +
|
| + Register elements = x5;
|
| + __ Add(elements, alloc_obj, JSSloppyArgumentsObject::kSize);
|
| + __ Str(elements, FieldMemOperand(alloc_obj, JSObject::kElementsOffset));
|
| +
|
| + // Initialize parameter map. If there are no mapped arguments, we're done.
|
| + Label skip_parameter_map;
|
| + __ Cmp(mapped_params, 0);
|
| + // Set up backing store address, because it is needed later for filling in
|
| + // the unmapped arguments.
|
| + Register backing_store = x6;
|
| + __ CmovX(backing_store, elements, eq);
|
| + __ B(eq, &skip_parameter_map);
|
| +
|
| + __ LoadRoot(x10, Heap::kSloppyArgumentsElementsMapRootIndex);
|
| + __ Str(x10, FieldMemOperand(elements, FixedArray::kMapOffset));
|
| + __ Add(x10, mapped_params, 2);
|
| + __ SmiTag(x10);
|
| + __ Str(x10, FieldMemOperand(elements, FixedArray::kLengthOffset));
|
| + __ Str(cp, FieldMemOperand(elements,
|
| + FixedArray::kHeaderSize + 0 * kPointerSize));
|
| + __ Add(x10, elements, Operand(mapped_params, LSL, kPointerSizeLog2));
|
| + __ Add(x10, x10, kParameterMapHeaderSize);
|
| + __ Str(x10, FieldMemOperand(elements,
|
| + FixedArray::kHeaderSize + 1 * kPointerSize));
|
| +
|
| + // Copy the parameter slots and the holes in the arguments.
|
| + // We need to fill in mapped_parameter_count slots. Then index the context,
|
| + // where parameters are stored in reverse order, at:
|
| + //
|
| + // MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS + parameter_count - 1
|
| + //
|
| + // The mapped parameter thus needs to get indices:
|
| + //
|
| + // MIN_CONTEXT_SLOTS + parameter_count - 1 ..
|
| + // MIN_CONTEXT_SLOTS + parameter_count - mapped_parameter_count
|
| + //
|
| + // We loop from right to left.
|
| +
|
| + // x0 alloc_obj pointer to allocated objects (param map, backing
|
| + // store, arguments)
|
| + // x1 function function pointer
|
| + // x2 arg_count_smi number of function arguments (smi)
|
| + // x3 recv_arg pointer to receiver arguments
|
| + // x4 mapped_params number of mapped parameters, min(params, args)
|
| + // x5 elements pointer to parameter map or backing store (uninit)
|
| + // x6 backing_store pointer to backing store (uninit)
|
| + // x7 param_count number of function parameters
|
| + // x11 loop_count parameter loop counter (uninit)
|
| + // x12 index parameter index (smi, uninit)
|
| + // x13 the_hole hole value (uninit)
|
| + // x14 arg_count number of function arguments
|
| +
|
| + Register loop_count = x11;
|
| + Register index = x12;
|
| + Register the_hole = x13;
|
| + Label parameters_loop, parameters_test;
|
| + __ Mov(loop_count, mapped_params);
|
| + __ Add(index, param_count, static_cast<int>(Context::MIN_CONTEXT_SLOTS));
|
| + __ Sub(index, index, mapped_params);
|
| + __ SmiTag(index);
|
| + __ LoadRoot(the_hole, Heap::kTheHoleValueRootIndex);
|
| + __ Add(backing_store, elements, Operand(loop_count, LSL, kPointerSizeLog2));
|
| + __ Add(backing_store, backing_store, kParameterMapHeaderSize);
|
| +
|
| + __ B(¶meters_test);
|
| +
|
| + __ Bind(¶meters_loop);
|
| + __ Sub(loop_count, loop_count, 1);
|
| + __ Mov(x10, Operand(loop_count, LSL, kPointerSizeLog2));
|
| + __ Add(x10, x10, kParameterMapHeaderSize - kHeapObjectTag);
|
| + __ Str(index, MemOperand(elements, x10));
|
| + __ Sub(x10, x10, kParameterMapHeaderSize - FixedArray::kHeaderSize);
|
| + __ Str(the_hole, MemOperand(backing_store, x10));
|
| + __ Add(index, index, Smi::FromInt(1));
|
| + __ Bind(¶meters_test);
|
| + __ Cbnz(loop_count, ¶meters_loop);
|
| +
|
| + __ Bind(&skip_parameter_map);
|
| + // Copy arguments header and remaining slots (if there are any.)
|
| + __ LoadRoot(x10, Heap::kFixedArrayMapRootIndex);
|
| + __ Str(x10, FieldMemOperand(backing_store, FixedArray::kMapOffset));
|
| + __ Str(arg_count_smi, FieldMemOperand(backing_store,
|
| + FixedArray::kLengthOffset));
|
| +
|
| + // x0 alloc_obj pointer to allocated objects (param map, backing
|
| + // store, arguments)
|
| + // x1 function function pointer
|
| + // x2 arg_count_smi number of function arguments (smi)
|
| + // x3 recv_arg pointer to receiver arguments
|
| + // x4 mapped_params number of mapped parameters, min(params, args)
|
| + // x6 backing_store pointer to backing store (uninit)
|
| + // x14 arg_count number of function arguments
|
| +
|
| + Label arguments_loop, arguments_test;
|
| + __ Mov(x10, mapped_params);
|
| + __ Sub(recv_arg, recv_arg, Operand(x10, LSL, kPointerSizeLog2));
|
| + __ B(&arguments_test);
|
| +
|
| + __ Bind(&arguments_loop);
|
| + __ Sub(recv_arg, recv_arg, kPointerSize);
|
| + __ Ldr(x11, MemOperand(recv_arg));
|
| + __ Add(x12, backing_store, Operand(x10, LSL, kPointerSizeLog2));
|
| + __ Str(x11, FieldMemOperand(x12, FixedArray::kHeaderSize));
|
| + __ Add(x10, x10, 1);
|
| +
|
| + __ Bind(&arguments_test);
|
| + __ Cmp(x10, arg_count);
|
| + __ B(lt, &arguments_loop);
|
| +
|
| + __ Ret();
|
| +
|
| + // Do the runtime call to allocate the arguments object.
|
| + __ Bind(&runtime);
|
| + __ Push(function, recv_arg, arg_count_smi);
|
| + __ TailCallRuntime(Runtime::kNewSloppyArguments);
|
| +}
|
| +
|
| +
|
| void FastNewStrictArgumentsStub::Generate(MacroAssembler* masm) {
|
| // ----------- S t a t e -------------
|
| // -- x1 : function
|
|
|