Index: src/core/SkColorSpace.cpp |
diff --git a/src/core/SkColorSpace.cpp b/src/core/SkColorSpace.cpp |
new file mode 100644 |
index 0000000000000000000000000000000000000000..bbb03c640a4cda324d1a40a802b390fc1ff61c97 |
--- /dev/null |
+++ b/src/core/SkColorSpace.cpp |
@@ -0,0 +1,244 @@ |
+/* |
+ * Copyright 2016 Google Inc. |
+ * |
+ * Use of this source code is governed by a BSD-style license that can be |
+ * found in the LICENSE file. |
+ */ |
+ |
+#include "SkAtomics.h" |
+#include "SkColorSpace.h" |
+ |
+static inline bool SkFloatIsFinite(float x) { return 0 == x * 0; } |
+ |
+// |
+// SkFloat3x3 |
+// |
+// In memory order, values are a, b, c, d, e, f, g, h, i |
+// |
+// When applied to a color component vector (e.g. [ r, r, r ] or [ g, g, g ] we do |
+// |
+// [ r r r ] * [ a b c ] + [ g g g ] * [ d e f ] + [ b b b ] * [ g h i ] |
+// |
+// Thus in our point-on-the-right notation, the matrix looks like |
+// |
+// [ a d g ] [ r ] |
+// [ b e h ] * [ g ] |
+// [ c f i ] [ b ] |
+// |
+static SkFloat3x3 concat(const SkFloat3x3& left, const SkFloat3x3& rite) { |
+ SkFloat3x3 result; |
+ for (int row = 0; row < 3; ++row) { |
+ for (int col = 0; col < 3; ++col) { |
+ double tmp = 0; |
+ for (int i = 0; i < 3; ++i) { |
+ tmp += (double)left.fMat[row + i * 3] * rite.fMat[i + col * 3]; |
+ } |
+ result.fMat[row + col * 3] = (double)tmp; |
+ } |
+ } |
+ return result; |
+} |
+ |
+static double det(const SkFloat3x3& m) { |
+ return (double)m.fMat[0] * m.fMat[4] * m.fMat[8] + |
+ (double)m.fMat[3] * m.fMat[7] * m.fMat[2] + |
+ (double)m.fMat[6] * m.fMat[1] * m.fMat[5] - |
+ (double)m.fMat[0] * m.fMat[7] * m.fMat[5] - |
+ (double)m.fMat[3] * m.fMat[1] * m.fMat[8] - |
+ (double)m.fMat[6] * m.fMat[4] * m.fMat[2]; |
+} |
+ |
+static double det2x2(const SkFloat3x3& m, int a, int b, int c, int d) { |
+ return (double)m.fMat[a] * m.fMat[b] - (double)m.fMat[c] * m.fMat[d]; |
+} |
+ |
+static SkFloat3x3 invert(const SkFloat3x3& m) { |
+ double d = det(m); |
+ SkASSERT(SkFloatIsFinite((float)d)); |
+ double scale = 1 / d; |
+ SkASSERT(SkFloatIsFinite((float)scale)); |
+ |
+ return {{ |
+ (float)(scale * det2x2(m, 4, 8, 5, 7)), |
+ (float)(scale * det2x2(m, 7, 2, 8, 1)), |
+ (float)(scale * det2x2(m, 1, 5, 2, 4)), |
+ |
+ (float)(scale * det2x2(m, 6, 5, 8, 3)), |
+ (float)(scale * det2x2(m, 0, 8, 2, 6)), |
+ (float)(scale * det2x2(m, 3, 2, 5, 0)), |
+ |
+ (float)(scale * det2x2(m, 3, 7, 4, 6)), |
+ (float)(scale * det2x2(m, 6, 1, 7, 0)), |
+ (float)(scale * det2x2(m, 0, 4, 1, 3)), |
+ }}; |
+} |
+ |
+void SkFloat3::dump() const { |
+ SkDebugf("[%7.4f %7.4f %7.4f]\n", fVec[0], fVec[1], fVec[2]); |
+} |
+ |
+void SkFloat3x3::dump() const { |
+ SkDebugf("[%7.4f %7.4f %7.4f] [%7.4f %7.4f %7.4f] [%7.4f %7.4f %7.4f]\n", |
+ fMat[0], fMat[1], fMat[2], |
+ fMat[3], fMat[4], fMat[5], |
+ fMat[6], fMat[7], fMat[8]); |
+} |
+ |
+////////////////////////////////////////////////////////////////////////////////////////////////// |
+ |
+static int32_t gUniqueColorSpaceID; |
+ |
+SkColorSpace::SkColorSpace(const SkFloat3x3& toXYZD50, const SkFloat3& gamma, Named named) |
+ : fToXYZD50(toXYZD50) |
+ , fGamma(gamma) |
+ , fUniqueID(sk_atomic_inc(&gUniqueColorSpaceID)) |
+ , fNamed(named) |
+{ |
+ for (int i = 0; i < 3; ++i) { |
+ SkASSERT(SkFloatIsFinite(gamma.fVec[i])); |
+ for (int j = 0; j < 3; ++j) { |
+ SkASSERT(SkFloatIsFinite(toXYZD50.fMat[3*i + j])); |
+ } |
+ } |
+} |
+ |
+SkColorSpace* SkColorSpace::NewRGB(const SkFloat3x3& toXYZD50, const SkFloat3& gamma) { |
+ for (int i = 0; i < 3; ++i) { |
+ if (!SkFloatIsFinite(gamma.fVec[i]) || gamma.fVec[i] < 0) { |
+ return nullptr; |
+ } |
+ for (int j = 0; j < 3; ++j) { |
+ if (!SkFloatIsFinite(toXYZD50.fMat[3*i + j])) { |
+ return nullptr; |
+ } |
+ } |
+ } |
+ |
+ // check the matrix for invertibility |
+ float d = det(toXYZD50); |
+ if (!SkFloatIsFinite(d) || !SkFloatIsFinite(1 / d)) { |
+ return nullptr; |
+ } |
+ |
+ return new SkColorSpace(toXYZD50, gamma, kUnknown_Named); |
+} |
+ |
+void SkColorSpace::dump() const { |
+ fToXYZD50.dump(); |
+ fGamma.dump(); |
+} |
+ |
+////////////////////////////////////////////////////////////////////////////////////////////////// |
+ |
+const SkFloat3 gDevice_gamma {{ 0, 0, 0 }}; |
+const SkFloat3x3 gDevice_toXYZD50 {{ |
+ 1, 0, 0, |
+ 0, 1, 0, |
+ 0, 0, 1 |
+}}; |
+ |
+const SkFloat3 gSRGB_gamma {{ 2.2f, 2.2f, 2.2f }}; |
+const SkFloat3x3 gSRGB_toXYZD50 {{ |
+ 0.4358f, 0.2224f, 0.0139f, // * R |
+ 0.3853f, 0.7170f, 0.0971f, // * G |
+ 0.1430f, 0.0606f, 0.7139f, // * B |
+}}; |
+ |
+SkColorSpace* SkColorSpace::NewNamed(Named named) { |
+ switch (named) { |
+ case kDevice_Named: |
+ return new SkColorSpace(gDevice_toXYZD50, gDevice_gamma, kDevice_Named); |
+ case kSRGB_Named: |
+ return new SkColorSpace(gSRGB_toXYZD50, gSRGB_gamma, kSRGB_Named); |
+ default: |
+ break; |
+ } |
+ return nullptr; |
+} |
+ |
+/////////////////////////////////////////////////////////////////////////////////////////////////// |
+ |
+SkColorSpace::Result SkColorSpace::Concat(const SkColorSpace* src, const SkColorSpace* dst, |
+ SkFloat3x3* result) { |
+ if (!src || !dst || (src->named() == kDevice_Named) || (src->named() == dst->named())) { |
+ if (result) { |
+ *result = {{ 1, 0, 0, 0, 1, 0, 0, 0, 1 }}; |
+ } |
+ return kIdentity_Result; |
+ } |
+ if (result) { |
+ *result = concat(src->fToXYZD50, invert(dst->fToXYZD50)); |
+ } |
+ return kNormal_Result; |
+} |
+ |
+#include "SkColor.h" |
+#include "SkNx.h" |
+ |
+void SkApply3x3ToPM4f(const SkFloat3x3& m, const SkPM4f src[], SkPM4f dst[], int count) { |
+ SkASSERT(1 == SkPM4f::G); |
+ SkASSERT(3 == SkPM4f::A); |
+ |
+ Sk4f cr, cg, cb; |
+ cg = Sk4f::Load(m.fMat + 3); |
+ if (0 == SkPM4f::R) { |
+ SkASSERT(2 == SkPM4f::B); |
+ cr = Sk4f::Load(m.fMat + 0); |
+ cb = Sk4f(m.fMat[6], m.fMat[7], m.fMat[8], 0); |
+ } else { |
+ SkASSERT(0 == SkPM4f::B); |
+ SkASSERT(2 == SkPM4f::R); |
+ cb = Sk4f::Load(m.fMat + 0); |
+ cr = Sk4f(m.fMat[6], m.fMat[7], m.fMat[8], 0); |
+ } |
+ cr = cr * Sk4f(1, 1, 1, 0); |
+ cg = cg * Sk4f(1, 1, 1, 0); |
+ cb = cb * Sk4f(1, 1, 1, 0); |
+ |
+ for (int i = 0; i < count; ++i) { |
+ Sk4f r = Sk4f(src[i].fVec[SkPM4f::R]); |
+ Sk4f g = Sk4f(src[i].fVec[SkPM4f::G]); |
+ Sk4f b = Sk4f(src[i].fVec[SkPM4f::B]); |
+ Sk4f a = Sk4f(0, 0, 0, src[i].fVec[SkPM4f::A]); |
+ (cr * r + cg * g + cb * b + a).store(&dst[i]); |
+ } |
+} |
+ |
+/////////////////////////////////////////////////////////////////////////////////////////////////// |
+ |
+void SkColorSpace::Test() { |
+ SkFloat3x3 mat {{ 2, 0, 0, 0, 3, 0, 0, 0, 4 }}; |
+ SkFloat3x3 inv = invert(mat); |
+ mat.dump(); |
+ inv.dump(); |
+ concat(mat, inv).dump(); |
+ concat(inv, mat).dump(); |
+ SkDebugf("\n"); |
+ |
+ mat = gSRGB_toXYZD50; |
+ inv = invert(mat); |
+ mat.dump(); |
+ inv.dump(); |
+ concat(mat, inv).dump(); |
+ concat(inv, mat).dump(); |
+ SkDebugf("\n"); |
+ |
+ SkAutoTUnref<SkColorSpace> cs0(SkColorSpace::NewNamed(SkColorSpace::kSRGB_Named)); |
+ SkAutoTUnref<SkColorSpace> cs1(SkColorSpace::NewNamed(SkColorSpace::kSRGB_Named)); |
+ |
+ cs0->dump(); |
+ cs1->dump(); |
+ SkFloat3x3 xform; |
+ (void)SkColorSpace::Concat(cs0, cs1, &xform); |
+ xform.dump(); |
+ SkDebugf("\n"); |
+} |
+ |
+// D65 white point of Rec. 709 [8] are: |
+// |
+// D65 white-point in unit luminance XYZ = 0.9505, 1.0000, 1.0890 |
+// |
+// R G B white |
+// x 0.640 0.300 0.150 0.3127 |
+// y 0.330 0.600 0.060 0.3290 |
+// z 0.030 0.100 0.790 0.3582 |