| Index: src/core/SkHalf.h
|
| diff --git a/src/core/SkHalf.h b/src/core/SkHalf.h
|
| index baf86fda3b394905067f0dba06db9c3da8cb7a04..7e41c6ff0c6494022c0f99649ccd88b3a46499c7 100644
|
| --- a/src/core/SkHalf.h
|
| +++ b/src/core/SkHalf.h
|
| @@ -8,7 +8,6 @@
|
| #ifndef SkHalf_DEFINED
|
| #define SkHalf_DEFINED
|
|
|
| -#include "SkNx.h"
|
| #include "SkTypes.h"
|
|
|
| // 16-bit floating point value
|
| @@ -24,66 +23,4 @@
|
| float SkHalfToFloat(SkHalf h);
|
| SkHalf SkFloatToHalf(float f);
|
|
|
| -// Convert between half and single precision floating point, but pull any dirty
|
| -// trick we can to make it faster as long as it's correct enough for values in [0,1].
|
| -static inline Sk4f SkHalfToFloat_01(uint64_t);
|
| -static inline uint64_t SkFloatToHalf_01(const Sk4f&);
|
| -
|
| -// ~~~~~~~~~~~ impl ~~~~~~~~~~~~~~ //
|
| -
|
| -// Like the serial versions in SkHalf.cpp, these are based on
|
| -// https://fgiesen.wordpress.com/2012/03/28/half-to-float-done-quic/
|
| -
|
| -// TODO: NEON versions
|
| -static inline Sk4f SkHalfToFloat_01(uint64_t hs) {
|
| -#if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2
|
| - // Load our 16-bit floats into the bottom 16 bits of each 32-bit lane, with zeroes on top.
|
| - __m128i h = _mm_unpacklo_epi16(_mm_loadl_epi64((const __m128i*)&hs), _mm_setzero_si128());
|
| -
|
| - // Fork into two paths, depending on whether the 16-bit float is denormalized.
|
| - __m128 is_denorm = _mm_castsi128_ps(_mm_cmplt_epi32(h, _mm_set1_epi32(0x0400)));
|
| -
|
| - // TODO: figure out, explain
|
| - const __m128 half = _mm_set1_ps(0.5f);
|
| - __m128 denorm = _mm_sub_ps(_mm_or_ps(_mm_castsi128_ps(h), half), half);
|
| -
|
| - // If we're normalized, just shift ourselves so the exponent/mantissa dividing line
|
| - // is correct, then re-bias the exponent from 15 to 127.
|
| - __m128 norm = _mm_castsi128_ps(_mm_add_epi32(_mm_slli_epi32(h, 13),
|
| - _mm_set1_epi32((127-15) << 23)));
|
| -
|
| - return _mm_or_ps(_mm_and_ps (is_denorm, denorm),
|
| - _mm_andnot_ps(is_denorm, norm));
|
| -#else
|
| - float fs[4];
|
| - for (int i = 0; i < 4; i++) {
|
| - fs[i] = SkHalfToFloat(hs >> (i*16));
|
| - }
|
| - return Sk4f::Load(fs);
|
| #endif
|
| -}
|
| -
|
| -static inline uint64_t SkFloatToHalf_01(const Sk4f& fs) {
|
| -#if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2
|
| - // Scale our floats down by a tiny power of 2 to pull up our mantissa bits,
|
| - // then shift back down to 16-bit float layout. This doesn't round, so can be 1 bit small.
|
| - // TODO: understand better. Why this scale factor?
|
| - const __m128 scale = _mm_castsi128_ps(_mm_set1_epi32(15 << 23));
|
| - __m128i h = _mm_srli_epi32(_mm_castps_si128(_mm_mul_ps(fs.fVec, scale)), 13);
|
| -
|
| - uint64_t r;
|
| - _mm_storel_epi64((__m128i*)&r, _mm_packs_epi32(h,h));
|
| - return r;
|
| -#else
|
| - SkHalf hs[4];
|
| - for (int i = 0; i < 4; i++) {
|
| - hs[i] = SkFloatToHalf(fs[i]);
|
| - }
|
| - return (uint64_t)hs[3] << 48
|
| - | (uint64_t)hs[2] << 32
|
| - | (uint64_t)hs[1] << 16
|
| - | (uint64_t)hs[0] << 0;
|
| -#endif
|
| -}
|
| -
|
| -#endif
|
|
|