Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(515)

Unified Diff: lib/Target/JSBackend/JSBackend.cpp

Issue 1692803002: Remove Emscripten support (Closed) Base URL: https://chromium.googlesource.com/a/native_client/pnacl-llvm.git@master
Patch Set: Created 4 years, 10 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « lib/Target/JSBackend/JS.h ('k') | lib/Target/JSBackend/JSTargetMachine.h » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: lib/Target/JSBackend/JSBackend.cpp
diff --git a/lib/Target/JSBackend/JSBackend.cpp b/lib/Target/JSBackend/JSBackend.cpp
deleted file mode 100644
index b0c374e101d00ed1aa7eaa4c0b3f7868ac3540c3..0000000000000000000000000000000000000000
--- a/lib/Target/JSBackend/JSBackend.cpp
+++ /dev/null
@@ -1,2984 +0,0 @@
-//===-- JSBackend.cpp - Library for converting LLVM code to JS -----===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements compiling of LLVM IR, which is assumed to have been
-// simplified using the PNaCl passes, i64 legalization, and other necessary
-// transformations, into JavaScript in asm.js format, suitable for passing
-// to emscripten for final processing.
-//
-//===----------------------------------------------------------------------===//
-
-#include "JSTargetMachine.h"
-#include "MCTargetDesc/JSBackendMCTargetDesc.h"
-#include "AllocaManager.h"
-#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/ADT/SmallString.h"
-#include "llvm/ADT/StringExtras.h"
-#include "llvm/ADT/STLExtras.h"
-#include "llvm/Config/config.h"
-#include "llvm/IR/Constants.h"
-#include "llvm/IR/DerivedTypes.h"
-#include "llvm/IR/InlineAsm.h"
-#include "llvm/IR/Instruction.h"
-#include "llvm/IR/Instructions.h"
-#include "llvm/IR/Intrinsics.h"
-#include "llvm/IR/Module.h"
-#include "llvm/IR/Operator.h"
-#include "llvm/Pass.h"
-#include "llvm/IR/LegacyPassManager.h"
-#include "llvm/IR/CallSite.h"
-#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/IR/GetElementPtrTypeIterator.h"
-#include "llvm/Support/MathExtras.h"
-#include "llvm/Support/TargetRegistry.h"
-#include "llvm/IR/DebugInfo.h"
-#include "llvm/Transforms/NaCl.h"
-#include <algorithm>
-#include <cstdio>
-#include <map>
-#include <set> // TODO: unordered_set?
-using namespace llvm;
-
-#include <OptPasses.h>
-#include <Relooper.h>
-
-#ifdef NDEBUG
-#undef assert
-#define assert(x) { if (!(x)) report_fatal_error(#x); }
-#endif
-
-raw_ostream &prettyWarning() {
- errs().changeColor(raw_ostream::YELLOW);
- errs() << "warning:";
- errs().resetColor();
- errs() << " ";
- return errs();
-}
-
-static cl::opt<bool>
-PreciseF32("emscripten-precise-f32",
- cl::desc("Enables Math.fround usage to implement precise float32 semantics and performance (see emscripten PRECISE_F32 option)"),
- cl::init(false));
-
-static cl::opt<bool>
-WarnOnUnaligned("emscripten-warn-unaligned",
- cl::desc("Warns about unaligned loads and stores (which can negatively affect performance)"),
- cl::init(false));
-
-static cl::opt<int>
-ReservedFunctionPointers("emscripten-reserved-function-pointers",
- cl::desc("Number of reserved slots in function tables for functions to be added at runtime (see emscripten RESERVED_FUNCTION_POINTERS option)"),
- cl::init(0));
-
-static cl::opt<int>
-EmscriptenAssertions("emscripten-assertions",
- cl::desc("Additional JS-specific assertions (see emscripten ASSERTIONS)"),
- cl::init(0));
-
-static cl::opt<bool>
-NoAliasingFunctionPointers("emscripten-no-aliasing-function-pointers",
- cl::desc("Forces function pointers to not alias (this is more correct, but rarely needed, and has the cost of much larger function tables; it is useful for debugging though; see emscripten ALIASING_FUNCTION_POINTERS option)"),
- cl::init(false));
-
-static cl::opt<int>
-GlobalBase("emscripten-global-base",
- cl::desc("Where global variables start out in memory (see emscripten GLOBAL_BASE option)"),
- cl::init(8));
-
-
-extern "C" void LLVMInitializeJSBackendTarget() {
- // Register the target.
- RegisterTargetMachine<JSTargetMachine> X(TheJSBackendTarget);
-}
-
-namespace {
- #define ASM_SIGNED 0
- #define ASM_UNSIGNED 1
- #define ASM_NONSPECIFIC 2 // nonspecific means to not differentiate ints. |0 for all, regardless of size and sign
- #define ASM_FFI_IN 4 // FFI return values are limited to things that work in ffis
- #define ASM_FFI_OUT 8 // params to FFIs are limited to things that work in ffis
- #define ASM_MUST_CAST 16 // this value must be explicitly cast (or be an integer constant)
- typedef unsigned AsmCast;
-
- const char *const SIMDLane = "XYZW";
- const char *const simdLane = "xyzw";
-
- typedef std::map<const Value*,std::string> ValueMap;
- typedef std::set<std::string> NameSet;
- typedef std::vector<unsigned char> HeapData;
- typedef std::pair<unsigned, unsigned> Address;
- typedef std::map<std::string, Type *> VarMap;
- typedef std::map<std::string, Address> GlobalAddressMap;
- typedef std::vector<std::string> FunctionTable;
- typedef std::map<std::string, FunctionTable> FunctionTableMap;
- typedef std::map<std::string, std::string> StringMap;
- typedef std::map<std::string, unsigned> NameIntMap;
- typedef std::map<const BasicBlock*, unsigned> BlockIndexMap;
- typedef std::map<const Function*, BlockIndexMap> BlockAddressMap;
- typedef std::map<const BasicBlock*, Block*> LLVMToRelooperMap;
-
- /// JSWriter - This class is the main chunk of code that converts an LLVM
- /// module to JavaScript.
- class JSWriter : public ModulePass {
- raw_pwrite_stream &Out;
- const Module *TheModule;
- unsigned UniqueNum;
- unsigned NextFunctionIndex; // used with NoAliasingFunctionPointers
- ValueMap ValueNames;
- VarMap UsedVars;
- AllocaManager Allocas;
- HeapData GlobalData8;
- HeapData GlobalData32;
- HeapData GlobalData64;
- GlobalAddressMap GlobalAddresses;
- NameSet Externals; // vars
- NameSet Declares; // funcs
- StringMap Redirects; // library function redirects actually used, needed for wrapper funcs in tables
- std::string PostSets;
- NameIntMap NamedGlobals; // globals that we export as metadata to JS, so it can access them by name
- std::map<std::string, unsigned> IndexedFunctions; // name -> index
- FunctionTableMap FunctionTables; // sig => list of functions
- std::vector<std::string> GlobalInitializers;
- std::vector<std::string> Exports; // additional exports
- BlockAddressMap BlockAddresses;
-
- std::string CantValidate;
- bool UsesSIMD;
- int InvokeState; // cycles between 0, 1 after preInvoke, 2 after call, 0 again after postInvoke. hackish, no argument there.
- CodeGenOpt::Level OptLevel;
- const DataLayout *DL;
- bool StackBumped;
-
- #include "CallHandlers.h"
-
- public:
- static char ID;
- JSWriter(raw_pwrite_stream &o, CodeGenOpt::Level OptLevel)
- : ModulePass(ID), Out(o), UniqueNum(0), NextFunctionIndex(0), CantValidate(""), UsesSIMD(false), InvokeState(0),
- OptLevel(OptLevel), StackBumped(false) {}
-
- virtual const char *getPassName() const { return "JavaScript backend"; }
-
- virtual bool runOnModule(Module &M);
-
- virtual void getAnalysisUsage(AnalysisUsage &AU) const {
- AU.setPreservesAll();
- ModulePass::getAnalysisUsage(AU);
- }
-
- void printProgram(const std::string& fname, const std::string& modName );
- void printModule(const std::string& fname, const std::string& modName );
- void printFunction(const Function *F);
-
- LLVM_ATTRIBUTE_NORETURN void error(const std::string& msg);
-
- raw_pwrite_stream& nl(raw_pwrite_stream &Out, int delta = 0);
-
- private:
- void printCommaSeparated(const HeapData v);
-
- // parsing of constants has two phases: calculate, and then emit
- void parseConstant(const std::string& name, const Constant* CV, bool calculate);
-
- #define MEM_ALIGN 8
- #define MEM_ALIGN_BITS 64
- #define STACK_ALIGN 16
- #define STACK_ALIGN_BITS 128
-
- unsigned stackAlign(unsigned x) {
- return RoundUpToAlignment(x, STACK_ALIGN);
- }
- std::string stackAlignStr(std::string x) {
- return "((" + x + "+" + utostr(STACK_ALIGN-1) + ")&-" + utostr(STACK_ALIGN) + ")";
- }
-
- HeapData *allocateAddress(const std::string& Name, unsigned Bits = MEM_ALIGN_BITS) {
- assert(Bits == 64); // FIXME when we use optimal alignments
- HeapData *GlobalData = NULL;
- switch (Bits) {
- case 8: GlobalData = &GlobalData8; break;
- case 32: GlobalData = &GlobalData32; break;
- case 64: GlobalData = &GlobalData64; break;
- default: llvm_unreachable("Unsupported data element size");
- }
- while (GlobalData->size() % (Bits/8) != 0) GlobalData->push_back(0);
- GlobalAddresses[Name] = Address(GlobalData->size(), Bits);
- return GlobalData;
- }
-
- // return the absolute offset of a global
- unsigned getGlobalAddress(const std::string &s) {
- GlobalAddressMap::const_iterator I = GlobalAddresses.find(s);
- if (I == GlobalAddresses.end()) {
- report_fatal_error("cannot find global address " + Twine(s));
- }
- Address a = I->second;
- assert(a.second == 64); // FIXME when we use optimal alignments
- unsigned Ret;
- switch (a.second) {
- case 64:
- assert((a.first + GlobalBase)%8 == 0);
- Ret = a.first + GlobalBase;
- break;
- case 32:
- assert((a.first + GlobalBase)%4 == 0);
- Ret = a.first + GlobalBase + GlobalData64.size();
- break;
- case 8:
- Ret = a.first + GlobalBase + GlobalData64.size() + GlobalData32.size();
- break;
- default:
- report_fatal_error("bad global address " + Twine(s) + ": "
- "count=" + Twine(a.first) + " "
- "elementsize=" + Twine(a.second));
- }
- return Ret;
- }
- // returns the internal offset inside the proper block: GlobalData8, 32, 64
- unsigned getRelativeGlobalAddress(const std::string &s) {
- GlobalAddressMap::const_iterator I = GlobalAddresses.find(s);
- if (I == GlobalAddresses.end()) {
- report_fatal_error("cannot find global address " + Twine(s));
- }
- Address a = I->second;
- return a.first;
- }
- char getFunctionSignatureLetter(Type *T) {
- if (T->isVoidTy()) return 'v';
- else if (T->isFloatingPointTy()) {
- if (PreciseF32 && T->isFloatTy()) {
- return 'f';
- } else {
- return 'd';
- }
- } else if (VectorType *VT = dyn_cast<VectorType>(T)) {
- checkVectorType(VT);
- if (VT->getElementType()->isIntegerTy()) {
- return 'I';
- } else {
- return 'F';
- }
- } else {
- return 'i';
- }
- }
- std::string getFunctionSignature(const FunctionType *F, const std::string *Name=NULL) {
- std::string Ret;
- Ret += getFunctionSignatureLetter(F->getReturnType());
- for (FunctionType::param_iterator AI = F->param_begin(),
- AE = F->param_end(); AI != AE; ++AI) {
- Ret += getFunctionSignatureLetter(*AI);
- }
- return Ret;
- }
- FunctionTable& ensureFunctionTable(const FunctionType *FT) {
- FunctionTable &Table = FunctionTables[getFunctionSignature(FT)];
- unsigned MinSize = ReservedFunctionPointers ? 2*(ReservedFunctionPointers+1) : 1; // each reserved slot must be 2-aligned
- while (Table.size() < MinSize) Table.push_back("0");
- return Table;
- }
- unsigned getFunctionIndex(const Function *F) {
- const std::string &Name = getJSName(F);
- if (IndexedFunctions.find(Name) != IndexedFunctions.end()) return IndexedFunctions[Name];
- std::string Sig = getFunctionSignature(F->getFunctionType(), &Name);
- FunctionTable& Table = ensureFunctionTable(F->getFunctionType());
- if (NoAliasingFunctionPointers) {
- while (Table.size() < NextFunctionIndex) Table.push_back("0");
- }
- // XXX this is wrong, it's always 1. but, that's fine in the ARM-like ABI
- // we have which allows unaligned func the one risk is if someone forces a
- // function to be aligned, and relies on that. Could do F->getAlignment()
- // instead.
- unsigned Alignment = 1;
- while (Table.size() % Alignment) Table.push_back("0");
- unsigned Index = Table.size();
- Table.push_back(Name);
- IndexedFunctions[Name] = Index;
- if (NoAliasingFunctionPointers) {
- NextFunctionIndex = Index+1;
- }
-
- // invoke the callHandler for this, if there is one. the function may only be indexed but never called directly, and we may need to do things in the handler
- CallHandlerMap::const_iterator CH = CallHandlers.find(Name);
- if (CH != CallHandlers.end()) {
- (this->*(CH->second))(NULL, Name, -1);
- }
-
- return Index;
- }
-
- unsigned getBlockAddress(const Function *F, const BasicBlock *BB) {
- BlockIndexMap& Blocks = BlockAddresses[F];
- if (Blocks.find(BB) == Blocks.end()) {
- Blocks[BB] = Blocks.size(); // block addresses start from 0
- }
- return Blocks[BB];
- }
-
- unsigned getBlockAddress(const BlockAddress *BA) {
- return getBlockAddress(BA->getFunction(), BA->getBasicBlock());
- }
-
- const Value *resolveFully(const Value *V) {
- bool More = true;
- while (More) {
- More = false;
- if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
- V = GA->getAliasee();
- More = true;
- }
- if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
- V = CE->getOperand(0); // ignore bitcasts
- More = true;
- }
- }
- return V;
- }
-
- // Return a constant we are about to write into a global as a numeric offset. If the
- // value is not known at compile time, emit a postSet to that location.
- unsigned getConstAsOffset(const Value *V, unsigned AbsoluteTarget) {
- V = resolveFully(V);
- if (const Function *F = dyn_cast<const Function>(V)) {
- return getFunctionIndex(F);
- } else if (const BlockAddress *BA = dyn_cast<const BlockAddress>(V)) {
- return getBlockAddress(BA);
- } else {
- if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
- if (!GV->hasInitializer()) {
- // We don't have a constant to emit here, so we must emit a postSet
- // All postsets are of external values, so they are pointers, hence 32-bit
- std::string Name = getOpName(V);
- Externals.insert(Name);
- PostSets += "HEAP32[" + utostr(AbsoluteTarget>>2) + "] = " + Name + ';';
- return 0; // emit zero in there for now, until the postSet
- }
- }
- return getGlobalAddress(V->getName().str());
- }
- }
-
- // Test whether the given value is known to be an absolute value or one we turn into an absolute value
- bool isAbsolute(const Value *P) {
- if (const IntToPtrInst *ITP = dyn_cast<IntToPtrInst>(P)) {
- return isa<ConstantInt>(ITP->getOperand(0));
- }
- if (isa<ConstantPointerNull>(P) || isa<UndefValue>(P)) {
- return true;
- }
- return false;
- }
-
- void checkVectorType(Type *T) {
- VectorType *VT = cast<VectorType>(T);
- // LLVM represents the results of vector comparison as vectors of i1. We
- // represent them as vectors of integers the size of the vector elements
- // of the compare that produced them.
- assert(VT->getElementType()->getPrimitiveSizeInBits() == 32 ||
- VT->getElementType()->getPrimitiveSizeInBits() == 1);
- assert(VT->getBitWidth() <= 128);
- assert(VT->getNumElements() <= 4);
- UsesSIMD = true;
- }
-
- std::string ensureCast(std::string S, Type *T, AsmCast sign) {
- if (sign & ASM_MUST_CAST) return getCast(S, T);
- return S;
- }
-
- std::string ftostr(const ConstantFP *CFP, AsmCast sign) {
- const APFloat &flt = CFP->getValueAPF();
-
- // Emscripten has its own spellings for infinity and NaN.
- if (flt.getCategory() == APFloat::fcInfinity) return ensureCast(flt.isNegative() ? "-inf" : "inf", CFP->getType(), sign);
- else if (flt.getCategory() == APFloat::fcNaN) return ensureCast("nan", CFP->getType(), sign);
-
- // Request 9 or 17 digits, aka FLT_DECIMAL_DIG or DBL_DECIMAL_DIG (our
- // long double is the the same as our double), to avoid rounding errors.
- SmallString<29> Str;
- flt.toString(Str, PreciseF32 && CFP->getType()->isFloatTy() ? 9 : 17);
-
- // asm.js considers literals to be floating-point literals when they contain a
- // dot, however our output may be processed by UglifyJS, which doesn't
- // currently preserve dots in all cases. Mark floating-point literals with
- // unary plus to force them to floating-point.
- if (APFloat(flt).roundToIntegral(APFloat::rmNearestTiesToEven) == APFloat::opOK) {
- return '+' + Str.str().str();
- }
-
- return Str.str().str();
- }
-
- std::string getPtrLoad(const Value* Ptr);
- std::string getHeapAccess(const std::string& Name, unsigned Bytes, bool Integer=true);
- std::string getPtrUse(const Value* Ptr);
- std::string getConstant(const Constant*, AsmCast sign=ASM_SIGNED);
- std::string getConstantVector(Type *ElementType, std::string x, std::string y, std::string z, std::string w);
- std::string getValueAsStr(const Value*, AsmCast sign=ASM_SIGNED);
- std::string getValueAsCastStr(const Value*, AsmCast sign=ASM_SIGNED);
- std::string getValueAsParenStr(const Value*);
- std::string getValueAsCastParenStr(const Value*, AsmCast sign=ASM_SIGNED);
-
- const std::string &getJSName(const Value* val);
-
- std::string getPhiCode(const BasicBlock *From, const BasicBlock *To);
-
- void printAttributes(const AttributeSet &PAL, const std::string &name);
- void printType(Type* Ty);
- void printTypes(const Module* M);
-
- std::string getAdHocAssign(const StringRef &, Type *);
- std::string getAssign(const Instruction *I);
- std::string getAssignIfNeeded(const Value *V);
- std::string getCast(const StringRef &, Type *, AsmCast sign=ASM_SIGNED);
- std::string getParenCast(const StringRef &, Type *, AsmCast sign=ASM_SIGNED);
- std::string getDoubleToInt(const StringRef &);
- std::string getIMul(const Value *, const Value *);
- std::string getLoad(const Instruction *I, const Value *P, Type *T, unsigned Alignment, char sep=';');
- std::string getStore(const Instruction *I, const Value *P, Type *T, const std::string& VS, unsigned Alignment, char sep=';');
- std::string getStackBump(unsigned Size);
- std::string getStackBump(const std::string &Size);
-
- void addBlock(const BasicBlock *BB, Relooper& R, LLVMToRelooperMap& LLVMToRelooper);
- void printFunctionBody(const Function *F);
- void generateInsertElementExpression(const InsertElementInst *III, raw_string_ostream& Code);
- void generateExtractElementExpression(const ExtractElementInst *EEI, raw_string_ostream& Code);
- void generateShuffleVectorExpression(const ShuffleVectorInst *SVI, raw_string_ostream& Code);
- void generateICmpExpression(const ICmpInst *I, raw_string_ostream& Code);
- void generateFCmpExpression(const FCmpInst *I, raw_string_ostream& Code);
- void generateShiftExpression(const BinaryOperator *I, raw_string_ostream& Code);
- void generateUnrolledExpression(const User *I, raw_string_ostream& Code);
- bool generateSIMDExpression(const User *I, raw_string_ostream& Code);
- void generateExpression(const User *I, raw_string_ostream& Code);
-
- std::string getOpName(const Value*);
-
- void processConstants();
-
- // nativization
-
- typedef std::set<const Value*> NativizedVarsMap;
- NativizedVarsMap NativizedVars;
-
- void calculateNativizedVars(const Function *F);
-
- // special analyses
-
- bool canReloop(const Function *F);
-
- // main entry point
-
- void printModuleBody();
- };
-} // end anonymous namespace.
-
-raw_pwrite_stream &JSWriter::nl(raw_pwrite_stream &Out, int delta) {
- Out << '\n';
- return Out;
-}
-
-static inline char halfCharToHex(unsigned char half) {
- assert(half <= 15);
- if (half <= 9) {
- return '0' + half;
- } else {
- return 'A' + half - 10;
- }
-}
-
-static inline void sanitizeGlobal(std::string& str) {
- // Global names are prefixed with "_" to prevent them from colliding with
- // names of things in normal JS.
- str = "_" + str;
-
- // functions and globals should already be in C-style format,
- // in addition to . for llvm intrinsics and possibly $ and so forth.
- // There is a risk of collisions here, we just lower all these
- // invalid characters to _, but this should not happen in practice.
- // TODO: in debug mode, check for such collisions.
- size_t OriginalSize = str.size();
- for (size_t i = 1; i < OriginalSize; ++i) {
- unsigned char c = str[i];
- if (!isalnum(c) && c != '_') str[i] = '_';
- }
-}
-
-static inline void sanitizeLocal(std::string& str) {
- // Local names are prefixed with "$" to prevent them from colliding with
- // global names.
- str = "$" + str;
-
- // We need to convert every string that is not a valid JS identifier into
- // a valid one, without collisions - we cannot turn "x.a" into "x_a" while
- // also leaving "x_a" as is, for example.
- //
- // We leave valid characters 0-9a-zA-Z and _ unchanged. Anything else
- // we replace with $ and append a hex representation of that value,
- // so for example x.a turns into x$a2e, x..a turns into x$$a2e2e.
- //
- // As an optimization, we replace . with $ without appending anything,
- // unless there is another illegal character. The reason is that . is
- // a common illegal character, and we want to avoid resizing strings
- // for perf reasons, and we If we do see we need to append something, then
- // for . we just append Z (one character, instead of the hex code).
- //
-
- size_t OriginalSize = str.size();
- int Queued = 0;
- for (size_t i = 1; i < OriginalSize; ++i) {
- unsigned char c = str[i];
- if (!isalnum(c) && c != '_') {
- str[i] = '$';
- if (c == '.') {
- Queued++;
- } else {
- size_t s = str.size();
- str.resize(s+2+Queued);
- for (int i = 0; i < Queued; i++) {
- str[s++] = 'Z';
- }
- Queued = 0;
- str[s] = halfCharToHex(c >> 4);
- str[s+1] = halfCharToHex(c & 0xf);
- }
- }
- }
-}
-
-static inline std::string ensureFloat(const std::string &S, Type *T) {
- if (PreciseF32 && T->isFloatTy()) {
- return "Math_fround(" + S + ")";
- }
- return S;
-}
-
-static void emitDebugInfo(raw_ostream& Code, const Instruction *I) {
- auto &Loc = I->getDebugLoc();
- if (Loc) {
- unsigned Line = Loc.getLine();
- StringRef File = cast<MDLocation>(Loc.getScope())->getFilename();
- Code << " //@line " << utostr(Line) << " \"" << (File.size() > 0 ? File.str() : "?") << "\"";
- }
-}
-
-void JSWriter::error(const std::string& msg) {
- report_fatal_error(msg);
-}
-
-std::string JSWriter::getPhiCode(const BasicBlock *From, const BasicBlock *To) {
- // FIXME this is all quite inefficient, and also done once per incoming to each phi
-
- // Find the phis, and generate assignments and dependencies
- std::set<std::string> PhiVars;
- for (BasicBlock::const_iterator I = To->begin(), E = To->end();
- I != E; ++I) {
- const PHINode* P = dyn_cast<PHINode>(I);
- if (!P) break;
- PhiVars.insert(getJSName(P));
- }
- typedef std::map<std::string, std::string> StringMap;
- StringMap assigns; // variable -> assign statement
- std::map<std::string, const Value*> values; // variable -> Value
- StringMap deps; // variable -> dependency
- StringMap undeps; // reverse: dependency -> variable
- for (BasicBlock::const_iterator I = To->begin(), E = To->end();
- I != E; ++I) {
- const PHINode* P = dyn_cast<PHINode>(I);
- if (!P) break;
- int index = P->getBasicBlockIndex(From);
- if (index < 0) continue;
- // we found it
- const std::string &name = getJSName(P);
- assigns[name] = getAssign(P);
- // Get the operand, and strip pointer casts, since normal expression
- // translation also strips pointer casts, and we want to see the same
- // thing so that we can detect any resulting dependencies.
- const Value *V = P->getIncomingValue(index)->stripPointerCasts();
- values[name] = V;
- std::string vname = getValueAsStr(V);
- if (const Instruction *VI = dyn_cast<const Instruction>(V)) {
- if (VI->getParent() == To && PhiVars.find(vname) != PhiVars.end()) {
- deps[name] = vname;
- undeps[vname] = name;
- }
- }
- }
- // Emit assignments+values, taking into account dependencies, and breaking cycles
- std::string pre = "", post = "";
- while (assigns.size() > 0) {
- bool emitted = false;
- for (StringMap::iterator I = assigns.begin(); I != assigns.end();) {
- StringMap::iterator last = I;
- std::string curr = last->first;
- const Value *V = values[curr];
- std::string CV = getValueAsStr(V);
- I++; // advance now, as we may erase
- // if we have no dependencies, or we found none to emit and are at the end (so there is a cycle), emit
- StringMap::const_iterator dep = deps.find(curr);
- if (dep == deps.end() || (!emitted && I == assigns.end())) {
- if (dep != deps.end()) {
- // break a cycle
- std::string depString = dep->second;
- std::string temp = curr + "$phi";
- pre += getAdHocAssign(temp, V->getType()) + CV + ';';
- CV = temp;
- deps.erase(curr);
- undeps.erase(depString);
- }
- post += assigns[curr] + CV + ';';
- assigns.erase(last);
- emitted = true;
- }
- }
- }
- return pre + post;
-}
-
-const std::string &JSWriter::getJSName(const Value* val) {
- ValueMap::const_iterator I = ValueNames.find(val);
- if (I != ValueNames.end() && I->first == val)
- return I->second;
-
- // If this is an alloca we've replaced with another, use the other name.
- if (const AllocaInst *AI = dyn_cast<AllocaInst>(val)) {
- if (AI->isStaticAlloca()) {
- const AllocaInst *Rep = Allocas.getRepresentative(AI);
- if (Rep != AI) {
- return getJSName(Rep);
- }
- }
- }
-
- std::string name;
- if (val->hasName()) {
- name = val->getName().str();
- } else {
- name = utostr(UniqueNum++);
- }
-
- if (isa<Constant>(val)) {
- sanitizeGlobal(name);
- } else {
- sanitizeLocal(name);
- }
-
- return ValueNames[val] = name;
-}
-
-std::string JSWriter::getAdHocAssign(const StringRef &s, Type *t) {
- UsedVars[s] = t;
- return (s + " = ").str();
-}
-
-std::string JSWriter::getAssign(const Instruction *I) {
- return getAdHocAssign(getJSName(I), I->getType());
-}
-
-std::string JSWriter::getAssignIfNeeded(const Value *V) {
- if (const Instruction *I = dyn_cast<Instruction>(V)) {
- if (!I->use_empty()) return getAssign(I);
- }
- return std::string();
-}
-
-std::string JSWriter::getCast(const StringRef &s, Type *t, AsmCast sign) {
- switch (t->getTypeID()) {
- default: {
- errs() << *t << "\n";
- assert(false && "Unsupported type");
- }
- case Type::VectorTyID:
- return (cast<VectorType>(t)->getElementType()->isIntegerTy() ?
- "SIMD_int32x4_check(" + s + ")" :
- "SIMD_float32x4_check(" + s + ")").str();
- case Type::FloatTyID: {
- if (PreciseF32 && !(sign & ASM_FFI_OUT)) {
- if (sign & ASM_FFI_IN) {
- return ("Math_fround(+(" + s + "))").str();
- } else {
- return ("Math_fround(" + s + ")").str();
- }
- }
- // otherwise fall through to double
- }
- case Type::DoubleTyID: return ("+" + s).str();
- case Type::IntegerTyID: {
- // fall through to the end for nonspecific
- switch (t->getIntegerBitWidth()) {
- case 1: if (!(sign & ASM_NONSPECIFIC)) return sign == ASM_UNSIGNED ? (s + "&1").str() : (s + "<<31>>31").str();
- case 8: if (!(sign & ASM_NONSPECIFIC)) return sign == ASM_UNSIGNED ? (s + "&255").str() : (s + "<<24>>24").str();
- case 16: if (!(sign & ASM_NONSPECIFIC)) return sign == ASM_UNSIGNED ? (s + "&65535").str() : (s + "<<16>>16").str();
- case 32: return (sign == ASM_SIGNED || (sign & ASM_NONSPECIFIC) ? s + "|0" : s + ">>>0").str();
- default: llvm_unreachable("Unsupported integer cast bitwidth");
- }
- }
- case Type::PointerTyID:
- return (sign == ASM_SIGNED || (sign & ASM_NONSPECIFIC) ? s + "|0" : s + ">>>0").str();
- }
-}
-
-std::string JSWriter::getParenCast(const StringRef &s, Type *t, AsmCast sign) {
- return getCast(("(" + s + ")").str(), t, sign);
-}
-
-std::string JSWriter::getDoubleToInt(const StringRef &s) {
- return ("~~(" + s + ")").str();
-}
-
-std::string JSWriter::getIMul(const Value *V1, const Value *V2) {
- const ConstantInt *CI = NULL;
- const Value *Other = NULL;
- if ((CI = dyn_cast<ConstantInt>(V1))) {
- Other = V2;
- } else if ((CI = dyn_cast<ConstantInt>(V2))) {
- Other = V1;
- }
- // we ignore optimizing the case of multiplying two constants - optimizer would have removed those
- if (CI) {
- std::string OtherStr = getValueAsStr(Other);
- unsigned C = CI->getZExtValue();
- if (C == 0) return "0";
- if (C == 1) return OtherStr;
- unsigned Orig = C, Shifts = 0;
- while (C) {
- if ((C & 1) && (C != 1)) break; // not power of 2
- C >>= 1;
- Shifts++;
- if (C == 0) return OtherStr + "<<" + utostr(Shifts-1); // power of 2, emit shift
- }
- if (Orig < (1<<20)) return "(" + OtherStr + "*" + utostr(Orig) + ")|0"; // small enough, avoid imul
- }
- return "Math_imul(" + getValueAsStr(V1) + ", " + getValueAsStr(V2) + ")|0"; // unknown or too large, emit imul
-}
-
-std::string JSWriter::getLoad(const Instruction *I, const Value *P, Type *T, unsigned Alignment, char sep) {
- std::string Assign = getAssign(I);
- unsigned Bytes = DL->getTypeAllocSize(T);
- std::string text;
- if (Bytes <= Alignment || Alignment == 0) {
- text = Assign + getPtrLoad(P);
- if (isAbsolute(P)) {
- // loads from an absolute constants are either intentional segfaults (int x = *((int*)0)), or code problems
- text += "; abort() /* segfault, load from absolute addr */";
- }
- } else {
- // unaligned in some manner
- if (WarnOnUnaligned) {
- errs() << "emcc: warning: unaligned load in " << I->getParent()->getParent()->getName() << ":" << *I << " | ";
- emitDebugInfo(errs(), I);
- errs() << "\n";
- }
- std::string PS = getValueAsStr(P);
- switch (Bytes) {
- case 8: {
- switch (Alignment) {
- case 4: {
- text = "HEAP32[tempDoublePtr>>2]=HEAP32[" + PS + ">>2]" + sep +
- "HEAP32[tempDoublePtr+4>>2]=HEAP32[" + PS + "+4>>2]";
- break;
- }
- case 2: {
- text = "HEAP16[tempDoublePtr>>1]=HEAP16[" + PS + ">>1]" + sep +
- "HEAP16[tempDoublePtr+2>>1]=HEAP16[" + PS + "+2>>1]" + sep +
- "HEAP16[tempDoublePtr+4>>1]=HEAP16[" + PS + "+4>>1]" + sep +
- "HEAP16[tempDoublePtr+6>>1]=HEAP16[" + PS + "+6>>1]";
- break;
- }
- case 1: {
- text = "HEAP8[tempDoublePtr>>0]=HEAP8[" + PS + ">>0]" + sep +
- "HEAP8[tempDoublePtr+1>>0]=HEAP8[" + PS + "+1>>0]" + sep +
- "HEAP8[tempDoublePtr+2>>0]=HEAP8[" + PS + "+2>>0]" + sep +
- "HEAP8[tempDoublePtr+3>>0]=HEAP8[" + PS + "+3>>0]" + sep +
- "HEAP8[tempDoublePtr+4>>0]=HEAP8[" + PS + "+4>>0]" + sep +
- "HEAP8[tempDoublePtr+5>>0]=HEAP8[" + PS + "+5>>0]" + sep +
- "HEAP8[tempDoublePtr+6>>0]=HEAP8[" + PS + "+6>>0]" + sep +
- "HEAP8[tempDoublePtr+7>>0]=HEAP8[" + PS + "+7>>0]";
- break;
- }
- default: assert(0 && "bad 8 store");
- }
- text += sep + Assign + "+HEAPF64[tempDoublePtr>>3]";
- break;
- }
- case 4: {
- if (T->isIntegerTy() || T->isPointerTy()) {
- switch (Alignment) {
- case 2: {
- text = Assign + "HEAPU16[" + PS + ">>1]|" +
- "(HEAPU16[" + PS + "+2>>1]<<16)";
- break;
- }
- case 1: {
- text = Assign + "HEAPU8[" + PS + ">>0]|" +
- "(HEAPU8[" + PS + "+1>>0]<<8)|" +
- "(HEAPU8[" + PS + "+2>>0]<<16)|" +
- "(HEAPU8[" + PS + "+3>>0]<<24)";
- break;
- }
- default: assert(0 && "bad 4i store");
- }
- } else { // float
- assert(T->isFloatingPointTy());
- switch (Alignment) {
- case 2: {
- text = "HEAP16[tempDoublePtr>>1]=HEAP16[" + PS + ">>1]" + sep +
- "HEAP16[tempDoublePtr+2>>1]=HEAP16[" + PS + "+2>>1]";
- break;
- }
- case 1: {
- text = "HEAP8[tempDoublePtr>>0]=HEAP8[" + PS + ">>0]" + sep +
- "HEAP8[tempDoublePtr+1>>0]=HEAP8[" + PS + "+1>>0]" + sep +
- "HEAP8[tempDoublePtr+2>>0]=HEAP8[" + PS + "+2>>0]" + sep +
- "HEAP8[tempDoublePtr+3>>0]=HEAP8[" + PS + "+3>>0]";
- break;
- }
- default: assert(0 && "bad 4f store");
- }
- text += sep + Assign + getCast("HEAPF32[tempDoublePtr>>2]", Type::getFloatTy(TheModule->getContext()));
- }
- break;
- }
- case 2: {
- text = Assign + "HEAPU8[" + PS + ">>0]|" +
- "(HEAPU8[" + PS + "+1>>0]<<8)";
- break;
- }
- default: assert(0 && "bad store");
- }
- }
- return text;
-}
-
-std::string JSWriter::getStore(const Instruction *I, const Value *P, Type *T, const std::string& VS, unsigned Alignment, char sep) {
- assert(sep == ';'); // FIXME when we need that
- unsigned Bytes = DL->getTypeAllocSize(T);
- std::string text;
- if (Bytes <= Alignment || Alignment == 0) {
- text = getPtrUse(P) + " = " + VS;
- if (Alignment == 536870912) text += "; abort() /* segfault */";
- } else {
- // unaligned in some manner
- if (WarnOnUnaligned) {
- errs() << "emcc: warning: unaligned store in " << I->getParent()->getParent()->getName() << ":" << *I << " | ";
- emitDebugInfo(errs(), I);
- errs() << "\n";
- }
- std::string PS = getValueAsStr(P);
- switch (Bytes) {
- case 8: {
- text = "HEAPF64[tempDoublePtr>>3]=" + VS + ';';
- switch (Alignment) {
- case 4: {
- text += "HEAP32[" + PS + ">>2]=HEAP32[tempDoublePtr>>2];" +
- "HEAP32[" + PS + "+4>>2]=HEAP32[tempDoublePtr+4>>2]";
- break;
- }
- case 2: {
- text += "HEAP16[" + PS + ">>1]=HEAP16[tempDoublePtr>>1];" +
- "HEAP16[" + PS + "+2>>1]=HEAP16[tempDoublePtr+2>>1];" +
- "HEAP16[" + PS + "+4>>1]=HEAP16[tempDoublePtr+4>>1];" +
- "HEAP16[" + PS + "+6>>1]=HEAP16[tempDoublePtr+6>>1]";
- break;
- }
- case 1: {
- text += "HEAP8[" + PS + ">>0]=HEAP8[tempDoublePtr>>0];" +
- "HEAP8[" + PS + "+1>>0]=HEAP8[tempDoublePtr+1>>0];" +
- "HEAP8[" + PS + "+2>>0]=HEAP8[tempDoublePtr+2>>0];" +
- "HEAP8[" + PS + "+3>>0]=HEAP8[tempDoublePtr+3>>0];" +
- "HEAP8[" + PS + "+4>>0]=HEAP8[tempDoublePtr+4>>0];" +
- "HEAP8[" + PS + "+5>>0]=HEAP8[tempDoublePtr+5>>0];" +
- "HEAP8[" + PS + "+6>>0]=HEAP8[tempDoublePtr+6>>0];" +
- "HEAP8[" + PS + "+7>>0]=HEAP8[tempDoublePtr+7>>0]";
- break;
- }
- default: assert(0 && "bad 8 store");
- }
- break;
- }
- case 4: {
- if (T->isIntegerTy() || T->isPointerTy()) {
- switch (Alignment) {
- case 2: {
- text = "HEAP16[" + PS + ">>1]=" + VS + "&65535;" +
- "HEAP16[" + PS + "+2>>1]=" + VS + ">>>16";
- break;
- }
- case 1: {
- text = "HEAP8[" + PS + ">>0]=" + VS + "&255;" +
- "HEAP8[" + PS + "+1>>0]=(" + VS + ">>8)&255;" +
- "HEAP8[" + PS + "+2>>0]=(" + VS + ">>16)&255;" +
- "HEAP8[" + PS + "+3>>0]=" + VS + ">>24";
- break;
- }
- default: assert(0 && "bad 4i store");
- }
- } else { // float
- assert(T->isFloatingPointTy());
- text = "HEAPF32[tempDoublePtr>>2]=" + VS + ';';
- switch (Alignment) {
- case 2: {
- text += "HEAP16[" + PS + ">>1]=HEAP16[tempDoublePtr>>1];" +
- "HEAP16[" + PS + "+2>>1]=HEAP16[tempDoublePtr+2>>1]";
- break;
- }
- case 1: {
- text += "HEAP8[" + PS + ">>0]=HEAP8[tempDoublePtr>>0];" +
- "HEAP8[" + PS + "+1>>0]=HEAP8[tempDoublePtr+1>>0];" +
- "HEAP8[" + PS + "+2>>0]=HEAP8[tempDoublePtr+2>>0];" +
- "HEAP8[" + PS + "+3>>0]=HEAP8[tempDoublePtr+3>>0]";
- break;
- }
- default: assert(0 && "bad 4f store");
- }
- }
- break;
- }
- case 2: {
- text = "HEAP8[" + PS + ">>0]=" + VS + "&255;" +
- "HEAP8[" + PS + "+1>>0]=" + VS + ">>8";
- break;
- }
- default: assert(0 && "bad store");
- }
- }
- return text;
-}
-
-std::string JSWriter::getStackBump(unsigned Size) {
- return getStackBump(utostr(Size));
-}
-
-std::string JSWriter::getStackBump(const std::string &Size) {
- std::string ret = "STACKTOP = STACKTOP + " + Size + "|0;";
- if (EmscriptenAssertions) {
- ret += " if ((STACKTOP|0) >= (STACK_MAX|0)) abort();";
- }
- return ret;
-}
-
-std::string JSWriter::getOpName(const Value* V) { // TODO: remove this
- return getJSName(V);
-}
-
-std::string JSWriter::getPtrLoad(const Value* Ptr) {
- Type *t = cast<PointerType>(Ptr->getType())->getElementType();
- return getCast(getPtrUse(Ptr), t, ASM_NONSPECIFIC);
-}
-
-std::string JSWriter::getHeapAccess(const std::string& Name, unsigned Bytes, bool Integer) {
- switch (Bytes) {
- default: llvm_unreachable("Unsupported type");
- case 8: return "HEAPF64[" + Name + ">>3]";
- case 4: {
- if (Integer) {
- return "HEAP32[" + Name + ">>2]";
- } else {
- return "HEAPF32[" + Name + ">>2]";
- }
- }
- case 2: return "HEAP16[" + Name + ">>1]";
- case 1: return "HEAP8[" + Name + ">>0]";
- }
-}
-
-std::string JSWriter::getPtrUse(const Value* Ptr) {
- Type *t = cast<PointerType>(Ptr->getType())->getElementType();
- unsigned Bytes = DL->getTypeAllocSize(t);
- if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
- std::string text = "";
- unsigned Addr = getGlobalAddress(GV->getName().str());
- switch (Bytes) {
- default: llvm_unreachable("Unsupported type");
- case 8: return "HEAPF64[" + utostr(Addr >> 3) + "]";
- case 4: {
- if (t->isIntegerTy() || t->isPointerTy()) {
- return "HEAP32[" + utostr(Addr >> 2) + "]";
- } else {
- assert(t->isFloatingPointTy());
- return "HEAPF32[" + utostr(Addr >> 2) + "]";
- }
- }
- case 2: return "HEAP16[" + utostr(Addr >> 1) + "]";
- case 1: return "HEAP8[" + utostr(Addr) + "]";
- }
- } else {
- return getHeapAccess(getValueAsStr(Ptr), Bytes, t->isIntegerTy() || t->isPointerTy());
- }
-}
-
-std::string JSWriter::getConstant(const Constant* CV, AsmCast sign) {
- if (isa<ConstantPointerNull>(CV)) return "0";
-
- if (const Function *F = dyn_cast<Function>(CV)) {
- return utostr(getFunctionIndex(F));
- }
-
- if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
- if (GV->isDeclaration()) {
- std::string Name = getOpName(GV);
- Externals.insert(Name);
- return Name;
- }
- if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(CV)) {
- // Since we don't currently support linking of our output, we don't need
- // to worry about weak or other kinds of aliases.
- return getConstant(GA->getAliasee(), sign);
- }
- return utostr(getGlobalAddress(GV->getName().str()));
- }
-
- if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
- std::string S = ftostr(CFP, sign);
- if (PreciseF32 && CV->getType()->isFloatTy() && !(sign & ASM_FFI_OUT)) {
- S = "Math_fround(" + S + ")";
- }
- return S;
- } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
- if (sign != ASM_UNSIGNED && CI->getValue().getBitWidth() == 1) {
- sign = ASM_UNSIGNED; // bools must always be unsigned: either 0 or 1
- }
- return CI->getValue().toString(10, sign != ASM_UNSIGNED);
- } else if (isa<UndefValue>(CV)) {
- std::string S;
- if (VectorType *VT = dyn_cast<VectorType>(CV->getType())) {
- checkVectorType(VT);
- if (VT->getElementType()->isIntegerTy()) {
- S = "SIMD_int32x4_splat(0)";
- } else {
- S = "SIMD_float32x4_splat(Math_fround(0))";
- }
- } else {
- S = CV->getType()->isFloatingPointTy() ? "+0" : "0"; // XXX refactor this
- if (PreciseF32 && CV->getType()->isFloatTy() && !(sign & ASM_FFI_OUT)) {
- S = "Math_fround(" + S + ")";
- }
- }
- return S;
- } else if (isa<ConstantAggregateZero>(CV)) {
- if (VectorType *VT = dyn_cast<VectorType>(CV->getType())) {
- checkVectorType(VT);
- if (VT->getElementType()->isIntegerTy()) {
- return "SIMD_int32x4_splat(0)";
- } else {
- return "SIMD_float32x4_splat(Math_fround(0))";
- }
- } else {
- // something like [0 x i8*] zeroinitializer, which clang can emit for landingpads
- return "0";
- }
- } else if (const ConstantDataVector *DV = dyn_cast<ConstantDataVector>(CV)) {
- checkVectorType(DV->getType());
- unsigned NumElts = cast<VectorType>(DV->getType())->getNumElements();
- Type *EltTy = cast<VectorType>(DV->getType())->getElementType();
- Constant *Undef = UndefValue::get(EltTy);
- return getConstantVector(EltTy,
- getConstant(NumElts > 0 ? DV->getElementAsConstant(0) : Undef),
- getConstant(NumElts > 1 ? DV->getElementAsConstant(1) : Undef),
- getConstant(NumElts > 2 ? DV->getElementAsConstant(2) : Undef),
- getConstant(NumElts > 3 ? DV->getElementAsConstant(3) : Undef));
- } else if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) {
- checkVectorType(V->getType());
- unsigned NumElts = cast<VectorType>(CV->getType())->getNumElements();
- Type *EltTy = cast<VectorType>(CV->getType())->getElementType();
- Constant *Undef = UndefValue::get(EltTy);
- return getConstantVector(cast<VectorType>(V->getType())->getElementType(),
- getConstant(NumElts > 0 ? V->getOperand(0) : Undef),
- getConstant(NumElts > 1 ? V->getOperand(1) : Undef),
- getConstant(NumElts > 2 ? V->getOperand(2) : Undef),
- getConstant(NumElts > 3 ? V->getOperand(3) : Undef));
- } else if (const ConstantArray *CA = dyn_cast<const ConstantArray>(CV)) {
- // handle things like [i8* bitcast (<{ i32, i32, i32 }>* @_ZTISt9bad_alloc to i8*)] which clang can emit for landingpads
- assert(CA->getNumOperands() == 1);
- CV = CA->getOperand(0);
- const ConstantExpr *CE = cast<ConstantExpr>(CV);
- CV = CE->getOperand(0); // ignore bitcast
- return getConstant(CV);
- } else if (const BlockAddress *BA = dyn_cast<const BlockAddress>(CV)) {
- return utostr(getBlockAddress(BA));
- } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
- std::string Code;
- raw_string_ostream CodeStream(Code);
- CodeStream << '(';
- generateExpression(CE, CodeStream);
- CodeStream << ')';
- return CodeStream.str();
- } else {
- CV->dump();
- llvm_unreachable("Unsupported constant kind");
- }
-}
-
-std::string JSWriter::getConstantVector(Type *ElementType, std::string x, std::string y, std::string z, std::string w) {
- // Check for a splat.
- if (x == y && x == z && x == w) {
- if (ElementType->isIntegerTy()) {
- return "SIMD_int32x4_splat(" + x + ')';
- } else {
- return "SIMD_float32x4_splat(Math_fround(" + x + "))";
- }
- }
-
- if (ElementType->isIntegerTy()) {
- return "SIMD_int32x4(" + x + ',' + y + ',' + z + ',' + w + ')';
- } else {
- return "SIMD_float32x4(Math_fround(" + x + "),Math_fround(" + y + "),Math_fround(" + z + "),Math_fround(" + w + "))";
- }
-}
-
-std::string JSWriter::getValueAsStr(const Value* V, AsmCast sign) {
- // Skip past no-op bitcasts and zero-index geps.
- V = V->stripPointerCasts();
-
- if (const Constant *CV = dyn_cast<Constant>(V)) {
- return getConstant(CV, sign);
- } else {
- return getJSName(V);
- }
-}
-
-std::string JSWriter::getValueAsCastStr(const Value* V, AsmCast sign) {
- // Skip past no-op bitcasts and zero-index geps.
- V = V->stripPointerCasts();
-
- if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) {
- return getConstant(cast<Constant>(V), sign);
- } else {
- return getCast(getValueAsStr(V), V->getType(), sign);
- }
-}
-
-std::string JSWriter::getValueAsParenStr(const Value* V) {
- // Skip past no-op bitcasts and zero-index geps.
- V = V->stripPointerCasts();
-
- if (const Constant *CV = dyn_cast<Constant>(V)) {
- return getConstant(CV);
- } else {
- return "(" + getValueAsStr(V) + ")";
- }
-}
-
-std::string JSWriter::getValueAsCastParenStr(const Value* V, AsmCast sign) {
- // Skip past no-op bitcasts and zero-index geps.
- V = V->stripPointerCasts();
-
- if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
- return getConstant(cast<Constant>(V), sign);
- } else {
- return "(" + getCast(getValueAsStr(V), V->getType(), sign) + ")";
- }
-}
-
-void JSWriter::generateInsertElementExpression(const InsertElementInst *III, raw_string_ostream& Code) {
- // LLVM has no vector type constructor operator; it uses chains of
- // insertelement instructions instead. It also has no splat operator; it
- // uses an insertelement followed by a shuffle instead. If this insertelement
- // is part of either such sequence, skip it for now; we'll process it when we
- // reach the end.
- if (III->hasOneUse()) {
- const User *U = *III->user_begin();
- if (isa<InsertElementInst>(U))
- return;
- if (isa<ShuffleVectorInst>(U) &&
- isa<ConstantAggregateZero>(cast<ShuffleVectorInst>(U)->getMask()) &&
- !isa<InsertElementInst>(III->getOperand(0)) &&
- isa<ConstantInt>(III->getOperand(2)) &&
- cast<ConstantInt>(III->getOperand(2))->isZero())
- {
- return;
- }
- }
-
- // This insertelement is at the base of a chain of single-user insertelement
- // instructions. Collect all the inserted elements so that we can categorize
- // the chain as either a splat, a constructor, or an actual series of inserts.
- VectorType *VT = III->getType();
- unsigned NumElems = VT->getNumElements();
- unsigned NumInserted = 0;
- SmallVector<const Value *, 8> Operands(NumElems, NULL);
- const Value *Splat = III->getOperand(1);
- const Value *Base = III;
- do {
- const InsertElementInst *BaseIII = cast<InsertElementInst>(Base);
- const ConstantInt *IndexInt = cast<ConstantInt>(BaseIII->getOperand(2));
- unsigned Index = IndexInt->getZExtValue();
- if (Operands[Index] == NULL)
- ++NumInserted;
- Value *Op = BaseIII->getOperand(1);
- if (Operands[Index] == NULL) {
- Operands[Index] = Op;
- if (Op != Splat)
- Splat = NULL;
- }
- Base = BaseIII->getOperand(0);
- } while (Base->hasOneUse() && isa<InsertElementInst>(Base));
-
- // Emit code for the chain.
- Code << getAssignIfNeeded(III);
- if (NumInserted == NumElems) {
- if (Splat) {
- // Emit splat code.
- if (VT->getElementType()->isIntegerTy()) {
- Code << "SIMD_int32x4_splat(" << getValueAsStr(Splat) << ")";
- } else {
- std::string operand = getValueAsStr(Splat);
- if (!PreciseF32) {
- // SIMD_float32x4_splat requires an actual float32 even if we're
- // otherwise not being precise about it.
- operand = "Math_fround(" + operand + ")";
- }
- Code << "SIMD_float32x4_splat(" << operand << ")";
- }
- } else {
- // Emit constructor code.
- if (VT->getElementType()->isIntegerTy()) {
- Code << "SIMD_int32x4(";
- } else {
- Code << "SIMD_float32x4(";
- }
- for (unsigned Index = 0; Index < NumElems; ++Index) {
- if (Index != 0)
- Code << ", ";
- std::string operand = getValueAsStr(Operands[Index]);
- if (!PreciseF32 && VT->getElementType()->isFloatTy()) {
- // SIMD_float32x4_splat requires an actual float32 even if we're
- // otherwise not being precise about it.
- operand = "Math_fround(" + operand + ")";
- }
- Code << operand;
- }
- Code << ")";
- }
- } else {
- // Emit a series of inserts.
- std::string Result = getValueAsStr(Base);
- for (unsigned Index = 0; Index < NumElems; ++Index) {
- std::string with;
- if (!Operands[Index])
- continue;
- if (VT->getElementType()->isIntegerTy()) {
- with = "SIMD_int32x4_with";
- } else {
- with = "SIMD_float32x4_with";
- }
- std::string operand = getValueAsStr(Operands[Index]);
- if (!PreciseF32) {
- operand = "Math_fround(" + operand + ")";
- }
- Result = with + SIMDLane[Index] + "(" + Result + ',' + operand + ')';
- }
- Code << Result;
- }
-}
-
-void JSWriter::generateExtractElementExpression(const ExtractElementInst *EEI, raw_string_ostream& Code) {
- VectorType *VT = cast<VectorType>(EEI->getVectorOperand()->getType());
- checkVectorType(VT);
- const ConstantInt *IndexInt = dyn_cast<const ConstantInt>(EEI->getIndexOperand());
- if (IndexInt) {
- unsigned Index = IndexInt->getZExtValue();
- assert(Index <= 3);
- Code << getAssignIfNeeded(EEI);
- std::string OperandCode;
- raw_string_ostream CodeStream(OperandCode);
- CodeStream << getValueAsStr(EEI->getVectorOperand()) << '.' << simdLane[Index];
- Code << getCast(CodeStream.str(), EEI->getType());
- return;
- }
-
- error("SIMD extract element with non-constant index not implemented yet");
-}
-
-void JSWriter::generateShuffleVectorExpression(const ShuffleVectorInst *SVI, raw_string_ostream& Code) {
- Code << getAssignIfNeeded(SVI);
-
- // LLVM has no splat operator, so it makes do by using an insert and a
- // shuffle. If that's what this shuffle is doing, the code in
- // generateInsertElementExpression will have also detected it and skipped
- // emitting the insert, so we can just emit a splat here.
- if (isa<ConstantAggregateZero>(SVI->getMask()) &&
- isa<InsertElementInst>(SVI->getOperand(0)))
- {
- InsertElementInst *IEI = cast<InsertElementInst>(SVI->getOperand(0));
- if (ConstantInt *CI = dyn_cast<ConstantInt>(IEI->getOperand(2))) {
- if (CI->isZero()) {
- std::string operand = getValueAsStr(IEI->getOperand(1));
- if (!PreciseF32) {
- // SIMD_float32x4_splat requires an actual float32 even if we're
- // otherwise not being precise about it.
- operand = "Math_fround(" + operand + ")";
- }
- if (SVI->getType()->getElementType()->isIntegerTy()) {
- Code << "SIMD_int32x4_splat(";
- } else {
- Code << "SIMD_float32x4_splat(";
- }
- Code << operand << ")";
- return;
- }
- }
- }
-
- // Check whether can generate SIMD.js swizzle or shuffle.
- std::string A = getValueAsStr(SVI->getOperand(0));
- std::string B = getValueAsStr(SVI->getOperand(1));
- int OpNumElements = cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements();
- int ResultNumElements = SVI->getType()->getNumElements();
- int Mask0 = ResultNumElements > 0 ? SVI->getMaskValue(0) : -1;
- int Mask1 = ResultNumElements > 1 ? SVI->getMaskValue(1) : -1;
- int Mask2 = ResultNumElements > 2 ? SVI->getMaskValue(2) : -1;
- int Mask3 = ResultNumElements > 3 ? SVI->getMaskValue(3) : -1;
- bool swizzleA = false;
- bool swizzleB = false;
- if ((Mask0 < OpNumElements) && (Mask1 < OpNumElements) &&
- (Mask2 < OpNumElements) && (Mask3 < OpNumElements)) {
- swizzleA = true;
- }
- if ((Mask0 < 0 || (Mask0 >= OpNumElements && Mask0 < OpNumElements * 2)) &&
- (Mask1 < 0 || (Mask1 >= OpNumElements && Mask1 < OpNumElements * 2)) &&
- (Mask2 < 0 || (Mask2 >= OpNumElements && Mask2 < OpNumElements * 2)) &&
- (Mask3 < 0 || (Mask3 >= OpNumElements && Mask3 < OpNumElements * 2))) {
- swizzleB = true;
- }
- assert(!(swizzleA && swizzleB));
- if (swizzleA || swizzleB) {
- std::string T = (swizzleA ? A : B);
- if (SVI->getType()->getElementType()->isIntegerTy()) {
- Code << "SIMD_int32x4_swizzle(" << T;
- } else {
- Code << "SIMD_float32x4_swizzle(" << T;
- }
- int i = 0;
- for (; i < ResultNumElements; ++i) {
- Code << ", ";
- int Mask = SVI->getMaskValue(i);
- if (Mask < 0) {
- Code << 0;
- } else if (Mask < OpNumElements) {
- Code << Mask;
- } else {
- assert(Mask < OpNumElements * 2);
- Code << (Mask-OpNumElements);
- }
- }
- for (; i < 4; ++i) {
- Code << ", 0";
- }
- Code << ")";
- return;
- }
-
- // Emit a fully-general shuffle.
- if (SVI->getType()->getElementType()->isIntegerTy()) {
- Code << "SIMD_int32x4_shuffle(";
- } else {
- Code << "SIMD_float32x4_shuffle(";
- }
-
- Code << A << ", " << B << ", ";
-
- SmallVector<int, 16> Indices;
- SVI->getShuffleMask(Indices);
- for (unsigned int i = 0; i < Indices.size(); ++i) {
- if (i != 0)
- Code << ", ";
- int Mask = Indices[i];
- if (Mask >= OpNumElements)
- Mask = Mask - OpNumElements + 4;
- if (Mask < 0)
- Code << 0;
- else
- Code << Mask;
- }
-
- Code << ")";
-}
-
-void JSWriter::generateICmpExpression(const ICmpInst *I, raw_string_ostream& Code) {
- bool Invert = false;
- const char *Name;
- switch (cast<ICmpInst>(I)->getPredicate()) {
- case ICmpInst::ICMP_EQ: Name = "equal"; break;
- case ICmpInst::ICMP_NE: Name = "equal"; Invert = true; break;
- case ICmpInst::ICMP_SLE: Name = "greaterThan"; Invert = true; break;
- case ICmpInst::ICMP_SGE: Name = "lessThan"; Invert = true; break;
- case ICmpInst::ICMP_ULE: Name = "unsignedLessThanOrEqual"; break;
- case ICmpInst::ICMP_UGE: Name = "unsignedGreaterThanOrEqual"; break;
- case ICmpInst::ICMP_ULT: Name = "unsignedLessThan"; break;
- case ICmpInst::ICMP_SLT: Name = "lessThan"; break;
- case ICmpInst::ICMP_UGT: Name = "unsignedGreaterThan"; break;
- case ICmpInst::ICMP_SGT: Name = "greaterThan"; break;
- default: I->dump(); error("invalid vector icmp"); break;
- }
-
- if (Invert)
- Code << "SIMD_int32x4_not(";
-
- Code << getAssignIfNeeded(I) << "SIMD_int32x4_" << Name << "("
- << getValueAsStr(I->getOperand(0)) << ", " << getValueAsStr(I->getOperand(1)) << ")";
-
- if (Invert)
- Code << ")";
-}
-
-void JSWriter::generateFCmpExpression(const FCmpInst *I, raw_string_ostream& Code) {
- const char *Name;
- bool Invert = false;
- switch (cast<FCmpInst>(I)->getPredicate()) {
- case ICmpInst::FCMP_FALSE:
- Code << "SIMD_int32x4_splat(0)";
- return;
- case ICmpInst::FCMP_TRUE:
- Code << "SIMD_int32x4_splat(-1)";
- return;
- case ICmpInst::FCMP_ONE:
- Code << "SIMD_float32x4_and(SIMD_float32x4_and("
- "SIMD_float32x4_equal(" << getValueAsStr(I->getOperand(0)) << ", "
- << getValueAsStr(I->getOperand(0)) << "), " <<
- "SIMD_float32x4_equal(" << getValueAsStr(I->getOperand(1)) << ", "
- << getValueAsStr(I->getOperand(1)) << ")), " <<
- "SIMD_float32x4_notEqual(" << getValueAsStr(I->getOperand(0)) << ", "
- << getValueAsStr(I->getOperand(1)) << "))";
- return;
- case ICmpInst::FCMP_UEQ:
- Code << "SIMD_float32x4_or(SIMD_float32x4_or("
- "SIMD_float32x4_notEqual(" << getValueAsStr(I->getOperand(0)) << ", "
- << getValueAsStr(I->getOperand(0)) << "), " <<
- "SIMD_float32x4_notEqual(" << getValueAsStr(I->getOperand(1)) << ", "
- << getValueAsStr(I->getOperand(1)) << ")), " <<
- "SIMD_float32x4_equal(" << getValueAsStr(I->getOperand(0)) << ", "
- << getValueAsStr(I->getOperand(1)) << "))";
- return;
- case FCmpInst::FCMP_ORD:
- Code << "SIMD_float32x4_and("
- "SIMD_float32x4_equal(" << getValueAsStr(I->getOperand(0)) << ", " << getValueAsStr(I->getOperand(0)) << "), " <<
- "SIMD_float32x4_equal(" << getValueAsStr(I->getOperand(1)) << ", " << getValueAsStr(I->getOperand(1)) << "))";
- return;
-
- case FCmpInst::FCMP_UNO:
- Code << "SIMD_float32x4_or("
- "SIMD_float32x4_notEqual(" << getValueAsStr(I->getOperand(0)) << ", " << getValueAsStr(I->getOperand(0)) << "), " <<
- "SIMD_float32x4_notEqual(" << getValueAsStr(I->getOperand(1)) << ", " << getValueAsStr(I->getOperand(1)) << "))";
- return;
-
- case ICmpInst::FCMP_OEQ: Name = "equal"; break;
- case ICmpInst::FCMP_OGT: Name = "greaterThan"; break;
- case ICmpInst::FCMP_OGE: Name = "greaterThanOrEqual"; break;
- case ICmpInst::FCMP_OLT: Name = "lessThan"; break;
- case ICmpInst::FCMP_OLE: Name = "lessThanOrEqual"; break;
- case ICmpInst::FCMP_UGT: Name = "lessThanOrEqual"; Invert = true; break;
- case ICmpInst::FCMP_UGE: Name = "lessThan"; Invert = true; break;
- case ICmpInst::FCMP_ULT: Name = "greaterThanOrEqual"; Invert = true; break;
- case ICmpInst::FCMP_ULE: Name = "greaterThan"; Invert = true; break;
- case ICmpInst::FCMP_UNE: Name = "notEqual"; break;
- default: I->dump(); error("invalid vector fcmp"); break;
- }
-
- if (Invert)
- Code << "SIMD_int32x4_not(";
-
- Code << getAssignIfNeeded(I) << "SIMD_float32x4_" << Name << "("
- << getValueAsStr(I->getOperand(0)) << ", " << getValueAsStr(I->getOperand(1)) << ")";
-
- if (Invert)
- Code << ")";
-}
-
-static const Value *getElement(const Value *V, unsigned i) {
- if (const InsertElementInst *II = dyn_cast<InsertElementInst>(V)) {
- if (ConstantInt *CI = dyn_cast<ConstantInt>(II->getOperand(2))) {
- if (CI->equalsInt(i))
- return II->getOperand(1);
- }
- return getElement(II->getOperand(0), i);
- }
- return NULL;
-}
-
-static const Value *getSplatValue(const Value *V) {
- if (const Constant *C = dyn_cast<Constant>(V))
- return C->getSplatValue();
-
- VectorType *VTy = cast<VectorType>(V->getType());
- const Value *Result = NULL;
- for (unsigned i = 0; i < VTy->getNumElements(); ++i) {
- const Value *E = getElement(V, i);
- if (!E)
- return NULL;
- if (!Result)
- Result = E;
- else if (Result != E)
- return NULL;
- }
- return Result;
-
-}
-
-void JSWriter::generateShiftExpression(const BinaryOperator *I, raw_string_ostream& Code) {
- // If we're shifting every lane by the same amount (shifting by a splat value
- // then we can use a ByScalar shift.
- const Value *Count = I->getOperand(1);
- if (const Value *Splat = getSplatValue(Count)) {
- Code << getAssignIfNeeded(I) << "SIMD_int32x4_";
- if (I->getOpcode() == Instruction::AShr)
- Code << "shiftRightArithmeticByScalar";
- else if (I->getOpcode() == Instruction::LShr)
- Code << "shiftRightLogicalByScalar";
- else
- Code << "shiftLeftByScalar";
- Code << "(" << getValueAsStr(I->getOperand(0)) << ", " << getValueAsStr(Splat) << ")";
- return;
- }
-
- // SIMD.js does not currently have vector-vector shifts.
- generateUnrolledExpression(I, Code);
-}
-
-void JSWriter::generateUnrolledExpression(const User *I, raw_string_ostream& Code) {
- VectorType *VT = cast<VectorType>(I->getType());
-
- Code << getAssignIfNeeded(I);
-
- if (VT->getElementType()->isIntegerTy()) {
- Code << "SIMD_int32x4(";
- } else {
- Code << "SIMD_float32x4(";
- }
-
- for (unsigned Index = 0; Index < VT->getNumElements(); ++Index) {
- if (Index != 0)
- Code << ", ";
- if (!PreciseF32 && VT->getElementType()->isFloatTy()) {
- Code << "Math_fround(";
- }
- std::string Lane = VT->getNumElements() <= 4 ?
- std::string(".") + simdLane[Index] :
- ".s" + utostr(Index);
- switch (Operator::getOpcode(I)) {
- case Instruction::SDiv:
- Code << "(" << getValueAsStr(I->getOperand(0)) << Lane << "|0) / ("
- << getValueAsStr(I->getOperand(1)) << Lane << "|0)|0";
- break;
- case Instruction::UDiv:
- Code << "(" << getValueAsStr(I->getOperand(0)) << Lane << ">>>0) / ("
- << getValueAsStr(I->getOperand(1)) << Lane << ">>>0)>>>0";
- break;
- case Instruction::SRem:
- Code << "(" << getValueAsStr(I->getOperand(0)) << Lane << "|0) / ("
- << getValueAsStr(I->getOperand(1)) << Lane << "|0)|0";
- break;
- case Instruction::URem:
- Code << "(" << getValueAsStr(I->getOperand(0)) << Lane << ">>>0) / ("
- << getValueAsStr(I->getOperand(1)) << Lane << ">>>0)>>>0";
- break;
- case Instruction::AShr:
- Code << "(" << getValueAsStr(I->getOperand(0)) << Lane << "|0) >> ("
- << getValueAsStr(I->getOperand(1)) << Lane << "|0)|0";
- break;
- case Instruction::LShr:
- Code << "(" << getValueAsStr(I->getOperand(0)) << Lane << "|0) >>> ("
- << getValueAsStr(I->getOperand(1)) << Lane << "|0)|0";
- break;
- case Instruction::Shl:
- Code << "(" << getValueAsStr(I->getOperand(0)) << Lane << "|0) << ("
- << getValueAsStr(I->getOperand(1)) << Lane << "|0)|0";
- break;
- default: I->dump(); error("invalid unrolled vector instr"); break;
- }
- if (!PreciseF32 && VT->getElementType()->isFloatTy()) {
- Code << ")";
- }
- }
-
- Code << ")";
-}
-
-bool JSWriter::generateSIMDExpression(const User *I, raw_string_ostream& Code) {
- VectorType *VT;
- if ((VT = dyn_cast<VectorType>(I->getType()))) {
- // vector-producing instructions
- checkVectorType(VT);
-
- switch (Operator::getOpcode(I)) {
- default: I->dump(); error("invalid vector instr"); break;
- case Instruction::Call: // return value is just a SIMD value, no special handling
- return false;
- case Instruction::PHI: // handled separately - we push them back into the relooper branchings
- break;
- case Instruction::ICmp:
- generateICmpExpression(cast<ICmpInst>(I), Code);
- break;
- case Instruction::FCmp:
- generateFCmpExpression(cast<FCmpInst>(I), Code);
- break;
- case Instruction::SExt:
- assert(cast<VectorType>(I->getOperand(0)->getType())->getElementType()->isIntegerTy(1) &&
- "sign-extension from vector of other than i1 not yet supported");
- // Since we represent vectors of i1 as vectors of sign extended wider integers,
- // sign extending them is a no-op.
- Code << getAssignIfNeeded(I) << getValueAsStr(I->getOperand(0));
- break;
- case Instruction::Select:
- // Since we represent vectors of i1 as vectors of sign extended wider integers,
- // selecting on them is just an elementwise select.
- if (isa<VectorType>(I->getOperand(0)->getType())) {
- if (cast<VectorType>(I->getType())->getElementType()->isIntegerTy()) {
- Code << getAssignIfNeeded(I) << "SIMD_int32x4_select(" << getValueAsStr(I->getOperand(0)) << "," << getValueAsStr(I->getOperand(1)) << "," << getValueAsStr(I->getOperand(2)) << ")"; break;
- } else {
- Code << getAssignIfNeeded(I) << "SIMD_float32x4_select(" << getValueAsStr(I->getOperand(0)) << "," << getValueAsStr(I->getOperand(1)) << "," << getValueAsStr(I->getOperand(2)) << ")"; break;
- }
- return true;
- }
- // Otherwise we have a scalar condition, so it's a ?: operator.
- return false;
- case Instruction::FAdd: Code << getAssignIfNeeded(I) << "SIMD_float32x4_add(" << getValueAsStr(I->getOperand(0)) << "," << getValueAsStr(I->getOperand(1)) << ")"; break;
- case Instruction::FMul: Code << getAssignIfNeeded(I) << "SIMD_float32x4_mul(" << getValueAsStr(I->getOperand(0)) << "," << getValueAsStr(I->getOperand(1)) << ")"; break;
- case Instruction::FDiv: Code << getAssignIfNeeded(I) << "SIMD_float32x4_div(" << getValueAsStr(I->getOperand(0)) << "," << getValueAsStr(I->getOperand(1)) << ")"; break;
- case Instruction::Add: Code << getAssignIfNeeded(I) << "SIMD_int32x4_add(" << getValueAsStr(I->getOperand(0)) << "," << getValueAsStr(I->getOperand(1)) << ")"; break;
- case Instruction::Sub: Code << getAssignIfNeeded(I) << "SIMD_int32x4_sub(" << getValueAsStr(I->getOperand(0)) << "," << getValueAsStr(I->getOperand(1)) << ")"; break;
- case Instruction::Mul: Code << getAssignIfNeeded(I) << "SIMD_int32x4_mul(" << getValueAsStr(I->getOperand(0)) << "," << getValueAsStr(I->getOperand(1)) << ")"; break;
- case Instruction::And: Code << getAssignIfNeeded(I) << "SIMD_int32x4_and(" << getValueAsStr(I->getOperand(0)) << "," << getValueAsStr(I->getOperand(1)) << ")"; break;
- case Instruction::Or: Code << getAssignIfNeeded(I) << "SIMD_int32x4_or(" << getValueAsStr(I->getOperand(0)) << "," << getValueAsStr(I->getOperand(1)) << ")"; break;
- case Instruction::Xor:
- // LLVM represents a not(x) as -1 ^ x
- Code << getAssignIfNeeded(I);
- if (BinaryOperator::isNot(I)) {
- Code << "SIMD_int32x4_not(" << getValueAsStr(BinaryOperator::getNotArgument(I)) << ")"; break;
- } else {
- Code << "SIMD_int32x4_xor(" << getValueAsStr(I->getOperand(0)) << "," << getValueAsStr(I->getOperand(1)) << ")"; break;
- }
- break;
- case Instruction::FSub:
- // LLVM represents an fneg(x) as -0.0 - x.
- Code << getAssignIfNeeded(I);
- if (BinaryOperator::isFNeg(I)) {
- Code << "SIMD_float32x4_neg(" << getValueAsStr(BinaryOperator::getFNegArgument(I)) << ")";
- } else {
- Code << "SIMD_float32x4_sub(" << getValueAsStr(I->getOperand(0)) << "," << getValueAsStr(I->getOperand(1)) << ")";
- }
- break;
- case Instruction::BitCast: {
- Code << getAssignIfNeeded(I);
- if (cast<VectorType>(I->getType())->getElementType()->isIntegerTy()) {
- Code << "SIMD_int32x4_fromFloat32x4Bits(" << getValueAsStr(I->getOperand(0)) << ')';
- } else {
- Code << "SIMD_float32x4_fromInt32x4Bits(" << getValueAsStr(I->getOperand(0)) << ')';
- }
- break;
- }
- case Instruction::Load: {
- const LoadInst *LI = cast<LoadInst>(I);
- const Value *P = LI->getPointerOperand();
- std::string PS = getValueAsStr(P);
-
- // Determine if this is a partial load.
- static const std::string partialAccess[4] = { "X", "XY", "XYZ", "" };
- if (VT->getNumElements() < 1 || VT->getNumElements() > 4) {
- error("invalid number of lanes in SIMD operation!");
- break;
- }
- const std::string &Part = partialAccess[VT->getNumElements() - 1];
-
- Code << getAssignIfNeeded(I);
- if (VT->getElementType()->isIntegerTy()) {
- Code << "SIMD_int32x4_load" << Part << "(HEAPU8, " << PS << ")";
- } else {
- Code << "SIMD_float32x4_load" << Part << "(HEAPU8, " << PS << ")";
- }
- break;
- }
- case Instruction::InsertElement:
- generateInsertElementExpression(cast<InsertElementInst>(I), Code);
- break;
- case Instruction::ShuffleVector:
- generateShuffleVectorExpression(cast<ShuffleVectorInst>(I), Code);
- break;
- case Instruction::SDiv:
- case Instruction::UDiv:
- case Instruction::SRem:
- case Instruction::URem:
- // The SIMD API does not currently support these operations directly.
- // Emulate them using scalar operations (which is essentially the same
- // as what would happen if the API did support them, since hardware
- // doesn't support them).
- generateUnrolledExpression(I, Code);
- break;
- case Instruction::AShr:
- case Instruction::LShr:
- case Instruction::Shl:
- generateShiftExpression(cast<BinaryOperator>(I), Code);
- break;
- }
- return true;
- } else {
- // vector-consuming instructions
- if (Operator::getOpcode(I) == Instruction::Store && (VT = dyn_cast<VectorType>(I->getOperand(0)->getType())) && VT->isVectorTy()) {
- checkVectorType(VT);
- const StoreInst *SI = cast<StoreInst>(I);
- const Value *P = SI->getPointerOperand();
- std::string PS = getOpName(P);
- std::string VS = getValueAsStr(SI->getValueOperand());
- Code << getAdHocAssign(PS, P->getType()) << getValueAsStr(P) << ';';
-
- // Determine if this is a partial store.
- static const std::string partialAccess[4] = { "X", "XY", "XYZ", "" };
- if (VT->getNumElements() < 1 || VT->getNumElements() > 4) {
- error("invalid number of lanes in SIMD operation!");
- return false;
- }
- const std::string &Part = partialAccess[VT->getNumElements() - 1];
-
- if (VT->getElementType()->isIntegerTy()) {
- Code << "SIMD_int32x4_store" << Part << "(HEAPU8, " << PS << ", " << VS << ")";
- } else {
- Code << "SIMD_float32x4_store" << Part << "(HEAPU8, " << PS << ", " << VS << ")";
- }
- return true;
- } else if (Operator::getOpcode(I) == Instruction::ExtractElement) {
- generateExtractElementExpression(cast<ExtractElementInst>(I), Code);
- return true;
- }
- }
- return false;
-}
-
-static uint64_t LSBMask(unsigned numBits) {
- return numBits >= 64 ? 0xFFFFFFFFFFFFFFFFULL : (1ULL << numBits) - 1;
-}
-
-// Generate code for and operator, either an Instruction or a ConstantExpr.
-void JSWriter::generateExpression(const User *I, raw_string_ostream& Code) {
- // To avoid emiting code and variables for the no-op pointer bitcasts
- // and all-zero-index geps that LLVM needs to satisfy its type system, we
- // call stripPointerCasts() on all values before translating them. This
- // includes bitcasts whose only use is lifetime marker intrinsics.
- assert(I == I->stripPointerCasts());
-
- Type *T = I->getType();
- if (T->isIntegerTy() && T->getIntegerBitWidth() > 32) {
- errs() << *I << "\n";
- report_fatal_error("legalization problem");
- }
-
- if (!generateSIMDExpression(I, Code)) switch (Operator::getOpcode(I)) {
- default: {
- I->dump();
- error("Invalid instruction");
- break;
- }
- case Instruction::Ret: {
- const ReturnInst* ret = cast<ReturnInst>(I);
- const Value *RV = ret->getReturnValue();
- if (StackBumped) {
- Code << "STACKTOP = sp;";
- }
- Code << "return";
- if (RV != NULL) {
- Code << " " << getValueAsCastParenStr(RV, ASM_NONSPECIFIC | ASM_MUST_CAST);
- }
- break;
- }
- case Instruction::Br:
- case Instruction::IndirectBr:
- case Instruction::Switch: return; // handled while relooping
- case Instruction::Unreachable: {
- // Typically there should be an abort right before these, so we don't emit any code // TODO: when ASSERTIONS are on, emit abort(0)
- Code << "// unreachable";
- break;
- }
- case Instruction::Add:
- case Instruction::FAdd:
- case Instruction::Sub:
- case Instruction::FSub:
- case Instruction::Mul:
- case Instruction::FMul:
- case Instruction::UDiv:
- case Instruction::SDiv:
- case Instruction::FDiv:
- case Instruction::URem:
- case Instruction::SRem:
- case Instruction::FRem:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor:
- case Instruction::Shl:
- case Instruction::LShr:
- case Instruction::AShr:{
- Code << getAssignIfNeeded(I);
- unsigned opcode = Operator::getOpcode(I);
- switch (opcode) {
- case Instruction::Add: Code << getParenCast(
- getValueAsParenStr(I->getOperand(0)) +
- " + " +
- getValueAsParenStr(I->getOperand(1)),
- I->getType()
- ); break;
- case Instruction::Sub: Code << getParenCast(
- getValueAsParenStr(I->getOperand(0)) +
- " - " +
- getValueAsParenStr(I->getOperand(1)),
- I->getType()
- ); break;
- case Instruction::Mul: Code << getIMul(I->getOperand(0), I->getOperand(1)); break;
- case Instruction::UDiv:
- case Instruction::SDiv:
- case Instruction::URem:
- case Instruction::SRem: Code << "(" <<
- getValueAsCastParenStr(I->getOperand(0), (opcode == Instruction::SDiv || opcode == Instruction::SRem) ? ASM_SIGNED : ASM_UNSIGNED) <<
- ((opcode == Instruction::UDiv || opcode == Instruction::SDiv) ? " / " : " % ") <<
- getValueAsCastParenStr(I->getOperand(1), (opcode == Instruction::SDiv || opcode == Instruction::SRem) ? ASM_SIGNED : ASM_UNSIGNED) <<
- ")&-1"; break;
- case Instruction::And: Code << getValueAsStr(I->getOperand(0)) << " & " << getValueAsStr(I->getOperand(1)); break;
- case Instruction::Or: Code << getValueAsStr(I->getOperand(0)) << " | " << getValueAsStr(I->getOperand(1)); break;
- case Instruction::Xor: Code << getValueAsStr(I->getOperand(0)) << " ^ " << getValueAsStr(I->getOperand(1)); break;
- case Instruction::Shl: {
- std::string Shifted = getValueAsStr(I->getOperand(0)) + " << " + getValueAsStr(I->getOperand(1));
- if (I->getType()->getIntegerBitWidth() < 32) {
- Shifted = getParenCast(Shifted, I->getType(), ASM_UNSIGNED); // remove bits that are shifted beyond the size of this value
- }
- Code << Shifted;
- break;
- }
- case Instruction::AShr:
- case Instruction::LShr: {
- std::string Input = getValueAsStr(I->getOperand(0));
- if (I->getType()->getIntegerBitWidth() < 32) {
- Input = '(' + getCast(Input, I->getType(), opcode == Instruction::AShr ? ASM_SIGNED : ASM_UNSIGNED) + ')'; // fill in high bits, as shift needs those and is done in 32-bit
- }
- Code << Input << (opcode == Instruction::AShr ? " >> " : " >>> ") << getValueAsStr(I->getOperand(1));
- break;
- }
-
- case Instruction::FAdd: Code << ensureFloat(getValueAsStr(I->getOperand(0)) + " + " + getValueAsStr(I->getOperand(1)), I->getType()); break;
- case Instruction::FMul: Code << ensureFloat(getValueAsStr(I->getOperand(0)) + " * " + getValueAsStr(I->getOperand(1)), I->getType()); break;
- case Instruction::FDiv: Code << ensureFloat(getValueAsStr(I->getOperand(0)) + " / " + getValueAsStr(I->getOperand(1)), I->getType()); break;
- case Instruction::FRem: Code << ensureFloat(getValueAsStr(I->getOperand(0)) + " % " + getValueAsStr(I->getOperand(1)), I->getType()); break;
- case Instruction::FSub:
- // LLVM represents an fneg(x) as -0.0 - x.
- if (BinaryOperator::isFNeg(I)) {
- Code << ensureFloat("-" + getValueAsStr(BinaryOperator::getFNegArgument(I)), I->getType());
- } else {
- Code << ensureFloat(getValueAsStr(I->getOperand(0)) + " - " + getValueAsStr(I->getOperand(1)), I->getType());
- }
- break;
- default: error("bad binary opcode"); break;
- }
- break;
- }
- case Instruction::FCmp: {
- Code << getAssignIfNeeded(I);
- switch (cast<FCmpInst>(I)->getPredicate()) {
- // Comparisons which are simple JS operators.
- case FCmpInst::FCMP_OEQ: Code << getValueAsStr(I->getOperand(0)) << " == " << getValueAsStr(I->getOperand(1)); break;
- case FCmpInst::FCMP_UNE: Code << getValueAsStr(I->getOperand(0)) << " != " << getValueAsStr(I->getOperand(1)); break;
- case FCmpInst::FCMP_OGT: Code << getValueAsStr(I->getOperand(0)) << " > " << getValueAsStr(I->getOperand(1)); break;
- case FCmpInst::FCMP_OGE: Code << getValueAsStr(I->getOperand(0)) << " >= " << getValueAsStr(I->getOperand(1)); break;
- case FCmpInst::FCMP_OLT: Code << getValueAsStr(I->getOperand(0)) << " < " << getValueAsStr(I->getOperand(1)); break;
- case FCmpInst::FCMP_OLE: Code << getValueAsStr(I->getOperand(0)) << " <= " << getValueAsStr(I->getOperand(1)); break;
-
- // Comparisons which are inverses of JS operators.
- case FCmpInst::FCMP_UGT:
- Code << "!(" << getValueAsStr(I->getOperand(0)) << " <= " << getValueAsStr(I->getOperand(1)) << ")";
- break;
- case FCmpInst::FCMP_UGE:
- Code << "!(" << getValueAsStr(I->getOperand(0)) << " < " << getValueAsStr(I->getOperand(1)) << ")";
- break;
- case FCmpInst::FCMP_ULT:
- Code << "!(" << getValueAsStr(I->getOperand(0)) << " >= " << getValueAsStr(I->getOperand(1)) << ")";
- break;
- case FCmpInst::FCMP_ULE:
- Code << "!(" << getValueAsStr(I->getOperand(0)) << " > " << getValueAsStr(I->getOperand(1)) << ")";
- break;
-
- // Comparisons which require explicit NaN checks.
- case FCmpInst::FCMP_UEQ:
- Code << "(" << getValueAsStr(I->getOperand(0)) << " != " << getValueAsStr(I->getOperand(0)) << ") | " <<
- "(" << getValueAsStr(I->getOperand(1)) << " != " << getValueAsStr(I->getOperand(1)) << ") |" <<
- "(" << getValueAsStr(I->getOperand(0)) << " == " << getValueAsStr(I->getOperand(1)) << ")";
- break;
- case FCmpInst::FCMP_ONE:
- Code << "(" << getValueAsStr(I->getOperand(0)) << " == " << getValueAsStr(I->getOperand(0)) << ") & " <<
- "(" << getValueAsStr(I->getOperand(1)) << " == " << getValueAsStr(I->getOperand(1)) << ") &" <<
- "(" << getValueAsStr(I->getOperand(0)) << " != " << getValueAsStr(I->getOperand(1)) << ")";
- break;
-
- // Simple NaN checks.
- case FCmpInst::FCMP_ORD: Code << "(" << getValueAsStr(I->getOperand(0)) << " == " << getValueAsStr(I->getOperand(0)) << ") & " <<
- "(" << getValueAsStr(I->getOperand(1)) << " == " << getValueAsStr(I->getOperand(1)) << ")"; break;
- case FCmpInst::FCMP_UNO: Code << "(" << getValueAsStr(I->getOperand(0)) << " != " << getValueAsStr(I->getOperand(0)) << ") | " <<
- "(" << getValueAsStr(I->getOperand(1)) << " != " << getValueAsStr(I->getOperand(1)) << ")"; break;
-
- // Simple constants.
- case FCmpInst::FCMP_FALSE: Code << "0"; break;
- case FCmpInst::FCMP_TRUE : Code << "1"; break;
-
- default: error("bad fcmp"); break;
- }
- break;
- }
- case Instruction::ICmp: {
- unsigned predicate = isa<ConstantExpr>(I) ?
- cast<ConstantExpr>(I)->getPredicate() :
- cast<ICmpInst>(I)->getPredicate();
- AsmCast sign = CmpInst::isUnsigned(predicate) ? ASM_UNSIGNED : ASM_SIGNED;
- Code << getAssignIfNeeded(I) << "(" <<
- getValueAsCastStr(I->getOperand(0), sign) <<
- ")";
- switch (predicate) {
- case ICmpInst::ICMP_EQ: Code << "=="; break;
- case ICmpInst::ICMP_NE: Code << "!="; break;
- case ICmpInst::ICMP_ULE: Code << "<="; break;
- case ICmpInst::ICMP_SLE: Code << "<="; break;
- case ICmpInst::ICMP_UGE: Code << ">="; break;
- case ICmpInst::ICMP_SGE: Code << ">="; break;
- case ICmpInst::ICMP_ULT: Code << "<"; break;
- case ICmpInst::ICMP_SLT: Code << "<"; break;
- case ICmpInst::ICMP_UGT: Code << ">"; break;
- case ICmpInst::ICMP_SGT: Code << ">"; break;
- default: llvm_unreachable("Invalid ICmp predicate");
- }
- Code << "(" <<
- getValueAsCastStr(I->getOperand(1), sign) <<
- ")";
- break;
- }
- case Instruction::Alloca: {
- const AllocaInst* AI = cast<AllocaInst>(I);
-
- // We've done an alloca, so we'll have bumped the stack and will
- // need to restore it.
- // Yes, we shouldn't have to bump it for nativized vars, however
- // they are included in the frame offset, so the restore is still
- // needed until that is fixed.
- StackBumped = true;
-
- if (NativizedVars.count(AI)) {
- // nativized stack variable, we just need a 'var' definition
- UsedVars[getJSName(AI)] = AI->getType()->getElementType();
- return;
- }
-
- // Fixed-size entry-block allocations are allocated all at once in the
- // function prologue.
- if (AI->isStaticAlloca()) {
- uint64_t Offset;
- if (Allocas.getFrameOffset(AI, &Offset)) {
- Code << getAssign(AI);
- if (Allocas.getMaxAlignment() <= STACK_ALIGN) {
- Code << "sp";
- } else {
- Code << "sp_a"; // aligned base of stack is different, use that
- }
- if (Offset != 0) {
- Code << " + " << Offset << "|0";
- }
- break;
- }
- // Otherwise, this alloca is being represented by another alloca, so
- // there's nothing to print.
- return;
- }
-
- assert(AI->getAlignment() <= STACK_ALIGN); // TODO
-
- Type *T = AI->getAllocatedType();
- std::string Size;
- uint64_t BaseSize = DL->getTypeAllocSize(T);
- const Value *AS = AI->getArraySize();
- if (const ConstantInt *CI = dyn_cast<ConstantInt>(AS)) {
- Size = Twine(stackAlign(BaseSize * CI->getZExtValue())).str();
- } else {
- Size = stackAlignStr("((" + utostr(BaseSize) + '*' + getValueAsStr(AS) + ")|0)");
- }
- Code << getAssign(AI) << "STACKTOP; " << getStackBump(Size);
- break;
- }
- case Instruction::Load: {
- const LoadInst *LI = cast<LoadInst>(I);
- const Value *P = LI->getPointerOperand();
- unsigned Alignment = LI->getAlignment();
- if (NativizedVars.count(P)) {
- Code << getAssign(LI) << getValueAsStr(P);
- } else {
- Code << getLoad(LI, P, LI->getType(), Alignment);
- }
- break;
- }
- case Instruction::Store: {
- const StoreInst *SI = cast<StoreInst>(I);
- const Value *P = SI->getPointerOperand();
- const Value *V = SI->getValueOperand();
- unsigned Alignment = SI->getAlignment();
- std::string VS = getValueAsStr(V);
- if (NativizedVars.count(P)) {
- Code << getValueAsStr(P) << " = " << VS;
- } else {
- Code << getStore(SI, P, V->getType(), VS, Alignment);
- }
-
- Type *T = V->getType();
- if (T->isIntegerTy() && T->getIntegerBitWidth() > 32) {
- errs() << *I << "\n";
- report_fatal_error("legalization problem");
- }
- break;
- }
- case Instruction::GetElementPtr: {
- Code << getAssignIfNeeded(I);
- const GEPOperator *GEP = cast<GEPOperator>(I);
- gep_type_iterator GTI = gep_type_begin(GEP);
- int32_t ConstantOffset = 0;
- std::string text = getValueAsParenStr(GEP->getPointerOperand());
-
- GetElementPtrInst::const_op_iterator I = GEP->op_begin();
- I++;
- for (GetElementPtrInst::const_op_iterator E = GEP->op_end();
- I != E; ++I) {
- const Value *Index = *I;
- if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
- // For a struct, add the member offset.
- unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
- uint32_t Offset = DL->getStructLayout(STy)->getElementOffset(FieldNo);
- ConstantOffset = (uint32_t)ConstantOffset + Offset;
- } else {
- // For an array, add the element offset, explicitly scaled.
- uint32_t ElementSize = DL->getTypeAllocSize(*GTI);
- if (const ConstantInt *CI = dyn_cast<ConstantInt>(Index)) {
- ConstantOffset = (uint32_t)ConstantOffset + (uint32_t)CI->getSExtValue() * ElementSize;
- } else {
- text = "(" + text + " + (" + getIMul(Index, ConstantInt::get(Type::getInt32Ty(GEP->getContext()), ElementSize)) + ")|0)";
- }
- }
- }
- if (ConstantOffset != 0) {
- text = "(" + text + " + " + itostr(ConstantOffset) + "|0)";
- }
- Code << text;
- break;
- }
- case Instruction::PHI: {
- // handled separately - we push them back into the relooper branchings
- return;
- }
- case Instruction::PtrToInt:
- case Instruction::IntToPtr:
- Code << getAssignIfNeeded(I) << getValueAsStr(I->getOperand(0));
- break;
- case Instruction::Trunc:
- case Instruction::ZExt:
- case Instruction::SExt:
- case Instruction::FPTrunc:
- case Instruction::FPExt:
- case Instruction::FPToUI:
- case Instruction::FPToSI:
- case Instruction::UIToFP:
- case Instruction::SIToFP: {
- Code << getAssignIfNeeded(I);
- switch (Operator::getOpcode(I)) {
- case Instruction::Trunc: {
- //unsigned inBits = V->getType()->getIntegerBitWidth();
- unsigned outBits = I->getType()->getIntegerBitWidth();
- Code << getValueAsStr(I->getOperand(0)) << "&" << utostr(LSBMask(outBits));
- break;
- }
- case Instruction::SExt: {
- std::string bits = utostr(32 - I->getOperand(0)->getType()->getIntegerBitWidth());
- Code << getValueAsStr(I->getOperand(0)) << " << " << bits << " >> " << bits;
- break;
- }
- case Instruction::ZExt: {
- Code << getValueAsCastStr(I->getOperand(0), ASM_UNSIGNED);
- break;
- }
- case Instruction::FPExt: {
- if (PreciseF32) {
- Code << "+" << getValueAsStr(I->getOperand(0)); break;
- } else {
- Code << getValueAsStr(I->getOperand(0)); break;
- }
- break;
- }
- case Instruction::FPTrunc: {
- Code << ensureFloat(getValueAsStr(I->getOperand(0)), I->getType());
- break;
- }
- case Instruction::SIToFP: Code << '(' << getCast(getValueAsCastParenStr(I->getOperand(0), ASM_SIGNED), I->getType()) << ')'; break;
- case Instruction::UIToFP: Code << '(' << getCast(getValueAsCastParenStr(I->getOperand(0), ASM_UNSIGNED), I->getType()) << ')'; break;
- case Instruction::FPToSI: Code << '(' << getDoubleToInt(getValueAsParenStr(I->getOperand(0))) << ')'; break;
- case Instruction::FPToUI: Code << '(' << getCast(getDoubleToInt(getValueAsParenStr(I->getOperand(0))), I->getType(), ASM_UNSIGNED) << ')'; break;
- case Instruction::PtrToInt: Code << '(' << getValueAsStr(I->getOperand(0)) << ')'; break;
- case Instruction::IntToPtr: Code << '(' << getValueAsStr(I->getOperand(0)) << ')'; break;
- default: llvm_unreachable("Unreachable");
- }
- break;
- }
- case Instruction::BitCast: {
- Code << getAssignIfNeeded(I);
- // Most bitcasts are no-ops for us. However, the exception is int to float and float to int
- Type *InType = I->getOperand(0)->getType();
- Type *OutType = I->getType();
- std::string V = getValueAsStr(I->getOperand(0));
- if (InType->isIntegerTy() && OutType->isFloatingPointTy()) {
- assert(InType->getIntegerBitWidth() == 32);
- Code << "(HEAP32[tempDoublePtr>>2]=" << V << "," << getCast("HEAPF32[tempDoublePtr>>2]", Type::getFloatTy(TheModule->getContext())) << ")";
- } else if (OutType->isIntegerTy() && InType->isFloatingPointTy()) {
- assert(OutType->getIntegerBitWidth() == 32);
- Code << "(HEAPF32[tempDoublePtr>>2]=" << V << "," "HEAP32[tempDoublePtr>>2]|0)";
- } else {
- Code << V;
- }
- break;
- }
- case Instruction::Call: {
- const CallInst *CI = cast<CallInst>(I);
- std::string Call = handleCall(CI);
- if (Call.empty()) return;
- Code << Call;
- break;
- }
- case Instruction::Select: {
- Code << getAssignIfNeeded(I) << getValueAsStr(I->getOperand(0)) << " ? " <<
- getValueAsStr(I->getOperand(1)) << " : " <<
- getValueAsStr(I->getOperand(2));
- break;
- }
- case Instruction::AtomicRMW: {
- const AtomicRMWInst *rmwi = cast<AtomicRMWInst>(I);
- const Value *P = rmwi->getOperand(0);
- const Value *V = rmwi->getOperand(1);
- std::string VS = getValueAsStr(V);
- Code << getLoad(rmwi, P, I->getType(), 0) << ';';
- // Most bitcasts are no-ops for us. However, the exception is int to float and float to int
- switch (rmwi->getOperation()) {
- case AtomicRMWInst::Xchg: Code << getStore(rmwi, P, I->getType(), VS, 0); break;
- case AtomicRMWInst::Add: Code << getStore(rmwi, P, I->getType(), "((" + getJSName(I) + '+' + VS + ")|0)", 0); break;
- case AtomicRMWInst::Sub: Code << getStore(rmwi, P, I->getType(), "((" + getJSName(I) + '-' + VS + ")|0)", 0); break;
- case AtomicRMWInst::And: Code << getStore(rmwi, P, I->getType(), "(" + getJSName(I) + '&' + VS + ")", 0); break;
- case AtomicRMWInst::Nand: Code << getStore(rmwi, P, I->getType(), "(~(" + getJSName(I) + '&' + VS + "))", 0); break;
- case AtomicRMWInst::Or: Code << getStore(rmwi, P, I->getType(), "(" + getJSName(I) + '|' + VS + ")", 0); break;
- case AtomicRMWInst::Xor: Code << getStore(rmwi, P, I->getType(), "(" + getJSName(I) + '^' + VS + ")", 0); break;
- case AtomicRMWInst::Max:
- case AtomicRMWInst::Min:
- case AtomicRMWInst::UMax:
- case AtomicRMWInst::UMin:
- case AtomicRMWInst::BAD_BINOP: llvm_unreachable("Bad atomic operation");
- }
- break;
- }
- case Instruction::Fence: // no threads, so nothing to do here
- Code << "/* fence */";
- break;
- }
-
- if (const Instruction *Inst = dyn_cast<Instruction>(I)) {
- Code << ';';
- // append debug info
- emitDebugInfo(Code, Inst);
- Code << '\n';
- }
-}
-
-// Checks whether to use a condition variable. We do so for switches and for indirectbrs
-static const Value *considerConditionVar(const Instruction *I) {
- if (const IndirectBrInst *IB = dyn_cast<const IndirectBrInst>(I)) {
- return IB->getAddress();
- }
- const SwitchInst *SI = dyn_cast<SwitchInst>(I);
- if (!SI) return NULL;
- // use a switch if the range is not too big or sparse
- int64_t Minn = INT64_MAX, Maxx = INT64_MIN;
- for (SwitchInst::ConstCaseIt i = SI->case_begin(), e = SI->case_end(); i != e; ++i) {
- int64_t Curr = i.getCaseValue()->getSExtValue();
- if (Curr < Minn) Minn = Curr;
- if (Curr > Maxx) Maxx = Curr;
- }
- int64_t Range = Maxx - Minn;
- int Num = SI->getNumCases();
- return Num < 5 || Range > 10*1024 || (Range/Num) > 1024 ? NULL : SI->getCondition(); // heuristics
-}
-
-void JSWriter::addBlock(const BasicBlock *BB, Relooper& R, LLVMToRelooperMap& LLVMToRelooper) {
- std::string Code;
- raw_string_ostream CodeStream(Code);
- for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
- I != E; ++I) {
- if (I->stripPointerCasts() == I) {
- generateExpression(I, CodeStream);
- }
- }
- CodeStream.flush();
- const Value* Condition = considerConditionVar(BB->getTerminator());
- Block *Curr = new Block(Code.c_str(), Condition ? getValueAsCastStr(Condition).c_str() : NULL);
- LLVMToRelooper[BB] = Curr;
- R.AddBlock(Curr);
-}
-
-void JSWriter::printFunctionBody(const Function *F) {
- assert(!F->isDeclaration());
-
- // Prepare relooper
- Relooper::MakeOutputBuffer(1024*1024);
- Relooper R;
- //if (!canReloop(F)) R.SetEmulate(true);
- if (F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, Attribute::MinSize) ||
- F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize)) {
- R.SetMinSize(true);
- }
- R.SetAsmJSMode(1);
- Block *Entry = NULL;
- LLVMToRelooperMap LLVMToRelooper;
-
- // Create relooper blocks with their contents. TODO: We could optimize
- // indirectbr by emitting indexed blocks first, so their indexes
- // match up with the label index.
- for (Function::const_iterator BI = F->begin(), BE = F->end();
- BI != BE; ++BI) {
- InvokeState = 0; // each basic block begins in state 0; the previous may not have cleared it, if e.g. it had a throw in the middle and the rest of it was decapitated
- addBlock(BI, R, LLVMToRelooper);
- if (!Entry) Entry = LLVMToRelooper[BI];
- }
- assert(Entry);
-
- // Create branchings
- for (Function::const_iterator BI = F->begin(), BE = F->end();
- BI != BE; ++BI) {
- const TerminatorInst *TI = BI->getTerminator();
- switch (TI->getOpcode()) {
- default: {
- report_fatal_error("invalid branch instr " + Twine(TI->getOpcodeName()));
- break;
- }
- case Instruction::Br: {
- const BranchInst* br = cast<BranchInst>(TI);
- if (br->getNumOperands() == 3) {
- BasicBlock *S0 = br->getSuccessor(0);
- BasicBlock *S1 = br->getSuccessor(1);
- std::string P0 = getPhiCode(&*BI, S0);
- std::string P1 = getPhiCode(&*BI, S1);
- LLVMToRelooper[&*BI]->AddBranchTo(LLVMToRelooper[&*S0], getValueAsStr(TI->getOperand(0)).c_str(), P0.size() > 0 ? P0.c_str() : NULL);
- LLVMToRelooper[&*BI]->AddBranchTo(LLVMToRelooper[&*S1], NULL, P1.size() > 0 ? P1.c_str() : NULL);
- } else if (br->getNumOperands() == 1) {
- BasicBlock *S = br->getSuccessor(0);
- std::string P = getPhiCode(&*BI, S);
- LLVMToRelooper[&*BI]->AddBranchTo(LLVMToRelooper[&*S], NULL, P.size() > 0 ? P.c_str() : NULL);
- } else {
- error("Branch with 2 operands?");
- }
- break;
- }
- case Instruction::IndirectBr: {
- const IndirectBrInst* br = cast<IndirectBrInst>(TI);
- unsigned Num = br->getNumDestinations();
- std::set<const BasicBlock*> Seen; // sadly llvm allows the same block to appear multiple times
- bool SetDefault = false; // pick the first and make it the default, llvm gives no reasonable default here
- for (unsigned i = 0; i < Num; i++) {
- const BasicBlock *S = br->getDestination(i);
- if (Seen.find(S) != Seen.end()) continue;
- Seen.insert(S);
- std::string P = getPhiCode(&*BI, S);
- std::string Target;
- if (!SetDefault) {
- SetDefault = true;
- } else {
- Target = "case " + utostr(getBlockAddress(F, S)) + ": ";
- }
- LLVMToRelooper[&*BI]->AddBranchTo(LLVMToRelooper[&*S], Target.size() > 0 ? Target.c_str() : NULL, P.size() > 0 ? P.c_str() : NULL);
- }
- break;
- }
- case Instruction::Switch: {
- const SwitchInst* SI = cast<SwitchInst>(TI);
- bool UseSwitch = !!considerConditionVar(SI);
- BasicBlock *DD = SI->getDefaultDest();
- std::string P = getPhiCode(&*BI, DD);
- LLVMToRelooper[&*BI]->AddBranchTo(LLVMToRelooper[&*DD], NULL, P.size() > 0 ? P.c_str() : NULL);
- typedef std::map<const BasicBlock*, std::string> BlockCondMap;
- BlockCondMap BlocksToConditions;
- for (SwitchInst::ConstCaseIt i = SI->case_begin(), e = SI->case_end(); i != e; ++i) {
- const BasicBlock *BB = i.getCaseSuccessor();
- std::string Curr = i.getCaseValue()->getValue().toString(10, true);
- std::string Condition;
- if (UseSwitch) {
- Condition = "case " + Curr + ": ";
- } else {
- Condition = "(" + getValueAsCastParenStr(SI->getCondition()) + " == " + Curr + ")";
- }
- BlocksToConditions[BB] = Condition + (!UseSwitch && BlocksToConditions[BB].size() > 0 ? " | " : "") + BlocksToConditions[BB];
- }
- for (BlockCondMap::const_iterator I = BlocksToConditions.begin(), E = BlocksToConditions.end(); I != E; ++I) {
- const BasicBlock *BB = I->first;
- if (BB == DD) continue; // ok to eliminate this, default dest will get there anyhow
- std::string P = getPhiCode(&*BI, BB);
- LLVMToRelooper[&*BI]->AddBranchTo(LLVMToRelooper[&*BB], I->second.c_str(), P.size() > 0 ? P.c_str() : NULL);
- }
- break;
- }
- case Instruction::Ret:
- case Instruction::Unreachable: break;
- }
- }
-
- // Calculate relooping and print
- R.Calculate(Entry);
- R.Render();
-
- // Emit local variables
- UsedVars["sp"] = Type::getInt32Ty(F->getContext());
- unsigned MaxAlignment = Allocas.getMaxAlignment();
- if (MaxAlignment > STACK_ALIGN) {
- UsedVars["sp_a"] = Type::getInt32Ty(F->getContext());
- }
- UsedVars["label"] = Type::getInt32Ty(F->getContext());
- if (!UsedVars.empty()) {
- unsigned Count = 0;
- for (VarMap::const_iterator VI = UsedVars.begin(); VI != UsedVars.end(); ++VI) {
- if (Count == 20) {
- Out << ";\n";
- Count = 0;
- }
- if (Count == 0) Out << " var ";
- if (Count > 0) {
- Out << ", ";
- }
- Count++;
- Out << VI->first << " = ";
- switch (VI->second->getTypeID()) {
- default:
- llvm_unreachable("unsupported variable initializer type");
- case Type::PointerTyID:
- case Type::IntegerTyID:
- Out << "0";
- break;
- case Type::FloatTyID:
- if (PreciseF32) {
- Out << "Math_fround(0)";
- break;
- }
- // otherwise fall through to double
- case Type::DoubleTyID:
- Out << "+0";
- break;
- case Type::VectorTyID:
- if (cast<VectorType>(VI->second)->getElementType()->isIntegerTy()) {
- Out << "SIMD_int32x4(0,0,0,0)";
- } else {
- Out << "SIMD_float32x4(0,0,0,0)";
- }
- break;
- }
- }
- Out << ";";
- nl(Out);
- }
-
- {
- static bool Warned = false;
- if (!Warned && OptLevel < 2 && UsedVars.size() > 2000) {
- prettyWarning() << "emitted code will contain very large numbers of local variables, which is bad for performance (build to JS with -O2 or above to avoid this - make sure to do so both on source files, and during 'linking')\n";
- Warned = true;
- }
- }
-
- // Emit stack entry
- Out << " " << getAdHocAssign("sp", Type::getInt32Ty(F->getContext())) << "STACKTOP;";
- if (uint64_t FrameSize = Allocas.getFrameSize()) {
- if (MaxAlignment > STACK_ALIGN) {
- // We must align this entire stack frame to something higher than the default
- Out << "\n ";
- Out << "sp_a = STACKTOP = (STACKTOP + " << utostr(MaxAlignment-1) << ")&-" << utostr(MaxAlignment) << ";";
- }
- Out << "\n ";
- Out << getStackBump(FrameSize);
- }
-
- // Emit (relooped) code
- char *buffer = Relooper::GetOutputBuffer();
- nl(Out) << buffer;
-
- // Ensure a final return if necessary
- Type *RT = F->getFunctionType()->getReturnType();
- if (!RT->isVoidTy()) {
- char *LastCurly = strrchr(buffer, '}');
- if (!LastCurly) LastCurly = buffer;
- char *FinalReturn = strstr(LastCurly, "return ");
- if (!FinalReturn) {
- Out << " return " << getParenCast(getConstant(UndefValue::get(RT)), RT, ASM_NONSPECIFIC) << ";\n";
- }
- }
-}
-
-void JSWriter::processConstants() {
- // First, calculate the address of each constant
- for (Module::const_global_iterator I = TheModule->global_begin(),
- E = TheModule->global_end(); I != E; ++I) {
- if (I->hasInitializer()) {
- parseConstant(I->getName().str(), I->getInitializer(), true);
- }
- }
- // Second, allocate their contents
- for (Module::const_global_iterator I = TheModule->global_begin(),
- E = TheModule->global_end(); I != E; ++I) {
- if (I->hasInitializer()) {
- parseConstant(I->getName().str(), I->getInitializer(), false);
- }
- }
-}
-
-void JSWriter::printFunction(const Function *F) {
- ValueNames.clear();
-
- // Prepare and analyze function
-
- UsedVars.clear();
- UniqueNum = 0;
-
- // When optimizing, the regular optimizer (mem2reg, SROA, GVN, and others)
- // will have already taken all the opportunities for nativization.
- if (OptLevel == CodeGenOpt::None)
- calculateNativizedVars(F);
-
- // Do alloca coloring at -O1 and higher.
- Allocas.analyze(*F, *DL, OptLevel != CodeGenOpt::None);
-
- // Emit the function
-
- std::string Name = F->getName();
- sanitizeGlobal(Name);
- Out << "function " << Name << "(";
- for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
- AI != AE; ++AI) {
- if (AI != F->arg_begin()) Out << ",";
- Out << getJSName(AI);
- }
- Out << ") {";
- nl(Out);
- for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
- AI != AE; ++AI) {
- std::string name = getJSName(AI);
- Out << " " << name << " = " << getCast(name, AI->getType(), ASM_NONSPECIFIC) << ";";
- nl(Out);
- }
- printFunctionBody(F);
- Out << "}";
- nl(Out);
-
- Allocas.clear();
- StackBumped = false;
-}
-
-void JSWriter::printModuleBody() {
- processConstants();
-
- // Emit function bodies.
- nl(Out) << "// EMSCRIPTEN_START_FUNCTIONS"; nl(Out);
- for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
- I != E; ++I) {
- if (!I->isDeclaration()) printFunction(I);
- }
- Out << "function runPostSets() {\n";
- Out << " " << PostSets << "\n";
- Out << "}\n";
- PostSets = "";
- Out << "// EMSCRIPTEN_END_FUNCTIONS\n\n";
-
- assert(GlobalData32.size() == 0 && GlobalData8.size() == 0); // FIXME when we use optimal constant alignments
-
- // TODO fix commas
- Out << "/* memory initializer */ allocate([";
- printCommaSeparated(GlobalData64);
- if (GlobalData64.size() > 0 && GlobalData32.size() + GlobalData8.size() > 0) {
- Out << ",";
- }
- printCommaSeparated(GlobalData32);
- if (GlobalData32.size() > 0 && GlobalData8.size() > 0) {
- Out << ",";
- }
- printCommaSeparated(GlobalData8);
- Out << "], \"i8\", ALLOC_NONE, Runtime.GLOBAL_BASE);";
-
- // Emit metadata for emcc driver
- Out << "\n\n// EMSCRIPTEN_METADATA\n";
- Out << "{\n";
-
- Out << "\"declares\": [";
- bool first = true;
- for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
- I != E; ++I) {
- if (I->isDeclaration() && !I->use_empty()) {
- // Ignore intrinsics that are always no-ops or expanded into other code
- // which doesn't require the intrinsic function itself to be declared.
- if (I->isIntrinsic()) {
- switch (I->getIntrinsicID()) {
- case Intrinsic::dbg_declare:
- case Intrinsic::dbg_value:
- case Intrinsic::lifetime_start:
- case Intrinsic::lifetime_end:
- case Intrinsic::invariant_start:
- case Intrinsic::invariant_end:
- case Intrinsic::prefetch:
- case Intrinsic::memcpy:
- case Intrinsic::memset:
- case Intrinsic::memmove:
- case Intrinsic::expect:
- case Intrinsic::flt_rounds:
- continue;
- }
- }
-
- if (first) {
- first = false;
- } else {
- Out << ", ";
- }
- Out << "\"" << I->getName() << "\"";
- }
- }
- for (NameSet::const_iterator I = Declares.begin(), E = Declares.end();
- I != E; ++I) {
- if (first) {
- first = false;
- } else {
- Out << ", ";
- }
- Out << "\"" << *I << "\"";
- }
- Out << "],";
-
- Out << "\"redirects\": {";
- first = true;
- for (StringMap::const_iterator I = Redirects.begin(), E = Redirects.end();
- I != E; ++I) {
- if (first) {
- first = false;
- } else {
- Out << ", ";
- }
- Out << "\"_" << I->first << "\": \"" << I->second << "\"";
- }
- Out << "},";
-
- Out << "\"externs\": [";
- first = true;
- for (NameSet::const_iterator I = Externals.begin(), E = Externals.end();
- I != E; ++I) {
- if (first) {
- first = false;
- } else {
- Out << ", ";
- }
- Out << "\"" << *I << "\"";
- }
- Out << "],";
-
- Out << "\"implementedFunctions\": [";
- first = true;
- for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
- I != E; ++I) {
- if (!I->isDeclaration()) {
- if (first) {
- first = false;
- } else {
- Out << ", ";
- }
- std::string name = I->getName();
- sanitizeGlobal(name);
- Out << "\"" << name << '"';
- }
- }
- Out << "],";
-
- Out << "\"tables\": {";
- unsigned Num = FunctionTables.size();
- for (FunctionTableMap::iterator I = FunctionTables.begin(), E = FunctionTables.end(); I != E; ++I) {
- Out << " \"" << I->first << "\": \"var FUNCTION_TABLE_" << I->first << " = [";
- FunctionTable &Table = I->second;
- // ensure power of two
- unsigned Size = 1;
- while (Size < Table.size()) Size <<= 1;
- while (Table.size() < Size) Table.push_back("0");
- for (unsigned i = 0; i < Table.size(); i++) {
- Out << Table[i];
- if (i < Table.size()-1) Out << ",";
- }
- Out << "];\"";
- if (--Num > 0) Out << ",";
- Out << "\n";
- }
- Out << "},";
-
- Out << "\"initializers\": [";
- first = true;
- for (unsigned i = 0; i < GlobalInitializers.size(); i++) {
- if (first) {
- first = false;
- } else {
- Out << ", ";
- }
- Out << "\"" << GlobalInitializers[i] << "\"";
- }
- Out << "],";
-
- Out << "\"exports\": [";
- first = true;
- for (unsigned i = 0; i < Exports.size(); i++) {
- if (first) {
- first = false;
- } else {
- Out << ", ";
- }
- Out << "\"" << Exports[i] << "\"";
- }
- Out << "],";
-
- Out << "\"cantValidate\": \"" << CantValidate << "\",";
-
- Out << "\"simd\": ";
- Out << (UsesSIMD ? "1" : "0");
- Out << ",";
-
- Out << "\"namedGlobals\": {";
- first = true;
- for (NameIntMap::const_iterator I = NamedGlobals.begin(), E = NamedGlobals.end(); I != E; ++I) {
- if (first) {
- first = false;
- } else {
- Out << ", ";
- }
- Out << "\"_" << I->first << "\": \"" << utostr(I->second) << "\"";
- }
- Out << "}";
-
- Out << "\n}\n";
-}
-
-void JSWriter::parseConstant(const std::string& name, const Constant* CV, bool calculate) {
- if (isa<GlobalValue>(CV))
- return;
- //errs() << "parsing constant " << name << "\n";
- // TODO: we repeat some work in both calculate and emit phases here
- // FIXME: use the proper optimal alignments
- if (const ConstantDataSequential *CDS =
- dyn_cast<ConstantDataSequential>(CV)) {
- assert(CDS->isString());
- if (calculate) {
- HeapData *GlobalData = allocateAddress(name);
- StringRef Str = CDS->getAsString();
- for (unsigned int i = 0; i < Str.size(); i++) {
- GlobalData->push_back(Str.data()[i]);
- }
- }
- } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
- APFloat APF = CFP->getValueAPF();
- if (CFP->getType() == Type::getFloatTy(CFP->getContext())) {
- if (calculate) {
- HeapData *GlobalData = allocateAddress(name);
- union flt { float f; unsigned char b[sizeof(float)]; } flt;
- flt.f = APF.convertToFloat();
- for (unsigned i = 0; i < sizeof(float); ++i) {
- GlobalData->push_back(flt.b[i]);
- }
- }
- } else if (CFP->getType() == Type::getDoubleTy(CFP->getContext())) {
- if (calculate) {
- HeapData *GlobalData = allocateAddress(name);
- union dbl { double d; unsigned char b[sizeof(double)]; } dbl;
- dbl.d = APF.convertToDouble();
- for (unsigned i = 0; i < sizeof(double); ++i) {
- GlobalData->push_back(dbl.b[i]);
- }
- }
- } else {
- assert(false && "Unsupported floating-point type");
- }
- } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
- if (calculate) {
- union { uint64_t i; unsigned char b[sizeof(uint64_t)]; } integer;
- integer.i = *CI->getValue().getRawData();
- unsigned BitWidth = 64; // CI->getValue().getBitWidth();
- assert(BitWidth == 32 || BitWidth == 64);
- HeapData *GlobalData = allocateAddress(name);
- // assuming compiler is little endian
- for (unsigned i = 0; i < BitWidth / 8; ++i) {
- GlobalData->push_back(integer.b[i]);
- }
- }
- } else if (isa<ConstantPointerNull>(CV)) {
- assert(false && "Unlowered ConstantPointerNull");
- } else if (isa<ConstantAggregateZero>(CV)) {
- if (calculate) {
- unsigned Bytes = DL->getTypeStoreSize(CV->getType());
- HeapData *GlobalData = allocateAddress(name);
- for (unsigned i = 0; i < Bytes; ++i) {
- GlobalData->push_back(0);
- }
- // FIXME: create a zero section at the end, avoid filling meminit with zeros
- }
- } else if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
- if (calculate) {
- for (Constant::const_user_iterator UI = CV->user_begin(), UE = CV->user_end(); UI != UE; ++UI) {
- if ((*UI)->getName() == "llvm.used") {
- // export the kept-alives
- for (unsigned i = 0; i < CA->getNumOperands(); i++) {
- const Constant *C = CA->getOperand(i);
- if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
- C = CE->getOperand(0); // ignore bitcasts
- }
- Exports.push_back(getJSName(C));
- }
- } else if ((*UI)->getName() == "llvm.global.annotations") {
- // llvm.global.annotations can be ignored.
- } else {
- llvm_unreachable("Unexpected constant array");
- }
- break; // we assume one use here
- }
- }
- } else if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
- if (name == "__init_array_start") {
- // this is the global static initializer
- if (calculate) {
- unsigned Num = CS->getNumOperands();
- for (unsigned i = 0; i < Num; i++) {
- const Value* C = CS->getOperand(i);
- if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
- C = CE->getOperand(0); // ignore bitcasts
- }
- GlobalInitializers.push_back(getJSName(C));
- }
- }
- } else if (calculate) {
- HeapData *GlobalData = allocateAddress(name);
- unsigned Bytes = DL->getTypeStoreSize(CV->getType());
- for (unsigned i = 0; i < Bytes; ++i) {
- GlobalData->push_back(0);
- }
- } else {
- // Per the PNaCl abi, this must be a packed struct of a very specific type
- // https://chromium.googlesource.com/native_client/pnacl-llvm/+/7287c45c13dc887cebe3db6abfa2f1080186bb97/lib/Transforms/NaCl/FlattenGlobals.cpp
- assert(CS->getType()->isPacked());
- // This is the only constant where we cannot just emit everything during the first phase, 'calculate', as we may refer to other globals
- unsigned Num = CS->getNumOperands();
- unsigned Offset = getRelativeGlobalAddress(name);
- unsigned OffsetStart = Offset;
- unsigned Absolute = getGlobalAddress(name);
- for (unsigned i = 0; i < Num; i++) {
- const Constant* C = CS->getOperand(i);
- if (isa<ConstantAggregateZero>(C)) {
- unsigned Bytes = DL->getTypeStoreSize(C->getType());
- Offset += Bytes; // zeros, so just skip
- } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
- const Value *V = CE->getOperand(0);
- unsigned Data = 0;
- if (CE->getOpcode() == Instruction::PtrToInt) {
- Data = getConstAsOffset(V, Absolute + Offset - OffsetStart);
- } else if (CE->getOpcode() == Instruction::Add) {
- V = cast<ConstantExpr>(V)->getOperand(0);
- Data = getConstAsOffset(V, Absolute + Offset - OffsetStart);
- ConstantInt *CI = cast<ConstantInt>(CE->getOperand(1));
- Data += *CI->getValue().getRawData();
- } else {
- CE->dump();
- llvm_unreachable("Unexpected constant expr kind");
- }
- union { unsigned i; unsigned char b[sizeof(unsigned)]; } integer;
- integer.i = Data;
- assert(Offset+4 <= GlobalData64.size());
- for (unsigned i = 0; i < 4; ++i) {
- GlobalData64[Offset++] = integer.b[i];
- }
- } else if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(C)) {
- assert(CDS->isString());
- StringRef Str = CDS->getAsString();
- assert(Offset+Str.size() <= GlobalData64.size());
- for (unsigned int i = 0; i < Str.size(); i++) {
- GlobalData64[Offset++] = Str.data()[i];
- }
- } else {
- C->dump();
- llvm_unreachable("Unexpected constant kind");
- }
- }
- }
- } else if (isa<ConstantVector>(CV)) {
- assert(false && "Unlowered ConstantVector");
- } else if (isa<BlockAddress>(CV)) {
- assert(false && "Unlowered BlockAddress");
- } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
- if (name == "__init_array_start") {
- // this is the global static initializer
- if (calculate) {
- const Value *V = CE->getOperand(0);
- GlobalInitializers.push_back(getJSName(V));
- // is the func
- }
- } else if (name == "__fini_array_start") {
- // nothing to do
- } else {
- // a global equal to a ptrtoint of some function, so a 32-bit integer for us
- if (calculate) {
- HeapData *GlobalData = allocateAddress(name);
- for (unsigned i = 0; i < 4; ++i) {
- GlobalData->push_back(0);
- }
- } else {
- unsigned Data = 0;
-
- // Deconstruct lowered getelementptrs.
- if (CE->getOpcode() == Instruction::Add) {
- Data = cast<ConstantInt>(CE->getOperand(1))->getZExtValue();
- CE = cast<ConstantExpr>(CE->getOperand(0));
- }
- const Value *V = CE;
- if (CE->getOpcode() == Instruction::PtrToInt) {
- V = CE->getOperand(0);
- }
-
- // Deconstruct getelementptrs.
- int64_t BaseOffset;
- V = GetPointerBaseWithConstantOffset(V, BaseOffset, *DL);
- Data += (uint64_t)BaseOffset;
-
- Data += getConstAsOffset(V, getGlobalAddress(name));
- union { unsigned i; unsigned char b[sizeof(unsigned)]; } integer;
- integer.i = Data;
- unsigned Offset = getRelativeGlobalAddress(name);
- assert(Offset+4 <= GlobalData64.size());
- for (unsigned i = 0; i < 4; ++i) {
- GlobalData64[Offset++] = integer.b[i];
- }
- }
- }
- } else if (isa<UndefValue>(CV)) {
- assert(false && "Unlowered UndefValue");
- } else {
- CV->dump();
- assert(false && "Unsupported constant kind");
- }
-}
-
-// nativization
-
-void JSWriter::calculateNativizedVars(const Function *F) {
- NativizedVars.clear();
-
- for (Function::const_iterator BI = F->begin(), BE = F->end(); BI != BE; ++BI) {
- for (BasicBlock::const_iterator II = BI->begin(), E = BI->end(); II != E; ++II) {
- const Instruction *I = &*II;
- if (const AllocaInst *AI = dyn_cast<const AllocaInst>(I)) {
- if (AI->getAllocatedType()->isVectorTy()) continue; // we do not nativize vectors, we rely on the LLVM optimizer to avoid load/stores on them
- if (AI->getAllocatedType()->isAggregateType()) continue; // we do not nativize aggregates either
- // this is on the stack. if its address is never used nor escaped, we can nativize it
- bool Fail = false;
- for (Instruction::const_user_iterator UI = I->user_begin(), UE = I->user_end(); UI != UE && !Fail; ++UI) {
- const Instruction *U = dyn_cast<Instruction>(*UI);
- if (!U) { Fail = true; break; } // not an instruction, not cool
- switch (U->getOpcode()) {
- case Instruction::Load: break; // load is cool
- case Instruction::Store: {
- if (U->getOperand(0) == I) Fail = true; // store *of* it is not cool; store *to* it is fine
- break;
- }
- default: { Fail = true; break; } // anything that is "not" "cool", is "not cool"
- }
- }
- if (!Fail) NativizedVars.insert(I);
- }
- }
- }
-}
-
-// special analyses
-
-bool JSWriter::canReloop(const Function *F) {
- return true;
-}
-
-// main entry
-
-void JSWriter::printCommaSeparated(const HeapData data) {
- for (HeapData::const_iterator I = data.begin();
- I != data.end(); ++I) {
- if (I != data.begin()) {
- Out << ",";
- }
- Out << (int)*I;
- }
-}
-
-void JSWriter::printProgram(const std::string& fname,
- const std::string& mName) {
- printModule(fname,mName);
-}
-
-void JSWriter::printModule(const std::string& fname,
- const std::string& mName) {
- printModuleBody();
-}
-
-bool JSWriter::runOnModule(Module &M) {
- TheModule = &M;
- DL = &M.getDataLayout();
-
- setupCallHandlers();
-
- printProgram("", "");
-
- return false;
-}
-
-char JSWriter::ID = 0;
-
-class CheckTriple : public ModulePass {
-public:
- static char ID;
- CheckTriple() : ModulePass(ID) {}
- virtual bool runOnModule(Module &M) {
- if (M.getTargetTriple() != "asmjs-unknown-emscripten") {
- prettyWarning() << "incorrect target triple '" << M.getTargetTriple() << "' (did you use emcc/em++ on all source files and not clang directly?)\n";
- }
- return false;
- }
-};
-
-char CheckTriple::ID;
-
-Pass *createCheckTriplePass() {
- return new CheckTriple();
-}
-
-//===----------------------------------------------------------------------===//
-// External Interface declaration
-//===----------------------------------------------------------------------===//
-
-bool JSTargetMachine::addPassesToEmitFile(PassManagerBase &PM,
- raw_pwrite_stream &o,
- CodeGenFileType FileType,
- bool DisableVerify,
- AnalysisID StartAfter,
- AnalysisID StopAfter) {
- assert(FileType == TargetMachine::CGFT_AssemblyFile);
-
- PM.add(createCheckTriplePass());
- PM.add(createExpandInsertExtractElementPass());
- PM.add(createExpandI64Pass());
-
- CodeGenOpt::Level OptLevel = getOptLevel();
-
- // When optimizing, there shouldn't be any opportunities for SimplifyAllocas
- // because the regular optimizer should have taken them all (GVN, and possibly
- // also SROA).
- if (OptLevel == CodeGenOpt::None)
- PM.add(createEmscriptenSimplifyAllocasPass());
-
- PM.add(new JSWriter(o, OptLevel));
-
- return false;
-}
« no previous file with comments | « lib/Target/JSBackend/JS.h ('k') | lib/Target/JSBackend/JSTargetMachine.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698